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Why Calphad?

 Empirical rules (Hume-Rothery rule and the like)

 Theoretical first principles method 
 Semi-empirical Calphad method
Calphad
 Considering specific systems, specific structures, specific 

compositions, various intermetallics, solutions bases on intermetallics
 Predicting 
o which SSSs to form, and its composition and temperature ranges
o if, when and where it orders
o if, when and where it decomposes
o which intermetallics to form and the phase amounts
o the coexistence and competitions of several SSSs
o the promising/coherent/semicoherent intermetalics
o ...
o Aided by theoretical first principles method

+++
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Thermodynamic databases

Thermodynamic properties, 
H, S, G, Cp, α, μ Solidification simulationPhase equilibria

All sorts of phase diagrams

Advanced phase model
Model parameters

Phase equilibria

Gibbs energy descriptions

Phase formation, fraction, composition,
transformation temperature, solidification 
sequences, eutectic, peritectic…

Modeling

as-castequilibrium

Calculation

Ab-initio calculations
(electron configuration)

Crystallography

Calphad+++

Database 
development

Assessments
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Phase formation, fraction, composition,
solidification sequences, eutectic…Thermodynamic

Database

Mobility
Database

DICTRA

TC-PRISMA

Solidification simulation
Equilibrium calculation

Thermo-Calc

Diffusion-controlled phase transformations

Multi-particle precipitation kinetics

f(ρ)

ρ

Property
Database

Interfacial energy 
Volume

Elastic constants
Viscosity
...

Ultimate goal: microstructure evolution and 
materials proerties

Nucleation, growth, coarsening

Calphad: Thermodynamics & kinetics
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TCHEA1
2016a

TCHEA2
2017a

HEA

Al Co
Cr

Cu

Fe

Hf

Mn

Mo
Nb

NiTaTi
V

W

Zr

C

N

Si
Re

Ru

TCHEA: CCAs/MPEAs, inkl. HEAs 
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 20 element framework
 185 binaries assessed
 443 ternaries assessed 
 ALL solid phases in assessed systems

TCHEA2

Raymundo Arroyave
(Texas A & M University)

 216 HEAs
 85 % on target

Highlight
 Compounds of the same 

structure are modelled as the 
same phase and the mutual 
solubility considered, e.g. Sigma

 Partitioning models for BCC and 
FCC (order/disorder)
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Thermodynamic models

 Substitutional phases
o Liquid, Fcc_A1, Bcc_A2, Hcp_A3, & more

 To reliablby extrapolate into 
o high-order systems
o metalstable compositional ranges
 Bin. & Tern. interaction parameters are crucial
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Thermodynamic models

 Sublattice models 
o Intermetallic compounds & solutions based on them
o Most with 2SL and 3SL models
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Thermodynamic models

 Partitioning models
o Fcc_L12 + Fcc_A1
o Bcc_B2 + Bcc_A2

Gibbs energy 
of disordered 
structure

Contribution from 
ordering parameters
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Thermodynamic models

 Non-disorder partitioning model
o Sigma, …

Gibbs energy 
of the fictitious 
disordered 
structure

Contribution from 
ordering parameters

4f2a 8i1 + 8j+ 8i2

(A, B, …)10 (A, B, …)4 (A, B, …)16 (A, B, …)

hypothetical 
sigma solution
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 molar volume and  its temperature and composition dependence
 experimental data of densities, lattice parameters, and thermal 

expansivity and/or theoretical values
 recalculation of volume & volume fraction, density, expansivity, 

shrinkage during casting, lattice parameters & lattice misfit

Redlich-Kister expansion

Vegard's law

Sublattice model 

Molar volume
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Prediction of Phase formation

 Heat treatment (homogenization, aging, etc.)
 Solidification

 Phases
 Phase formation sequence
 Phase fractions
 Phase compositions
 Phase reactions
 Phase transition temperatures
 Composition microsegregation
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 Using TCHEA and Thermo-Calc
o Equilibrium calculation
o Scheil (non-equilibrium) calculation

Assumption for Scheil: the diffusion in 
liquid is extremely fast while that in solid 
phases is extremely slow

Solidification simulations

2012MaSG-MSEA480, Arc melt
AlCoCrFeNi-0.10Nb

BCC
C14
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Co-Cr-Ni

 Fcc_A1 @ Co1Cr1Ni1
o Competition from Sigma
o Competition from Bcc_A2

1200 Celsius
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CoCrFeNi

Hsu et al., Mater. Chem. Phys. 92 (2005) 112.
Singh, J. Alloys Compd. 587 (2014) 113.

 Fcc_A1 single @ Co1Cr1Ni1Fe1
o As-cast Hsu (2005)
o 850 °C, 24 h Singh (2014)

⇦ equilibrium calculation

⇦ ⇧ Scheil calculation

ΔT=8 
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CoCrFeNi-Al

 The phase formation depends on experimental conditions, 
especially cooling rate and heat treatment.

2009Chou-MSEB184
as-cast alloys, heated @ +10 
C/min to 1100 C, stayed for 24 h. 
 x = 0-0.375  FCC
 x = 0.5-1.0 FCC+BCC
 x = 1.25-2.0 BCC

2009Kao-JAlloyComp57
as-cast alloys, heated @ +20 
C/min to 1100 C, stayed for 24 h. 
 x = 0-0.375 FCC
 x = 0.5-0.75 FCC+BCC
 x = 0.875-2.0 BCC

0.65

2008Zhang-AdvEngMater534
FCC in as-cast Al0.5CrFeCoNi
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CoCrFeNi-0.1Al

 He et al., Scr. Mater. 126 (2017) 15-19

 Calculation:  2.65% Bcc_A2 
instead of a 2nd A1

NI  2.85033E-01  

AL  2.26551E-01  

CR  7.66706E-02

CO  2.27997E-01  

FE  1.83749E-01

 Not in miscibility gap
 0.3670 nm A1
 0.2924 nm A2

 He (2017)
o Single Fcc_A1 is metastable @ 750 °C
o Decomposition after 800 h (2nd FCC)

2 � 𝑎𝑎 = 0.413 nm

0.365 nm
0.424 nm
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CoCrFeNi-0.65Al (13.98 at.% Al)

Solidification simulation of the eutectic alloy Co1Cr1Fe1Ni1Al0.65: (a) phase formation sequence and solid phase 
fractions from equilibrium (in dashed line) and Scheil simulation (solid line); and (b) liquid phase composition from 
Scheil simulation

 2-phase eutectic reaction is not invariant
 Segregation can be significant
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CoCrFeNi-1Al

2012Wang-Intermetallics44
 As-cast: BCC_B2
2009Chou-MSEB184
+10 C/min to 1100 C, held for 24 h 
 BCC + FCC
2009Kao-JAlloyComp57
+20 C/min to 1100 C, held for 24 h
 BCC
2016Munitz-JAlloysCompd683
 As-cast: BCC_B2 + BCC_A2

equilibrium

Dashed line: equilibrium
Solid line: Scheil module
~10 % FCC_A1

Simplifications
 Back 

diffusion in 
Bcc_B2

 Composition 
segregation 
in liquid
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CoCrFeNi-1Al

 Step-by-step Scheil simulation
o Step size: 4 K



24/32

CoCrFeNi-Cu

 2005Tong-MetMaterTransA881
 2 Fcc_A1 phases @ Co1Cr1Cu1Fe1Ni1
o as-cast, 1 to 10 K/s



25/32

1. Calphad and TCHEA2

2. Models and modeling

3. Prediction of Phase formation

4. Application in alloy design



26/32

Co-Cr-Ni-Fe

+ Al
transitions to Bcc
+ Cu
causes decomposition

Co-Cr-Ni-Fe-Al Co-Cr-Ni-Fe-Cu

Co-Cr-Ni-Fe-Al-Cu

Co-Cr-Ni-Fe-Al-Cu-V

Co-Cr-Ni-Fe-Al-Cu-V-Ti

Co-Cr-Ni-Fe-Al-Cu-V-Ti-Mn

Co-Cr-Ni-Fe-Mn

Co-Cr-Ni-Fe-Mn-Cu
Co-Cr-Ni-Fe-Al-Nb

Cantor 

Alloy composition map

Co-Cr-Ni-Fe-Re/Ru?
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CoCrFeNi + Re vs Ru

 Fcc_A1 to Hcp_A3

0.6 Ru
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CoFeReRu
 2016Gao-MMTA47 

As-cast

equilibrium

Scheil
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Co-Fe-Re-Ru
 2016Gao-MMTA47
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Co-Fe-Re-Ru

sigma
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Co-Fe-Re-Ru-X

 No experimental investigations
o Ni
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TCHEA1
2016a

TCHEA2
2017a

HEA

Al Co
Cr

Cu

Fe

Hf

Mn

Mo
Nb

NiTaTi
V

W

Zr

C

N

Si
Re

Ru

Summary

 185 binaries assessed
 443 ternaries assessed 
 ALL solid phases in assessed systems
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