Kinetic Simulations of Diffusion-Controlled Phase Transformations in Cu-Based Alloys

Article Preview

Abstract:

In this chapter, we present computational kinetics of diffusion-controlled phase transformations in Cu-based alloys, which becomes possible only most recently due to the establishment of the first atomic mobility database (MOBCU) for copper alloys. This database consists of 29 elements including most common ones for industrial copper alloys. It contains descriptions for both the liquid and Fcc_A1 phases. The database was developed through a hybrid CALPHAD approach based on experiments, first-principles calculations, and empirical rules. We demonstrate that by coupling the created mobility database with the existing compatible thermodynamic database (TCCU), all kinds of diffusivities in both solid and liquid solution phases in Cu-based alloys can be readily calculated. Furthermore, we have applied the combination of MOBCU and TCCU to simulate diffusion-controlled phenomena, such as solidification, nucleation, growth, and coarsening of precipitates by using the kinetic modules (DICTRA and TC-PRISMA) in the Thermo-Calc software package. Many examples of simulations for different alloys are shown and compared with experimental observations. The remarkable agreements between calculation and experimental results suggest that the atomic mobilities for Cu-based alloys have been satisfactorily described. This newly developed mobility database is expected to be continuously improved and extended in future and will provide fundamental kinetic data for computer-aided design of copper base alloys.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 15)

Pages:

1-22

Citation:

Online since:

February 2018

Export:

* - Corresponding Author

[1] L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu, Ultrahigh strength and high electrical conductivity in Copper, Science 304 (2004) 422-426.

DOI: 10.1126/science.1092905

Google Scholar

[2] Y. Tomioka, J. Miyake, A copper alloy development for leadframe, in Proceedings of 1995 Electronic Manufacturing Technology Symposium, Japan, 1995, pp.433-436.

DOI: 10.1109/iemt.1995.541079

Google Scholar

[3] M. Li, J.K. Heuer, J.F. Stubbins, D.J. Edwards, Fracture behavior of high-strength, high-conductivity copper alloys. J. Nucl. Mater. 283-287 (2000) 977-981.

DOI: 10.1016/s0022-3115(00)00316-0

Google Scholar

[4] L. Kaufman, Computational thermodynamics and materials design, CALPHAD 25 (2001) 141-146.

Google Scholar

[5] N. Saunders, A. P. Miodownik, CALPHAD: a comprehensive guide, Oxford, Pergamon, (1998).

Google Scholar

[6] J. Bratberg, H. Mao, L. Kjellqvist, A. Engström, P. Mason, Q. Chen, The development and validation of a new thermodynamic database for Ni-Based alloys, in E. S. Huron, R. C. Reed, M. C. Hardy, M. J. Mills, R. E. Montero, P. D. Portella, J. Telesman (Eds.), Superalloys 2012, John Wiley & Sons Inc., USA, 2012, pp.803-812.

DOI: 10.1002/9781118516430.ch89

Google Scholar

[7] L.J. Zhang, A. Markström, P. Mason, Y. Du, S. Liu, L. Kjellqvist, J. Bratberg, Q. Chen, A. Engström, TCAL1 and MOBAL2-The development and validation of new thermodynamic and mobility database for Aluminum alloys, in H. Weiland, A.D. Rollett, W.A. Cassada (Eds.) ICAA13 Pittsburgh, Springer, Cham, 2012, pp.305-310.

DOI: 10.1007/978-3-319-48761-8_47

Google Scholar

[8] G.L. Xu, L.G. Zhang, L.B. Liu, Y. Du, F. Zhang, K. Xu, S.H. Liu, M. Tan, Z.P. Jin, Thermodynamic database of multi-component Mg alloys and its application to solidification and heat treatment, J. Magnesium Alloys 4 (2016) 249-264.

DOI: 10.1016/j.jma.2016.11.004

Google Scholar

[9] H.H. Mao, H.L. Chen, Q. Chen, TCHEA1: A thermodynamic database not limited for 'High Entropy', alloys, J. Phase Equilib. Diffus. 38 (2017) 353-368.

DOI: 10.1007/s11669-017-0570-7

Google Scholar

[10] J. Ågren, Diffusion in phases with several components and sublattice, J. Phys. Chem. Solids 43 (1982) 421-430.

Google Scholar

[11] J. Ågren, Numerical treatment of diffusional reactions in multicomponent alloys, J. Phys. Chem. Solids 43 (1982) 385-391.

DOI: 10.1016/0022-3697(82)90209-8

Google Scholar

[12] Y. Du, L.J. Zhang, S.L. Cui, D.D. Zhao, D.D. Liu, W.B. Zhang, W.H. Sun, W.Q. Jie, Atomic mobilities and diffusivities in Al alloys, Sci. China Tech. Sci. 55 (2012) 306-328.

DOI: 10.1007/s11431-011-4692-6

Google Scholar

[13] Z.L. Bryan, P. Alieninov, I.S. Berglund, M.V. Manuel, A diffusion mobility database for magnesium alloy development, CALPHAD 48 (2015) 123-130.

DOI: 10.1016/j.calphad.2014.12.001

Google Scholar

[14] L.J. Zhang, Q. Chen, CALPHAD-type modeling of diffusion kinetics in multicomponent alloys, in A. Paul, S. Divinski (Eds.), Handbook of Solid State Diffusion-Diffusion Foundation and Techniques, Elsevier, 2017, pp.321-362.

DOI: 10.1016/b978-0-12-804287-8.00006-3

Google Scholar

[15] Information on http://www.thermocalc.com/media/41192/tccu2_extended_info.pdf.

Google Scholar

[16] A. Borgenstam, A. Engström, L. Höglund, J. Ågren, DICTRA, a tool for simulation of diffusional transformations in alloys, J. Phase Equilib. 21 (2000) 269-280.

DOI: 10.1361/105497100770340057

Google Scholar

[17] J.O. Andersson, T. Helander, L. Höglund, P.F. Shi, B. Sundman, Thermo-Calc and DICTRA, computational tools for materials science, CALPHAD 26 (2002) 273-312.

DOI: 10.1016/s0364-5916(02)00037-8

Google Scholar

[18] Q. Chen, J. Jeppsson, J. Ågren, Analytical treatment of diffusion during precipitate growth in multicomponent systems, Acta Mater. 56 (2008) 1890-1896.

DOI: 10.1016/j.actamat.2007.12.037

Google Scholar

[19] Q. Chen, K.S. Wu, G. Sterner, P. Mason, Modeling precipitation kinetics during heat treatment with Calphad-based tools, J. Mater. Eng. Perform. 23 (2014) 4193-4196.

DOI: 10.1007/s11665-014-1255-6

Google Scholar

[20] L.J. Zhang, Y. Du, I. Steinbach, Q. Chen, B.Y. Huang, Diffusivities of an Al-Fe-Ni melt and their effects on the microstructure during solidification. Acta Mater. 58 (2010) 3664-3675.

DOI: 10.1016/j.actamat.2010.03.002

Google Scholar

[21] W.M. Chen, L.J. Zhang, Y. Du, B.Y. Huang, Viscosity and diffusivity in melts: from unary to multicomponent systems, Philos. Mag. 94 (2014) 1552-1577.

DOI: 10.1080/14786435.2014.890755

Google Scholar

[22] W.M. Chen, L.J. Zhang, Y. Du, B.Y. Huang, Diffusivities and atomic mobilities of an Sn-Ag-Bi-Cu-Pb melt. Int. J. Mater. Res. 105 (2014) 827-839.

DOI: 10.3139/146.111103

Google Scholar

[23] R. Wang, W.M. Chen, L.J. Zhang, D.D. Liu, X. Li, Y. Du, Z.P. Jin, Diffusivities and atomic mobilities in the Al-Ce-Ni melts, J. Non-Cryst. Solids 379 (2013) 201-207.

DOI: 10.1016/j.jnoncrysol.2013.08.012

Google Scholar

[24] Y. Tang, L.J. Zhang, Y. Du, Diffusivities in liquid and fcc Al-Mg-Si alloys and their application to the simulation of solidification and dissolution processes, CALPHAD 49 (2015) 58-66.

DOI: 10.1016/j.calphad.2015.03.002

Google Scholar

[25] W.H. Sun, L.J. Zhang, M. Wei, Y. Du, B.Y. Huang, Effect of liquid diffusion coefficients on microstructure evolution during solidification of Al356 alloy, Trans. Nonferrous Met. Soc. China 23 (2013) 3722-3728.

DOI: 10.1016/s1003-6326(13)62922-2

Google Scholar

[26] M. Wei, Y. Tang, L.J. Zhang, W.H. Sun, Y. Du, Phase Field simulation of microstructure evolution in industrial A2214 alloy during solidification. Metall. Mater. Trans. A 46 (2015) 3182-3191.

DOI: 10.1007/s11661-015-2911-7

Google Scholar

[27] H.X. Xu, W.M. Chen, L.J. Zhang, Y. Du, C.Y. Tang, High-throughput determination of the composition-dependent interdiffusivities in Cu-rich fcc Cu-Ag-Sn alloys at 1073 K, J. Alloys Compd. 644 (2015) 687-693.

DOI: 10.1016/j.jallcom.2015.05.030

Google Scholar

[28] W.M. Chen, J. Zhong, L.J. Zhang, An augmented numerical inverse method for determining the composition-dependent interdiffusivities in alloy systems by using a single diffusion couple, Inter. MRS Commun. 6 (2016) 295-300.

DOI: 10.1557/mrc.2016.21

Google Scholar

[29] W.M. Chen, L.J. Zhang, High-Throughput determination of interdiffusion coefficients for Co-Cr-Fe-Mn-Ni High-Entropy alloys, J. Phase Equilib. Diff. 38 (2017) 457-465.

DOI: 10.1007/s11669-017-0569-0

Google Scholar

[30] J. Langer, A. Schwartz, Kinetics of nucleation in near-critical fluids, Phys. Rev. A 21 (1980) 948-958.

DOI: 10.1103/physreva.21.948

Google Scholar

[31] R. Wagner, R. Kampmann, Homogeneous second phase precipitation, in P. Haasen (Ed.), Materials Science and Technology: A Comprehensive Treatment, John Wiley & Sons Inc., Berlin, 1991, pp.213-303.

Google Scholar

[32] J.B. Brady, Reference frames and diffusion coefficients, Am. J. Sci. 275 (1975) 954-983.

Google Scholar

[33] L.E. Trimble, D. Finn, A. Cosgarea, A mathematical analysis of diffusion coefficients in binary systems, Acta Metall. 13 (1965) 501-507.

DOI: 10.1016/0001-6160(65)90100-8

Google Scholar

[34] A. Einstein, On the movement of small particles suspend in stationary liquids required by the molecular-kinetic theory of heat, Ann. Physik. 17 (1905) 549-560.

Google Scholar

[35] J.O. Andersson, J. Ågren, Models for numerical treatment of multicomponent diffusion in simple phases, J. Appl. Phys. 72 (1992) 1350-1355.

DOI: 10.1063/1.351745

Google Scholar

[36] B. Jönsson. Ferromagnetic ordering and diffusion of carbon and nitrogen in bcc Cr-Fe-Ni alloys, Z. Metallkd. 85 (1994) 498-501.

DOI: 10.1515/ijmr-1994-850707

Google Scholar

[37] O. Redlich, A.T. Kister, Algebraic representation of thermodynamic properties and the classification of solutions, Ind. Eng. Chem. 40 (1948) 345-348.

DOI: 10.1021/ie50458a036

Google Scholar

[38] F. Demmel, D. Szubrin, W.-C. Pilgrim, C. Morkel, Diffusion in liquid aluminum probed by quasielastic neutron scattering, Phys. Rev. B 84 (2011) 014307.

DOI: 10.1103/physrevb.84.014307

Google Scholar

[39] F. Kargl, H. Weis, T. Unruh, A. Meyer, Self-diffusion in liquid aluminum, J. Phys. Conf. Ser. 340 (2012) 012077.

DOI: 10.1088/1742-6596/340/1/012077

Google Scholar

[40] A. Meyer, Self-diffusion in liquid copper as seen by quasielastic neutron scattering, Phys, Rev. B. 81 (2010) 012102.

DOI: 10.1103/physrevb.81.012102

Google Scholar

[41] E.S. Levin, V.N. Zamaraev, P.V. Sverdlovsk, Izvestiya. Akademii. Nauk. SSSR: Metally 2 (1976) 113.

Google Scholar

[42] N.H. Nachtried, E. Fraga, C. Wahl, Self-diffusion of liquid zinc, J. Phys. Chem. 67 (1963) 2353-2355.

DOI: 10.1021/j100805a022

Google Scholar

[43] W. Lange, W. Pippel, F. Bendel, Self-diffusion of liquid zinc, Z. Phys. Chem. 212 (1959) 238-240.

Google Scholar

[44] M.M.G. Alemany, L.J. Gallego, L.E. González, D. J. González, A molecular dynamics study of the transport coefficients of liquid transition and noble metals using effective pair potentials obtained from the embedded atom model, J. Chem. Phys., 113 (2000).

DOI: 10.1063/1.1322626

Google Scholar

[45] A.S. Chauhan, R. Ravi, R.P. Chhabra, Self-diffusion in liquid metals, Chem. Phys. 252 (2000) 227-236.

DOI: 10.1016/s0301-0104(99)00345-6

Google Scholar

[46] C. Jayaram, R. Ravi, R.P. Chhabra, Calculation of self-diffusion coefficients in liquid metals based on hard sphere diameters estimated from viscosity data, Chem. Phys. Lett. 341 (2001) 179-184.

DOI: 10.1016/s0009-2614(01)00427-4

Google Scholar

[47] A.Z.Z. Ahmed, G.M. Bhuiyan, Application of the EAM potentials to the study of atomic transport of liquid transition and noble metals, Int. J. Mod. Phys. B 16 (2002) 3837-3846.

DOI: 10.1142/s0217979202013171

Google Scholar

[48] B. Szpunar, R.W. Smith, A molecular dynamics simulation of the diffusion of the solute (Au) and the self-diffusion of the solvent (Cu) in a very dilute liquid Cu-Au solution, J. Phys. Condens. Matter. 22 (2010) 035105.

DOI: 10.1088/0953-8984/22/3/035105

Google Scholar

[49] H.M. Lu, G. Li, Y.F. Zhu, Q. Jiang, Temperature dependence of self-diffusion coefficient in several liquid alkali metals, J. Non-Cryst. Solids 352 (2006) 2797-2800.

DOI: 10.1016/j.jnoncrysol.2006.03.049

Google Scholar

[50] J. Mei, J.W. Davenport, Molecular-dynamics study of self-diffusion in liquid transition metals, Phys. Rev. B 42 (1990) 9682.

DOI: 10.1103/physrevb.42.9682

Google Scholar

[51] M. Dzugutov, A universal scaling law for atomic diffusion in condensed matter, Nature 381 (1996) 137-139.

DOI: 10.1038/381137a0

Google Scholar

[52] T. Iida, R. Guthrie, N. Tripathi, A model for accurate predictions of self-diffusivities in liquid metals, semimetals, and semiconductors, Metall. Mater. Trans. B 37 (2006) 559-564.

DOI: 10.1007/s11663-006-0039-2

Google Scholar

[53] T. Koishi, Y. Shirakawa, S. Tamaki, Simulation of shear viscosity in liquid metals, Comput. Mater. Sci. 6 (1996) 245-253.

DOI: 10.1016/0927-0256(96)00018-3

Google Scholar

[54] I. Yokoyama, Self-diffusion coefficient and its relation to properties of liquid metals: a hard-sphere description, Phys. B 271 (1999) 230-234.

DOI: 10.1016/s0921-4526(99)00211-2

Google Scholar

[55] I. Yokoyama, T. Arai, Correlation entropy and its relation to properties of liquid iron, cobalt and nickel, J. Non-Cryst. Solids 293-295 (2001) 806-811.

DOI: 10.1016/s0022-3093(01)00792-x

Google Scholar

[56] J. Brillo, S.M. Chathoth, M.M. Koza, A. Meyer, Liquid Al80Cu20: Atomic diffusion and viscosity, Appl. Phys. Lett .93 (2008) 121905.

DOI: 10.1063/1.2977863

Google Scholar

[57] B. Zhang, A. Griesche, A. Meyer, Diffusion in Al-Cu melts studied by time-resolved X-ray radiography, Phys. Rev. Lett. 104 (2010) 035902.

DOI: 10.1103/physrevlett.104.035902

Google Scholar

[58] T. Yamamura, T. Ejima, Diffusion of monovalent solutes in liquid copper and silver. J. Jpn. Inst. Met. 37 (1973) 901-907.

Google Scholar

[59] A. Griesche, S.M. Chathoth, M. Macht, G. Frohberg, M. Koza, A. Meyer, High Temp.-High Press. 37 (2008) 153-162.

Google Scholar

[60] A.I. Pommrich, A. Meyer, D. Holland-Moritz, T. Unruh, Nickel self-diffusion in silicon-rich Si-Ni melts, Phys. Lett. 92 (2008) 241922.

DOI: 10.1063/1.2947592

Google Scholar

[61] R. Resnick, R.W. Balluffi, Diffusion of zinc and copper in alpha and beta brasses, J. Met. 7 (1955) 1004-1010.

DOI: 10.1007/bf03377601

Google Scholar

[62] M. Onishi, T. Shimozaki, T. Hayashida, M. Hirata, Interdiffusion and intrinsic diffusion-coefficients in alpha-solid solution of Cu-Zn system, J. Japan Inst. Metals 48 (1984) 890-895.

DOI: 10.2320/jinstmet1952.48.9_890

Google Scholar

[63] T. Takahashi, M. Kato, Y. Minamino, T. Yamane, T. Azukizawa, T. Okamoto, M. Shimada, N. Ogawa, Effect of high pressure on interdiffusion in Cu-Zn alloys, Z. Metll. 75 (1984) 440-459.

DOI: 10.1515/ijmr-1984-750607

Google Scholar

[64] F.N. Rhines, R.F. Mehl, Rates of diffusion in the alpha solid solutions of copper, Trans. Am. Inst. Mining Met. Engrs. 128 (1938) 185-221.

Google Scholar

[65] R.W. Balluffi, L.L. Seigle, Diffusion in bimetal vapor-solid couples, J. Appl. Phys. 25 (1954) 607-614.

DOI: 10.1063/1.1721698

Google Scholar

[66] H. Oikawa, K.J. Anusavice, R.T. DeHoff, A.G. Guy, Diffusion of Zn65 in Copper-rich solid solutions of the Cu-Ni-Zn system, Trans. ASM 61 (1968) 354-356.

DOI: 10.1007/bf02642463

Google Scholar

[67] K.J. Anusavice, R.T. DeHoff, Diffusion of the tracers Cu67, Ni66, and Zn65 in copper-rich solid solutions in the system Cu-Ni-Zn, Metall. Trans. 3 (1972) 1278-1298.

DOI: 10.1007/bf02642463

Google Scholar

[68] R.T. DeHoff, A.G. Guy, K.J. Anusavice, T.B. Lindemer, The diffusion of the tracer, 65Zn, in the copper-rich corner of the α solid solution in the system Cu-Ni-Zn, Trans. TMS-AIME 236 (1966) 881-890.

Google Scholar

[69] T. Takahashi, M. Kato, Interdiffusion in a-solid solutions of ternary Cu-Mn-X (X=Al, Ni, Zn) alloys), Shindo Gijutsu Kenkyu Kaishi (in Japanese) 33 (1994) 88-101.

Google Scholar

[70] S. D. Beattiea, J. R. Dahn, Combinatorial electrodeposition of ternary Cu-Sn-Zn alloys, J. Electrochem. Soc. 152 (2005) 542-548.

DOI: 10.1149/1.1939211

Google Scholar

[71] L. Picincu, D. Pletcher. A. dan Smith, Electrochemistry of the SUCOPLATE® Electroplating Bath for the Deposition of a Cu-Zn-Sn Alloy, Part I: Commercial Bath, J. App. Electrochem. (2001) 387-394.

Google Scholar

[72] T. Takahashi, M. Kato, Interdiffusion in solid solutions of the Cu-Zn-Sn system, J. Mater. Sci. 22 (1987) 3194-3202.

DOI: 10.1007/bf01161182

Google Scholar

[73] Y.H. Sohn, M.A. Dayananda, A double-serpentine diffusion path for a ternary diffusion couple, Acta Mater. 48 (2000) 1427-1433.

DOI: 10.1016/s1359-6454(99)00454-1

Google Scholar

[74] K.E. Kansky, M.A. Dayananda, Quaternary diffusion in the Cu-Ni-Zn-Mn system at 775 ºC, Metall. Trans. A 16 (1985) 1123-1132.

DOI: 10.1007/bf02811681

Google Scholar

[75] W. Kurz, Solidification microstructure-processing maps: theory and application, Adv. Eng. Mater. 3 (2001) 443-452.

DOI: 10.1002/1527-2648(200107)3:7<443::aid-adem443>3.0.co;2-w

Google Scholar

[76] B. Korojy, L. Ekbom, H. Fredriksson, Microsegregation and solidification shrinkage of copper-lead base alloys, Adv. Mater. Sci. Eng. 2009 (2009) 627937.

DOI: 10.1155/2009/627937

Google Scholar

[77] T.P. Battle, Mathematical modelling of solute segregation in solidifying materials, Int. Mater. Rev. 37 (1992) 249-270.

DOI: 10.1179/imr.1992.37.1.249

Google Scholar

[78] H. Fredriksson, U. Akerlind, Solidification and Crystallization Processing in metals and Alloys, John Wiley & Sons, Chichester, West Sussex, (2012).

Google Scholar

[79] Information on http://www.thermocalc.com/media/50243/release-notes_2017b.pdf.

Google Scholar

[80] D. Watanabe, C. Watanabe, R. Monzen, Determination of the interface energies of spherical, cuboidal and octahedral face-centered cubic precipitates in Cu-Co, Cu-Co-Fe and Cu-Fe alloys, Acta Metal. 57 (2009) 1899-(1911).

DOI: 10.1016/j.actamat.2008.12.028

Google Scholar

[81] H. Fujiwara, A. Kamio, Effect of alloy composition on precipitation behavior in Cu-Ni-Si alloys, J. Jpn. Inst. Metal. 62 (1998) 3011309.

Google Scholar

[82] C. Watanabe, R. Monzen, Coarsening of δ-Ni2Si precipitates in a Cu-Ni-Si alloy, J. Mater. Sci. 46 (2011) 4327-4335.

DOI: 10.1007/s10853-011-5261-x

Google Scholar

[83] T. Fujii, T. Tamura, M. Kato, S. Onaka, Size-dependent equilibrium shape of Co-Cr particles in Cu, Microsc. Microanal. 8 (2002) 1434-1435.

DOI: 10.1017/s1431927602107604

Google Scholar