TCS Metal Oxide Solutions Database (TCOX10) **Thermo-Calc Version 2020b** **Technical Information** ## **Contents** | About the TCS Metal Oxide Solutions Database (TCOX) | 3 | |--|----| | TCS Metal Oxide Solutions Database (TCOX) Resources | 5 | | TCOX10 Elements, Systems, and Phases | 6 | | TCOX10 Systems | 8 | | TCOX10 Assessed Metallic Systems | 9 | | TCOX10 Assessed Oxide Systems | 10 | | TCOX10 Assessed Sulfide Systems | 13 | | TCOX10 Assessed Fluoride Systems | 15 | | TCOX10 Phases | 16 | | Common Phases for the TCOX Database | 17 | | TCOX10 Liquid Solution Phases | 19 | | TCOX10 Alloy Phases | 20 | | TCOX10 Gas Phase | 21 | | TCOX10 Solid Solutions Phases | 22 | | TCOX10 Stoichiometric Compounds | 35 | | TCOX10 Properties Data | 48 | | TCOX10 Viscosity for Ionic Liquids | 49 | | TCOX10 Molar Volume Model | 52 | | Molar Volume Assessed Systems and Phases | 53 | | TCS Metal Oxide Solutions Database (TCOX) Revision History | 67 | ## About the TCS Metal Oxide Solutions Database (TCOX) #### **Current Database Version** TCS Metal Oxide Solutions Database (TCOX) is a thermodynamic database for slags and oxides. The database integrates thermodynamic data plus properties data for molar volume and viscosity for ionic liquids. The properties data for molar volume and viscosity for ionic liquids are included with TCS Metal Oxide Solutions Database (TCOX) starting with version 10 (TCOX10). Intermetallic compounds and carbides are not included in the database. #### The CALPHAD Method The Thermo-Calc databases are developed with the CALPHAD approach based on various types of experimental data and theoretical values (e.g. those from first-principles calculations). It is based on the critical evaluation of binary, ternary and in some cases, important higher order systems which enables predictions to be made for multicomponent systems and alloys of industrial importance. Among these, the thermodynamic database is of fundamental importance. The TCOX database, which was first released in 1992, is the result of a long-term collaboration with academia. For some historical information, see <u>TCS Metal Oxide Solutions Database (TCOX) Revision History</u>. CALPHAD is originally an abbreviation for *CALculation of PHAse Diagrams*, but was later expanded to refer to *computer coupling of phase diagrams and thermochemistry*. More about the CALPHAD methodology, including some of its history, is available on the Thermo-Calc Software website. ### **Use Case Examples** There are examples available to both demonstrate the *validation* of the database and to showcase the types of *calculations* that can be used for different materials or application area such as process metallurgy, heat treatment, and more depending on the database. Some use case examples of how this database can be used include the following. - The intended application is for solid and liquid ionized materials, e.g. oxides or sulfides. This could be development of ceramics, slags, refractories, metallurgical processing (e.g. slag and liquid metal interactions), ESR slags, materials corrosion, Thermal Barrier Coatings (TBC), YttriaStabilised-Zirconia (YSZ), solid oxide fuel cell materials, sulfide formation, dephosphorization and desulfurization. - This database can be used for fluoride and sulfide systems without oxygen. - The liquid phase is described from liquid metal to oxide and/or fluoride, i.e. no pure liquid oxygen or fluorine is modeled. - For sulfur, the liquid phase is described all the way from metal to sulfur. - The database is compatible with the Process Metallurgy Module, which is used for advanced calculations involving slag, metal and gas. #### **Combining Databases** It is possible to combine several databases to make calculations using Thermo-Calc. For more information related to a specific type of problem, contact one of our support specialists at info@thermocalc.com. The experts are available to make recommendations on the most suitable database to use for your needs. ## TCS Metal Oxide Solutions Database (TCOX) Resources Information about the database is available on our website and in the Thermo-Calc software online help. - Website: On our website the information is both searchable and the database specific PDFs are available to download. - Online Help: Technical database information is included with the Thermo-Calc software online help. When in Thermo-Calc, press F1 to search for the same information as is contained in the PDF documents described. Depending on the database, there are additional examples available on the website. ### **Database Specific Documentation** - The TCOX: TCS Metal Oxide Solutions Database Technical Information PDF document contains version specific information such as the binary, ternary and higher-order assessed systems, phases and models. It also includes a list of the included elements, details about the properties (e.g. viscosity and molar volume), and summaries of the database revision history by version. - The TCOX: TCS Metal Oxide Solutions Database Examples Collection PDF document contains a series of validation examples using experimental data, and a set of calculation examples showing some of the ways the database can be used. Additional examples are available on the website. - <u>Process Metallurgy</u> on the Thermo-Calc website has a variety of information related to the use of this database with the Process Metallurgy Module. ## TCOX10 Elements, Systems, and Phases #### **Included Elements** There are 28 elements included in the most recent version of the database. | Al | Ar* | С | Ca | Со | Cr | Cu | F | Fe | Gd | |----|-----|----|----|----|----|----|----|----|----| | Н* | La | Mg | Mn | Мо | N | Na | Nb | Ni | 0 | | Р | S | Si | Ti | V | W | Υ | Zr | | | ^{*} Ar and H are only included in the gas phase. #### **Assessed Systems** The most recent version of the database contains assessments of these systems: - 288 binary and 283 ternary systems to the full range of composition and temperature in the 28 element framework. - 126 pseudo-ternary oxide systems, 32 oxy-fluoride and oxy-sulfide systems, and some higher order systems. The most accurate calculations are obtained in or near these sub-systems and composition ranges. #### **Molar Volume** For the molar volume properties data, the molar volume parameters have been assessed or estimated as detailed in Molar Volume Assessed Systems and Phases. #### **Assessed Phases** The most recent version of the database contains 449 phases in total. When using Console Mode, phases and constituents can be listed in the DATABASE (TDB) module and the Gibbs (GES) module. To show models and constituents for the phases in a chosen system, use the command LIST_SYSTEM with the option CONSTITUENTS in the TDB module. #### IONIC_LIQ Phase The liquid metal and slag (IONIC_LIQ) is described with the ionic two-sublattice liquid model [1985, Hillert; 1991, Sundman]. The advantage with the ionic two-sublattice model is that it allows a continuous description of a liquid which changes in character with composition. The model has successfully been used to describe liquid oxides, silicates, sulfides, fluorides as well as liquid short range order, molten salts and ordinary metallic liquids. At low level of oxygen, the model becomes equivalent to a substitutional solution model between metallic atoms. Different composition sets of IONIC_LIQ designated by #1, #2 etc. (e.g. IONIC_LIQ#1) may be observed which often represent the metallic and ionized liquid phases. Different composition sets also describe miscibility gaps frequently found in e.g. silicate systems. The #n suffix (where n is an integer) is generated dynamically by Thermo-Calc when using global minimization and therefore the identification of the phases should be determined from their compositions. Common Phases for the TCOX Database #### **Molar Volume** For the molar volume properties data, the molar volume parameters have been assessed or estimated as detailed in Molar Volume Assessed Systems and Phases. #### **Other Phases** The TCOX10 database also contains solid oxides, silicates, fluorides and sulfides, a gaseous mixture phase and solid solution alloy phases (FCC_A1, BCC_A2 etc). Many phases are modeled as solution phases (in all cases where it is meaningful). The solid solution phases such as spinel, mullite, corundum, halite, olivine, fluorite etc. are modeled within the framework of the Compound Energy Formalism (CEF) [2001, Hillert]. #### References [1985, Hillert] M. Hillert, B. Jansson, B. Sundman, and J. Ågren, "A two-sublattice model for molten solutions with different tendency for ionization," Metall. Trans. A, vol. 16(1), 261–266, 1985. [1991, Sundman] B. Sundman, "Modification of the two-sublattice model for liquids," Calphad, vol. 15(2), 109–119, 1991. [2001, Hillert] M. Hillert, "The compound energy formalism," J. Alloys Compd., vol. 320(2), 161–176, 2001. # **TCOX10 Systems** ## In this section: | TCOX10 Assessed Metallic Systems | 9 | |----------------------------------|----| | TCOX10 Assessed Oxide Systems | 10 | | TCOX10 Assessed Sulfide Systems | 13 | | TCOX10 Assessed Fluoride Systems | | ## **TCOX10 Assessed Metallic Systems** No intermetallic phases are included in the database. - All metal-metal binaries are assessed except for Ca-W, Ca-Zr, Co-Na, Cr-Na, F-Na, Gd-La, Gd-Na, Gd-P, La-Na, La-Nb, La-P, La-Si, Mg-P, Mn-Na, Mo-Na, Na-Ni, Na-Ti, Na-V, Na-W, Na-Y, P-V, P-W and P-Zr. - Many ternary metallic systems are also assessed. - If needed, more solid phases can be appended from TCFE (TCS Steel and Fe-alloys Database), TCNI (TCS Ni-based Superalloys Database), TCAL (TCS Al-based Alloy Database) or other appropriate databases. However, combining different databases should always be done with caution, since not always the same assessments of subsystems are used in the different databases. # **TCOX10**
Assessed Oxide Systems These are the assessed oxide systems in the full range of composition and temperature. ## **Assessed Binary Oxide Systems** | Al-O | Ca-O | Co-O | Cr-O | Cu-O | Fe-O | Gd-O | La-O | Mg-O | Mn-O | |------|------|------|------|------|------|------|------|------|------| | Mo-O | Na-O | Nb-O | Ni-O | P-O | Si-O | Ti-O | V-O | W-O | Y-O | | Zr-O | | | | | | | | | | ## Assessed Ternary Oxide Systems, Me1-Me2-O ## Assessed Quaternary Oxide Systems, Me1-Me2-Me3-O | Al-Ca-Co-O | Al-Ca-Cr-O | Al-Ca-Fe-O | Al-Ca-Gd-O | Al-Ca-Mg-O | |------------|------------|------------|------------|------------| | Al-Ca-Mn-O | Al-Ca-Na-O | Al-Ca-Nb-O | Al-Ca-Ni-O | Al-Ca-O-P | | Al-Ca-O-Si | Al-Ca-O-Ti | Al-Ca-O-Y | Al-Ca-O-Zr | Al-Co-O-Si | | Al-Co-O-Ti | Al-Cr-Fe-O | Al-Cr-Mg-O | Al-Cr-O-Ti | Al-Cr-O-Y | | Al-Cu-O-Si | Al-Fe-Mg-O | Al-Fe-Mn-O | Al-Fe-Na-O | Al-Fe-O-Si | | Al-Fe-O-Ti | Al-Fe-O-Y | Al-Gd-O-Zr | Al-La-O-Y | Al-La-O-Zr | | Al-Mg-O-P | Al-Mg-O-Si | Al-Mg-O-Ti | Al-Mg-O-Y | Al-Mg-O-Zr | | Al-Mn-O-Si | Al-Mn-O-Ti | Al-Na-O-P | Al-Na-O-Si | Al-Ni-O-Ti | | Al-O-P-Si | Al-O-Si-Ti | Al-O-Si-Y | Al-O-Si-Zr | Al-O-Y-Zr | | Ca-Co-O-Si | Ca-Cr-Fe-O | Ca-Cr-O-Si | Ca-Cu-Fe-O | Ca-Cu-O-Si | | Ca-Fe-Mg-O | Ca-Fe-Mn-O | Ca-Fe-O-P | Ca-Fe-O-Si | Ca-Fe-O-Ti | | Ca-Gd-O-Si | Ca-Mg-Mn-O | Ca-Mg-O-P | Ca-Mg-O-Si | Ca-Mg-O-Ti | | Ca-Mg-O-Zr | Ca-Mn-O-P | Ca-Mn-O-Si | Ca-Mn-O-Y | Ca-Na-O-Si | | Ca-Nb-O-Si | Ca-Ni-O-Si | Ca-O-P-Si | Ca-O-Si-Ti | Ca-O-Si-V | | Ca-O-Si-Y | Ca-O-Si-Zr | Ca-O-Y-Zr | Co-Cr-O-Si | Co-Cr-O-Ti | | Co-Cu-La-O | Co-Cu-O-Si | Co-Fe-La-O | Co-Fe-Mn-O | Co-Fe-O-P | | Co-Fe-O-Si | Co-La-Ni-O | Co-Mg-O-Si | Co-Mn-O-Si | Co-Ni-O-Si | | Cr-Fe-Mn-O | Cr-Fe-Ni-O | Cr-Fe-O-Si | Cr-Fe-O-Ti | Cr-Fe-O-Y | | Cr-La-Mn-O | Cr-Mg-O-Si | Cr-Mg-O-Ti | Cr-Mn-Ni-O | Cr-Mn-O-Si | | Cr-Mn-O-Ti | Cr-Ni-O-Si | Cr-Ni-O-Ti | Cu-Fe-O-Si | Cu-Mg-O-Si | | Fe-Mg-O-Si | Fe-Mg-O-Ti | Fe-Mn-O-Si | Fe-Mn-O-Ti | Fe-Na-O-Si | | Fe-Ni-O-Si | Fe-Ni-O-Ti | Fe-O-Si-Ti | Gd-La-O-Si | Gd-O-Si-Y | |------------|------------|------------|------------|------------| | Gd-O-Si-Zr | La-O-Y-Zr | Mg-Mn-O-Si | Mg-Mn-O-Ti | Mg-Na-O-Si | | Mg-Ni-O-Si | Mg-O-P-Si | Mg-O-Si-Ti | Mg-O-Si-V | Mg-O-Si-Y | | Mg-O-Si-Zr | Mg-O-Y-Zr | Mn-Ni-O-V | Mn-O-Y-Zr | Na-O-P-Si | | O-Ti-Y-Zr | | | | | ## **Assessed Higher Order Oxide Systems** | Al-Ca-Co-O-Si | Al-Ca-Fe-O-Si | Al-Ca-Mg-O-Si | Al-Ca-Mg-O-Ti | |---------------|-----------------|---------------|---------------| | Al-Ca-Mg-O-Zr | Al-Ca-Na-O-Si | Al-Ca-O-Si-Y | Al-Fe-Mg-O-Si | | Al-Fe-Mn-O-Si | Al-Fe-Na-O-Si | Al-Gd-O-Y-Zr | Al-La-O-Y-Zr | | Al-Mg-Na-O-Si | Ca-Fe-Mg-O-Si | Ca-Mg-Ni-O-Si | Ca-Mg-O-P-Si | | Gd-La-O-Y-Zr | C-Cr-Fe-Mn-Ni-O | | | # **TCOX10** Assessed Sulfide Systems These are the assessed sulfide systems in the full range of composition and temperature. ## **Assessed Binary Sulfide Systems** | Al-S | Ca-S | Co-S | Cr-S | Cu-S | Fe-S | Gd-S | |------|------|------|------|------|------|------| | La-S | Mg-S | Mn-S | Mo-S | Na-S | Nb-S | Ni-S | | Si-S | Ti-S | V-S | W-S | Y-S | Zr-S | | ## Assessed Ternary Sulfide Systems, Me1-Me2-S ## **Assessed Oxy-sulfide Systems** | Al-O-S | Ca-O-S | Co-O-S | Cr-O-S | Cu-O-S | Fe-O-S | |-----------|--------------|-----------|-----------|-----------|-----------| | Mg-O-S | Mn-O-S | O-S-Si | Al-Ca-O-S | Al-Mg-O-S | Al-Mn-O-S | | Ca-Fe-O-S | Ca-Mg-O-S | Ca-O-S-Si | Cu-Fe-O-S | Fe-O-S-Si | Mg-O-S-Si | | Mn-O-S-Si | Al-Ca-Mn-O-S | | | | | # **TCOX10 Assessed Fluoride Systems** These are the assessed fluoride systems in the full range of composition and temperature. ## **Assessed Binary Fluoride Systems** | AIF ₃ | Ca-F | CoF ₂ | CoF ₃ | CrF ₂ | CrF ₃ | CuF | CuF ₂ | |------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------| | FeF ₂ | FeF ₃ | GdF ₃ | LaF ₃ | MgF ₂ | MnF ₂ | MoF ₄ | NaF | | NbF ₂ | NbF ₅ | NiF ₂ | SiF ₄ | VF ₂ | YF ₃ | ZrF ₄ | | ## **Assessed Ternary Fluoride Systems** | Al-Ca-F | Al-F-Mg | Al-F-Zr | Ca-Co-F | Ca-Cr-F | Ca-Fe-F | Ca-F-Gd | |---------|---------|---------|---------|---------|---------|---------| | Ca-F-La | Ca-F-Mg | Ca-F-Mn | Ca-F-Na | Co-F-Gd | Co-F-Mg | Co-F-Ni | | Fe-F-Ni | F-Gd-Mg | F-Gd-Y | F-La-Zr | F-Mg-La | F-Mg-Y | | ## **Assessed Oxy-fluoride Systems** | Al-F-O | Ca-F-O | Co-F-O | F-Mg-O | Al-Ca-F-O | Ca-F-Mg-O | |-----------|----------|-----------|-----------|--------------|--------------| | Ca-Fe-F-O | Ca-F-O-P | Ca-F-O-Si | F-Mg-O-Si | Al-Ca-F-Mg-O | Al-Ca-F-O-Si | # **TCOX10 Phases** ### In this section: | Common Phases for the TCOX Database | 17 | |-------------------------------------|----| | TCOX10 Liquid Solution Phases | 19 | | TCOX10 Alloy Phases | 20 | | TCOX10 Gas Phase | 21 | | TCOX10 Solid Solutions Phases | 22 | | TCOX10 Stoichiometric Compounds | 35 | # **Common Phases for the TCOX Database** The following lists common phase names and the corresponding Thermo-Calc database phase names for some key oxides. | Name in the
Database | Common Name and Description | |-------------------------|---| | CORUNDUM | Corundum (Al2O3), Eskolaite (Cr2O3), Hematite (Fe2O3), Karelianite (V2O3), Tistarite (Ti2O3), CoTiO3, Ilmenite (FeTiO3), Geikielite (MgTiO3), Pyrophanite (MnTiO3), NiTiO3. The ilmenite ((Co,Fe,Mg,Mn,Ni)TiO3) crystal structure consists of an ordered derivative of the corundum structure. In corundum all cations are identical, but in ilmenite Me+2 and Ti+4 occupy different sublattices. Both the disordered and ordered end-members are described in the CORUNDUM phase in the database. Anti-site occupancy in the ilmenite structure is not modelled. | | HALITE | Lime (CaO), CoO, Wustite (FeO), Periclase (MgO), Manganosite (MnO), Bunsenite (NiO). | | ALABANDITE | Alabandite (MnS), Oldhamite (CaS), MgS, GdS, LaS, ZrS. | | GARNET | Grossular (Ca3Al2(SiO4)3), Uvarovite (Ca3Cr2(SiO4)3), Spessartine (Mn3Al2(SiO4)3), Goldmanite (Ca3V3 (SiO4)3). Other minerals part of the Garnet structure such as Pyrope and Almandine are not part of the database, since they are not stable at ambient pressure. | | M2O3A | This is the hexagonal La2O3 and Gd2O3 modifications. | | M2O3B | This is monoclinic Gd2O3. | | M2O3C | This is Bixbyite (Mn2O3) and cubic Gd2O3 and Y2O3. | | M2O3H | This is hexagonal La2O3, Gd2O3 and Y2O3. | | M2O3X | This is x-La2O3 and high-temperature cubic Gd2O3. | | MELILITE | Gehlenite (Ca2Al2SiO7), Fe-Gehlenite (Ca2Fe2SiO7), Åkermanite (Ca2MgSi2O7), Fe-Åkermanite (Ca2FeSi2O7) and CaCoSi2O7. | | OLIVINE | Calcio-olivine (Ca2SiO4), Co2SiO4, Fayalite (Fe2SiO4), Forsterite (Mg2SiO4), Tephroite (Mn2SiO4), Ni2SiO4, Kirschsteinite (CaFeSiO4), Monitcellite (CaMgSiO4), Glaucochroite (CaMnSiO4), Liebenbergite (Ni2SiO4) | | PSEUDO_
BROOKITE | Pseudobrookite (Fe2TiO5), Karrooite (MgTi2O5), Ti3O5, Al2TiO5, CoTi2O5, Armalcolite ((Fe,Mg)Ti2O5), MnTi2O5. | | LOWCLINO_
PYROXENE | Low clino-enstatite (MgSiO3), low clino-diopside (CaMgSi2O6). | | CLINO_
PYROXENE | Clino-enstatite (MgSiO3), clino-ferrosilite (FeSiO3), diopside (CaMgSi2O6), Niopside (CaNiSi2O6), Pigeonite ((Mg,Fe,Ca)Si2O6), Hedenbergite (CaFeSi2O6). | | Name in the
Database | Common Name and Description | |-------------------------|--| | ORTHO_
PYROXENE | Enstatite (MgSiO3), ortho-Diopside (CaMgSi2O6). | | PROTO_
PYROXENE | Proto-enstatite (MgSiO3), proto-diopside (CaMgSi2O6). | | PYRRHOTITE | Pyrrhoitite (FeS), CoS, CrS, NbS, NiS, TiS, VS. | | RUTILE | Rutile (TiO2), Pyrolusite (MnO2), high-temperature VO2. | | ALPHA_
SPINEL | Tetragonal Hausmannite (Mn3O4). | | SPINEL | The cubic AB2O4-type spinel. Many end-members, solid solutions and combinations are described in the SPINEL phase: Magnetite (Fe3O4), cubic Hausmannite (Mn3O4), Guite (Co3O4), Spinel (MgAl2O4), Cuprospinel (CrFe2O4), Chromite (FeCr2O4), Hercynite (FeAl2O4), Coulsonite (FeV2O4), Vuorelainenite (MnV2O4), Magnesiocoulsonite (MgV2O4), CoV2O4, NiV2O4, Galaxite (MnAl2O4), Jacobsite (MnFe2O4), Magnesiochromite (MgCr2O4), Magnesioferrite (MgFe2O4), Manganochromite (MnCr2O4), Thermaerogenite (CuAl2O4), Ulvöspinel (TiFe2O4), Trevorite (NiFe2O4), NiAl2O4, CoAl2O4, CoFe2O4, FeCo2O4, CoMn2O4, CuMn2O4, MgMn2O4, NiMn2O4, Co2TiO4, Mg2TiO4, MgTi2O4, MnTi2O4, Mn2TiO4, Ni2TiO4, Ni2TiO4. | | ZIRCON | Zircon (ZrSiO4), Xenotime (YPO4), GdPO4, LaPO4. | ## **TCOX10 Liquid Solution Phases** The liquid phase contains all elements in the TCOX10 database except Ar and H. The ionic two-sublattice liquid model is used. The model may thus be used to describe liquid metal, oxides, sulfides, sulfur, fluoride, silicates etc. with the following formula: $\text{(Al+3, Ca+2, Co+2, Cr+2, Cu+1, Fe+2, Gd+3, La+3, Mg+2, Mn+2, Mo+4, Na+1, Nb+2, Ni+2, P+5, Si+4, Ti+2, V+2, W+6, Y+3, Zr+4)_p (AlO_2-1,CO_3-2, F-1, O-2, PO_4-3, S-2,
SiO_4-4, SO_4-4, Va, AlN, C, C_3S_2Z_{1/6}, CoF_3$, CoO_{3/2}$, CrF_3$, CrO_{3/2}$, CuF_2$, CuO, FeF_3$, FeO_{3/2}$, MaS_2Z_{1/6}$, MnO_{3/2}$, NbF_5$, NbO_{5/2}$, PO_{5/2}$, S, SiO_2$, TiO_{3/2}$, TiO_2$, VO_{3/2}$, VO_{5/2}$)_Q$ ## **TCOX10** Alloy Phases #### BCC A2 Containing Al, Ca, Co, Cr, Cu, Fe, Gd, La, Mg, Mn, Mo, Na, Nb, Ni, P, S, Si, Ti, V, W, Y and Zr with C, O and N modeled interstitially. #### FCC A1 Containing Al, Ca, Co, Cr, Cu, Fe, Gd, La, Mg, Mn, Mo, Na, Nb, Ni, P, S, Si, Ti, V, W, Y and Zr with C, O and N modeled interstitially. FCC_A1 also describes cubic carbides and the two cubic oxides TiO and VO solid solutions. #### HCP A3 Containing Al, Ca, Co, Cr, Cu, Fe, Gd, La, Mg, Mn, Mo, Na, Nb, Ni, Si, Ti, V, W, Y and Zr with C and O modeled interstitially. #### **DHCP** La phase dissolving Al, Ca, Cu, Gd, Mg, Mn, Ni and Y with O modeled interstitially. #### **CUB A13** β-Mn, containing Al, Co, Cr, Fe, Mg, Mo, Nb, Ni, Si, Ti, V and Zr with C and N modeled interstitially. #### CBCC A12 α-Mn, containing Al, Co, Cr, Fe, Mg, Mo, Nb, Ni, Si, Ti, V and Zr with C and N modeled interstitially. #### DIAMOND FCC A4 Diamond structure based on Si containing Al, C, Na and P with O modeled interstitially. #### **GRAPHITE** This is pure carbon. #### RED P, WHITE P This is pure phosphorus. Phosphorus exists in two modifications: white (not stable at normal conditions) and red (up to the melting temperature of 579° C). #### ORTHORHOMBIC S, MONOCLINIC S This is pure sulfur. Sulfur exists in two modifications: orthorhombic (up to 95° C) and monoclinic (up to the melting temperature of 115° C). ## **TCOX10 Gas Phase** A reduced gas phase containing AL1F3, AR, CA, C1H4, C1O1, C1O2, CA1F2, F, F2, H, H2, H2O1, MG, MO, MO1O1, MO1O2, MO1O3, MO2O6, MO3O9, MO4O12, MO5O15, N, N2, NA, NA2, NA1O1, NA2O1, O, O10P4, O1P1, O2P1, O1S1, O2, O2S1, O3S1, O5P2, O1TI1, O6W2, O8W3, O9W3, O12W4, P2, P4, S2, Ti and V. ## **TCOX10 Solid Solutions Phases** The solid solution phases are modeled within the framework of the Compound Energy Formalism (CEF) [3]. These models take into account distribution of cations between sublattices, defects such as vacancies, anti-sites and ordering. 145 solutions are modeled in the database. #### Anorthite This is high-temperature albite (NaAlSi₃O₈) and Anorthite (CaO.Al₂O₃.2SiO₂) solid solution. #### Alabandite This is CaS (oldhamite), MnS (alabandite), MgS, GdS, LaS and ZrS solid solution, with solubility of Co, Cr, Cu, Fe and Y. #### AlPO₄ There are three modifications (S1, S2 and S3) of AlPO₄ with solubility of SiO₂. #### Anhydrite This is (Ca,Cu,Fe,Mg,Mn,Ni)SO₄. #### **Apatite** This is $(Ca,Mg)_2(Gd,Y)_8(SiO_4)_6O_2$ solid solution dissolving Zr. #### β-V-0 This is β -V-O. #### **Bronze** This is $(Ca,Fe)_xV_2O_5$ bronze. #### Calcium Ferro-aluminates - C3A1: This is Ca₃Al₂O₆ dissolving ferric Fe. - C12A7: This is Ca₁₂Al₁₄O₃₂ dissolving ferric Fe. C12A7 is not stable in the anhydrous CaO-Al₂O₃ system. It is, however, important in practice, and included in the database. In the optimization it was treated as if it does not contain any water. - C1A1: This is CaAl₂O₄ dissolving ferric Fe. - C1A2: This is CaAl₄O₇ dissolving ferric Fe. - C1A6: This is CaAl₁₂O₁₉ dissolving ferric Fe. - C1A1F2: This is Al₂CaFe₄O₁₀ with a variation in Al/Fe: CaAlFe₂(Al,Fe)₃O₁₀. - C2F: This is Ca₂Fe₂O₅ dissolving Al. $Ca_3P_2O_8$ (α and β) $\alpha\text{-Ca}_3\text{P}_2\text{O}_8$ dissolving Mg and Si and $\beta\text{-Ca}_3\text{P}_2\text{O}_8$ dissolving Mg. $Ca_2P_2O_7$ (α , β and γ) $\alpha\text{, }\beta\text{ and }\gamma\text{-Ca}_2\text{P}_2\text{O}_7\text{ dissolving Mg}.$ Ca_2SiO_4 (α and α ') α -Ca₂SiO₄- α '-Ca₃P₂O₈ dissolving Gd, Mg, Mn, Y and α '-Ca₂SiO₄ dissolving Fe, Gd, Mg, Mn, P and Y. $Ca_3S_3Fe_4O_x$ This is the oxy-sulfide 3CaS.4FeO-3CaS.4Fe₂O₃. $Ca_3Y_2Si_3O_{12}$ This is $Ca_3(Gd,Y)_2(SiO_4)_3$. $\text{Ca}_{3}\text{Y}_{2}\text{Si}_{6}\text{O}_{18}$ This is $Ca_3(Gd,Y)_2(SiO_4)_6$. Ca₄Nb₂O₉_HT11 This is the high-temperature Ca₄Nb₂O₉ phase with excess CaO. $Ca_4Nb_2O_9_LT21$ This is the low-temperature Ca₄Nb₂O₉ phase with excess CaO. Ca₃Co₂O₆ This is $Ca_3Co_2O_6$ dissolving Cu. Ca₃Co₄O₉ This is Ca₃Co₄O₉ dissolving Cu. $CaCr_2O_4_A$ This is the high-temperature $\mathrm{CaCr}_2\mathrm{O}_4$ dissolving Al and Fe. CaF_2_S1 This is low-temperature CaF₂ dissolving CaO and MgF₂. CaF₂_S2 This is high-temperature CaF₂ and CuF₂ dissolving CaO and MgF₂. $Ca_3Mg_3P_4O_{16}$ This is Ca₃Mg₃P₄O₁₆. $CaMO_3$ This is CaMnO₃, CaTiO₃ and low-temperature CaZrO₃ dissolving Y. $Ca_5P_2SiO_{12}$ This is Ca₅P₂SiO₁₂. Carnegieite (α and β) This is NaAlSiO₄ with solubility of Fe and Si. CaSFeO This is the oxy-sulfide CaS.FeO-CaS.Fe₂O₃. $CaSO_{4}$ HT This is (Ca,Co,Mg)SO₄. CaV_2O_4 This is $CaFe_2O_4$, β - $CaCr_2O_4$, CaV_2O_4 and CaY_2O_4 solid solution dissolving Al. Prototype phase is CaV_2O_4 . CaV_2O_6 This is (Ca,Co,Mg,Mn,Ni)V₂O₆. CaY_4O_7 This is $Ca(Gd,Y)_4O_7$. CaYAl₃O₇ This is $Ca(Gd,Y)Al_3O_7$. CaYAlO₄ This is Ca(Gd,Y)AlO₄. ### CaZrO₃_C This is the cubic high-temperature CaZrO₃ phase dissolving Y. ### Chalcopyrite This is an intermediate solid solution phase in the Cu-Fe-S system around the composition CuFeS₂. ### Co_9S_8 This is Co₉S₈ dissolving Fe and Ni. #### Columbite This is $(Ca,Co,Fe,Mg,Mn)Nb_2O_6$ with excess FeO and MgO. #### Cordierite This is Al₄(Fe,Mg,Mn)₂Si₅O₈. #### Corundum This is Corundum (Al_2O_3), Eskolaite (Cr_2O_3), Hematite (Fe_2O_3), Karelianite (V_2O_3), Tistarite (Ti_2O_3) and (Co,Fe,Mg,Mn,Ni)TiO₃ Ilmenite solid solution. ### Cr_2S_3 This is Cr₂S₃ dissolving Fe. ## Cr_3S_4 This is Cr₃S₄ dissolving Fe, Mn and Ni. #### CrNbO₄ This is CrNbO₄ solid solution with excess Cr₂O₃ and Nb₂O₅. ## $Cr_2P_4O_{13}$ This is $Cr_2P_4O_{13}$ and $(Cr,Fe)_2V_4O_{13}$. ## $\text{Cr}_2\text{Ti}_2\text{O}_7$ This is Cr₂Ti₂O₇ with solubility of Al and Fe. ## CuF_2 This is CrF₂ and low temperature CuF₂. ## CuLa₂O₄ This is ${\rm CuLa_2O_4}$ with solubility of Co. ## CuP_2O_6 This is (Co,Cu,Ni)P₂O₆. #### Cu₀ This is CuO with solubility of Co. #### Cuprite This is Cu₂O with solubility of Na. #### Cristobalite This is SiO₂ with solubility of AlPO₄. #### Delafossite This is Cu(Al,Cr,Fe,La,Mn,Y)O₂. #### Digenite This is Cu₂S solid solution with excess S and solubility of Fe, Mg and Mn. ## $DyMn_2O_5$ This is $Mn_2(Gd,Y)O_5$ solid solution. Prototype phase is $DyMn_2O_5$. ## FeF₃ This is (Al,Co,Cr,Fe)F₃. ## $Fe_2O_{12}S_3$ This is the oxy-sulfides $(Al,Cr,Fe)_2(SO_4)_3$. ## $FeNb_{14}O_{36}$ This is (Co,Fe)Nb₁₄O₃₆. ## FeNb₃₆O₉₁ This is (Co,Fe)Nb₃₆O₉₁. ## $\mathrm{FeNb}_{68}\mathrm{O}_{171}$ This is (Co,Fe)Nb₆₈O₁₇₁. ### FePO₄ This is (Fe,Mn)PO₄. #### FeVO₄ This is (Al, Fe) VO₄. #### Fluorite This is high-temperature ZrO₂ solid solution with solubility of Al, Ca, Cr, Fe, Gd, La, Mg, Mn, Ni, Si, Ti and Y. #### Garnet This is grossular ($Ca_3Al_2Si_3O_{12}$), uvarovite ($Ca_3Cr_2Si_3O_{12}$), spessartine ($Mn_3Al_2Si_3O_{12}$), and goldmanite ($Ca_3V_2Si_3O_{12}$). ### GdF₃ This is high temperature $(Gd,Y)F_3$. ## $Gd_2Si_2O_7$ This is (Gd,La)₂Si₂O₇. ### Gd₂SiO₅ This is (Gd,La)₂SiO₅. #### Halite This is Lime (CaO), CoO, Wustite (FeO), Periclase (MgO), Manganosite (MnO), bunsenite (NiO) solid solution dissolving also Al, Cu, Cr, Gd, Na, Ti, V, Y and Zr. #### Hatrurite This is Ca₃SiO₅ dissolving Gd and Y. #### β1-Heazlewoodite This is non-stoichiometric high-temperature Ni₃S₂ dissolving Co and Fe. #### β2-Heazlewoodite This is non-stoichiometric high-temperature Ni₄S₃ dissolving Fe. ### LaF₃ This is low temperature (Gd,La,Y)F₃. ### La₂S₃ This is $(Gd,La)_2S_3$. ### La₂MnO₄ This is $La_2(Mn,Ni)O_4$ solid solution dissolving Co. ### $La_3Ni_2O_7$ This is La₃Ni₂O₇ dissolving Co. ## La₄Ni₃O₁₀ This is $La_4Ni_3O_{10}$ dissolving Co. #### LaAP This is a rhombohedral perovskite, La(Al,Co)O₃ dissolving Ca, Cu, Ni and Y. #### LaYP This is the orthorhombic perovskite, LaYO₃ solid solution. ### α -M₂O₃ This is hexagonal α -La₂O₃ and Gd₂O₃ solid solution dissolving Ca, Mg, Y and Zr. ## β - M_2O_3 This is monoclinic $\beta\text{-}Gd_2O_3$ dissolving Al, Ca, Co, La, Mg, Y and Zr. ## $c-M_2O_3$ This is Mn_2O_3 , cubic Gd_2O_3 and Y_2O_3 solid solution dissolving Al, Ca, Co, Cr, Fe, La, Mg, Ni, Ti, Y and Zr. ## $h-M_2O_3$ This is hexagonal La_2O_3 , Gd_2O_3 and Y_2O_3 solid solution dissolving Ca, Mg, Mn and Zr. ## $x-M_2O_3$ This is x-La₂O₃ and high-temperature cubic Gd₂O₃ solid solution dissolving Ca, Mg, Y and Zr. ## M_4O_7 This is $(Ti,V)_4O_7$ solid solution dissolving Al and Mn. ## M_6O_{11} This is $(Ti,V)_6O_{11}$ solid solution. ## M_7O_{13} This is $(Ti,V)_7O_{13}$ solid solution. #### Melilite This is Gehlenite ($Ca_2Al_2SiO_7$), Fe-Gehlenite ($Ca_2Fe_2SiO_7$), Åkermanite ($Ca_2MgSi_2O_7$), Fe-Åkermanite ($Ca_2FeSi_2O_7$) and $Ca_2CoSi_2O_7$. ### MgF_2 This is (Co,Fe,Mg,Mn,Ni,V)F₂. ## $Mg_2P_2O_7$ (α and β) This is α and β -Mg₂P₂O₇ dissolving Ca. ## $Mg_2V_2O_7$ This is $(Co,Mg,Ni)_2V_2O_7$. ## $Mg_3P_2O_8$ This is $Mg_3P_2O_8$ dissolving Ca. ## $Mg_3V_2O_8$ This is (Co,Mg,Ni)₃V₂O₈. ## $MgWO_4$ -type This is (Al,Fe)NbO₄ and (Co,Fe,Mg,Mn,Ni)WO₄ solid solution. Prototype MgWO₄. ## $Mn_4Nb_2O_9$ This is (Co,Fe,Mg,Mn)₄Nb₂O₉. ## MoS_2 This is (Mo,W)S₂ solid solution. #### Mullite Mullite (around Al₆Si₂O₁₃) solid solution dissolving Fe. ### NaAl₁₁O₁₇ This is $NaAl_{11}O_{17}$ solid solution. ## $Na_2Al_{12}O_{19}$ This is $Na_2Al_{12}O_{19}$ with solubility of Fe. ## α-NaFeO₂ This is NaCrO₂ and low-temperature NaFeO₂. ## β-NaFeO₂ This is low-temperature $NaAlO_2$ and mid-temperature $NaFeO_2$ with solubility of Si. ## γ-NaFeO₂ This is mid-temperature NaAlO₂ and high-temperature NaFeO₂ with solubility of Si. ## δ -NaAlO₂ This is high-temperature $NaAlO_2$ with solubility of Si. ## Na₂CaAl₄O₈ This
is $Na_2CaAl_4O_8$ solid solution. ## NbO_2 This is NbO₂ dissolving Fe. ## Nb_2O_5 This is Nb_2O_5 dissolving Mg and V. #### Nepheline (α and β) This is NaAlSiO₄ with solubility of Si. ### γ-Nepheline This is $NaAlSiO_4$ with solubility of Fe and Si. ### Ni₆MnO₈-type This is (Mg,Ni)₆MnO₈. ### Ni_7S_6 This is Ni₇S₆ dissolving Fe. ### Ni_9S_8 This is Ni₉S₈ dissolving Fe. ### $NiMnO_3$ This is NiMnO₃ with Ilmenite structure. ### $NiNb_2O_6$ This is $NiNb_2O_6$. This phase has the same structure as the Nb_2FeO_6 phase, but is modeled separately. #### Olivine This is Calcio-olivine $(Ca_2SiO_4) - Co_2SiO_4 - Fayalite (Fe_2SiO_4) - Forsterite (Mg_2SiO_4) - Tephroite (Mn_2SiO_4) - Ni_2SiO_4 - Kirschsteinite (CaFeSiO_4) - Monticellite (CaMgSiO_4) solid solution dissolving Cr and Cu.$ ### Pentlandite This is ternary (Fe,Ni)₉S₈. #### Perovskite This is (Cr,Fe,Mn)LaO₃. #### Pseudo-brookite This is Fe₂TiO₅. This is also Ti₃O₅, Al₂TiO₅ and (Co,Fe,Mg,Mn)Ti₂O₅ with solubility of Ni and V. #### **Pyrite** This is Cattierite (CoS_2), Pyrite (FeS_2) – Hauerite (MnS_2) – Vaesite (NiS_2). ### Pyrochlore This is $(Gd,La)_2Zr_2O_7$ and $(Gd,La,Y)_2Ti_2O_7$ solid solution. #### **Pyroxenes** Modeling of low clino-pyroxene, clino-pyroxene, ortho-pyroxene and proto-pyroxene solid solutions taking into account the distribution of cations between different sublattices. - Low clino-pyroxene: This is low clino-enstatite (MgSiO₃) and low clino-diopside (CaMgSi₂O₆). - Clino-pyroxene: This is clino-enstatite (MgSiO₃), clino-ferrosilit (FeSiO₃), diopside (CaMgSi₂O₆), niopside (CaNiSi₂O₆), pigeonite ((Mg,Fe,Ca)Si₂O₆), hedenbergite (CaFeSi₂O₆) dissolving Co. - Ortho-pyroxene: This is enstatite (MgSiO₃) and ortho-diopside (CaMgSi₂O₆) with Fe solubility. - Proto-pyroxene: This is proto-enstatite (MgSiO₃) and proto-diopside (CaMgSi₂O₆) dissolving Co, Cr and Fe. #### **Pyrrhotite** This is Pyrrhotite (FeS) – CoS – CrS– NbS – NiS – TiS – VS solid solution dissolving Al, Cu, Gd, Mg, Mn and Zr. #### Quartz This is SiO_2 with solubility of AlPO₄. #### Rhodonite This is MnO.SiO₂ dissolving Ca, Co, Fe and Mg. #### Rutile This is $MnO_2 - TiO_2 - high temperature VO_2$ solid solution dissolving Al and Zr. #### α-Spinel This is low-temperature tetragonal $\rm Mn_3O_4$ solid solution dissolving Al, Co, Cr, Cu, Fe, Mg and Ni. Distribution of cations between tetrahedral and octahedral sites, as well as vacancies on the octahedral sites to model deviation from the ideal stoichiometry toward higher oxygen potential and interstitial Mn to model deviation toward excess manganese are taken into account. #### Spinel This is the cubic AB_2O_4 -type spinel solid solution containing Al-Ca-Co-Cr-Cu-Fe-Mg-Mn-Ni-Ti-O. Distribution of cations between tetrahedral and octahedral sites, as well as vacancies on the octahedral sites to model deviation from the ideal stoichiometry toward higher oxygen potential and interstitial Fe to model deviation toward excess iron are taken into account. This is Spinel (MgAl₂O₄), Magnetite (Fe₃O₄), Cuprospinel (CrFe₂O₄), Hercynite (FeAl₂O₄) and many more. #### Thio-spinel This is the sulfur spinel. This has the same structure as the oxygen-spinel, but is modeled as a separate phase. This is $(Cu,Fe,Mn)Cr_2S_4 - Co_3S_4 - FeNi_2S_4 - Ni_3S_4$. ## Ti_5O_9 This is Ti₅O₉ dissolving V. ### Tridymite This is SiO₂ with solubility of AlPO₄. ### V_2O_SS This is V_2O solid solution. ## V_3O_5 -HT This is high temperature V₃O₅ dissolving Al, Cr, Mn and Ti. ## V_5O_9 This is V_5O_9 dissolving Ti. ## VO₂-LT This is low temperature VO₂, MoO₂ and WO₂. #### Wollastonite This is CaSiO₃ dissolving Fe, Mg and Mn. #### YAG This is (Gd,Y)₃(Al,Fe)₅O₁₂ solid solution dissolving Cr and La. #### YAM This is $(Gd,Y)_4Al_2O_9$ and Cuspidine $(Ca_2Y_2Si_2O_9)$ solid solution dissolving La. #### YAP This is (Gd,Y)(Al,Co,Cr,Fe)O₃ solid solution dissolving Ca, Mn and La. ## Y_2TiO_5 This is (Gd,La,Y)₂TiO₅ solid solution. ## Y_3NbO_7 This is Y_3NbO_7 solid solution with excess Nb_2O_5 and Y_2O_3 . ## YNbO₄ This is YNbO₄ solid solution with excess Y₂O₃. #### Zircon This is Zircon (ZrSiO₄) and (Gd,La,Y)PO₄ solid solution. ## $m-ZrO_2$ This is monoclinic ZrO₂ solid solution dissolving Al, Ca, Cr, Gd, La, Ti and Y. ### $t-ZrO_2$ This is tetragonal ZrO₂ solid solution dissolving Al, Ca, Cr, Fe, Gd, La, Mg, Mn, Ni, Ti and Y. #### β-ZrTiO₄ This is ZrTiO₄ with solubility of Al. # **TCOX10 Stoichiometric Compounds** 276 stoichiometric compounds are modeled in the database. The **Status** column indicates whether the molar volume has been **Assessed**, **Estimated** or **Unassessed**. Molar volume is included with the database starting with version 10 (TCOX10). Also see <u>Molar Volume Assessed Systems and Phases</u>. | Stoichiometric Compound | Molar Volume Status | |-------------------------|---------------------| | ALBITE_LOW | Assessed | | ALBITE_MONO | Assessed | | AF | Assessed | | AL2P6SI4O26 | Unassessed | | AL2S3 | Assessed | | AL2SIO4F | Assessed | | AL3PO7 | Estimated | | ALF3_S2 | Assessed | | ALNB11029 | Estimated | | ALNB490124 | Estimated | | ALP3O9 | Assessed | | ANDALUSITE | Assessed | | ANILITE | Assessed | | C11A7F | Unassessed | | C13A6Z2 | Unassessed | | C1A8M2 | Unassessed | | C2A14M2 | Unassessed | | C3A2M1 | Unassessed | | C3A3F | Unassessed | | C4WF4 | Assessed | | Stoichiometric Compound | Molar Volume Status | |-------------------------|---------------------| | C4WF8 | Estimated | | CA10P6O25 | Estimated | | CA10SI3O15F2 | Unassessed | | CA10V6O19 | Estimated | | CA15CU18O35 | Estimated | | CA2ALNBO6 | Assessed | | CA2CUO3 | Assessed | | CA2NB2O7 | Assessed | | CA2P6O17 | Estimated | | CA2V2O7 | Assessed | | CA2ZRSI4O12 | Estimated | | CA3COAL4O10 | Assessed | | CA3NB2O8 | Estimated | | CA3TI2O7 | Assessed | | CA3TI8AL12O37 | Unassessed | | CA3V2O8 | Assessed | | CA3WO6 | Estimated | | CA3ZRSI2O9 | Assessed | | CA4MG2P6O21 | Unassessed | | CA4P2O9_A | Assessed | | CA4P2O9_B | Assessed | | CA4P6O19 | Estimated | | CA4TI3O10 | Assessed | | Stoichiometric Compound | Molar Volume Status | |-------------------------|---------------------| | CA4V2O9 | Estimated | | CA5SI2O8F2 | Unassessed | | CA6ZR19O44 | Estimated | | CA7P2SI2O16 | Unassessed | | CA9V6O18 | Estimated | | CACO3 | Assessed | | CACRSI4O10 | Unassessed | | CACU2O3 | Assessed | | CAMG3O16S4 | Unassessed | | CAMN2O4 | Assessed | | CANA2SIO4 | Assessed | | CANA2SI5O12 | Estimated | | CANA4SI3O9 | Estimated | | CA2NA2SI2O7 | Estimated | | CA2NA2SI3O9 | Estimated | | CA3NA2SI6O16 | Assessed | | CAP2O6_A | Assessed | | CAP2O6_B | Assessed | | CAP2O6_G | Assessed | | CAP4O11_A | Assessed | | CAP4O11_B | Assessed | | CAV205 | Assessed | | CAV307 | Assessed | | Stoichiometric Compound | Molar Volume Status | |-------------------------|---------------------| | CAV409 | Estimated | | CAVO3 | Assessed | | CAWO4 | Assessed | | CAZR4O9 | Estimated | | CF2 | Estimated | | CHALCOCITE_ALPHA | Assessed | | CHALCOCITE_BETA | Assessed | | CO1LA2O4 | Assessed | | CO2P2O7 | Assessed | | CO3LA4O10 | Assessed | | CO3P2O8 | Assessed | | COVELLITE | Assessed | | CR1S1 | Assessed | | CR3P2O8 | Estimated | | CR3PO7 | Estimated | | CR4P6O21 | Estimated | | CR5PO10 | Estimated | | CR5S6 | Assessed | | CR7S8 | Estimated | | CRNB25O64 | Estimated | | CRNB49O124 | Estimated | | CRNB9O24 | Estimated | | CRP3O9 | Assessed | | Stoichiometric Compound | Molar Volume Status | |-------------------------|---------------------| | CRPO4 | Assessed | | CRVO4 | Assessed | | CU2COO3 | Assessed | | CU2P2O7 | Assessed | | CU2SO4 | Assessed | | CU2SO5 | Assessed | | CU2Y2O5 | Assessed | | CU3NB2O8 | Estimated | | CU3P2O8 | Assessed | | CUCRS2 | Assessed | | CUF | Assessed | | CUFES2_LT | Assessed | | CUGD2O4 | Assessed | | CUNB2O6 | Assessed | | CUPO3 | Estimated | | CUPRITE | Assessed | | CUSPIDINE | Assessed | | CW3F | Assessed | | CWF | Assessed | | DJURLEITE | Assessed | | FE18P2O24 | Estimated | | FE2P2O7 | Assessed | | FE2PO5 | Assessed | | Stoichiometric Compound | Molar Volume Status | |-------------------------|---------------------| | FE3P2O8 | Assessed | | FE3P4O14 | Estimated | | FE3PO7 | Assessed | | FE4P6O21 | Estimated | | FE7P6O24 | Estimated | | FE7P8O28 | Estimated | | FEAL2S4 | Assessed | | FENB25O64 | Estimated | | FENB49O124 | Estimated | | FENB9O24 | Estimated | | FEP2O6 | Assessed | | FEP309 | Estimated | | FEV2O6 | Estimated | | GUGGENITE | Assessed | | KYANITE | Assessed | | LA1S2 | Assessed | | LA2CR3O12 | Estimated | | LA2CRO6 | Assessed | | LA2NB12O33 | Estimated | | LA2TI3O9 | Estimated | | LA3NBO7 | Assessed | | LA4SI3O12 | Estimated | | LA4TI3O12 | Estimated | | Stoichiometric Compound | Molar Volume Status | |-------------------------|---------------------| | LA4TI9O24 | Estimated | | LAAL11018 | Estimated | | LAFE12O19 | Estimated | | LANB3O9 | Estimated | | LANBO4 | Assessed | | LANIO3 | Assessed | | LARNITE | Assessed | | MERWINITE | Assessed | | MGCO3 | Assessed | | MGNA2SI4O10 | Estimated | | MG2NA2SI6O15 | Estimated | | MG2NB34O87 | Estimated | | MG5NB4O15 | Estimated | | MGP206 | Assessed | | MGP4011 | Assessed | | MN2P2O7 | Assessed | | MN2V2O7 | Assessed | | MN3P2O8 | Assessed | | MN9SI3O14S1 | Unassessed | | MNF2_S1 | Assessed | | MNF3 | Assessed | | MNP2O6 | Assessed | | MNYO3_HEX | Assessed | | Stoichiometric Compound | Molar Volume Status | |-------------------------|---------------------| | MO2S3 | Estimated | | MO4O11 | Estimated | | M08023 | Estimated | | M09026 | Assessed | | MOF4 | Estimated | | M003 | Estimated | | NA2CO3_S1 | Assessed | | NA2CO3_S2 | Assessed | | NA2CA3AL16O28 | Unassessed | | NA2CAAL4O8 | Unassessed | | NA2CA8AL6O18 | Unassessed | | NAF1 | Assessed | | NAFE2O3 | Assessed | | NA2FEO2 | Estimated | | NA3FEO3 | Assessed | | NA3FE5O9 | Assessed | | NA4FEO3 | Assessed | | NA4FE6O11 | Estimated | | NASFEO4 | Assessed | | NA8FE2O7 | Estimated | | NAFES12O6 | Assessed | | NA2FESIO4 | Estimated | | NA5FESI4O12 |
Estimated | | Stoichiometric Compound | Molar Volume Status | |-------------------------|---------------------| | NA8FE6SI15O40 | Estimated | | NA2O1_S1 | Assessed | | NA2O1_S2 | Assessed | | NA2O1_S3 | Assessed | | NAPO3 | Assessed | | NA3PO4 | Estimated | | NA4P2O7 | Assessed | | NAS2 | Assessed | | NA2S1 | Assessed | | NA2SIO3 | Assessed | | NA2SI2O5_ALPHA | Assessed | | NA2SI2O5_BETA | Assessed | | NA2SI2O5_GAMMA | Assessed | | NA4SIO4 | Assessed | | NA6SI2O7 | Assessed | | NA6SI8O19 | Assessed | | NA10SIO7 | Estimated | | NA2TIO3_S1 | Assessed | | NA2TIO3_S2 | Assessed | | NA2TI3O7 | Assessed | | NA2TI6O13 | Assessed | | NA4TIO4 | Assessed | | NA8TI5O14 | Assessed | | Stoichiometric Compound | Molar Volume Status | |-------------------------|---------------------| | NA2V2O6 | Assessed | | NA4V2O7 | Assessed | | NA6V2O8 | Estimated | | NBF5 | Assessed | | NBO | Assessed | | NI2P2O7 | Assessed | | NI3P2O8 | Assessed | | NI3S2_LT | Assessed | | NI4NB2O9 | Estimated | | NINB14O36 | Estimated | | NINB36091 | Estimated | | NINB680171 | Estimated | | NIOCALITE_C10NS6 | Unassessed | | NIS_LT | Estimated | | P2O5_H | Assessed | | P2O5_O | Assessed | | P2O5_OP | Assessed | | P2S5 | Assessed | | PSEUDO_WOLLASTONITE | Assessed | | Q_ALMGZRO | Unassessed | | RANKINITE | Assessed | | SAPPHIRINE | Unassessed | | SI3P4O16 | Estimated | | Stoichiometric Compound | Molar Volume Status | |-------------------------|---------------------| | SILLIMANITE | Assessed | | SIP2O7_CUB | Assessed | | SIP2O7_MONO | Assessed | | SIP2O7_TETR | Assessed | | SIS2 | Assessed | | SPHENE | Assessed | | TI10O19 | Estimated | | TI20O39 | Assessed | | TI2NB10O29 | Estimated | | TI2S | Assessed | | TI3O2 | Estimated | | TI5P6O25 | Estimated | | TI8S10 | Estimated | | TI8S3 | Estimated | | T18S9 | Estimated | | TI9O17 | Assessed | | TINB24O62 | Estimated | | TINB2O7 | Estimated | | TIO_ALPHA | Estimated | | TIP2O7 | Assessed | | TIS2 | Assessed | | TIS3 | Assessed | | V2O5 | Assessed | | Stoichiometric Compound | Molar Volume Status | |-------------------------|---------------------| | V3O5_LT | Assessed | | V307 | Assessed | | V52O64 | Assessed | | V6O13 | Assessed | | WO2_72 | Assessed | | WO2_90 | Assessed | | WO2_96 | Assessed | | WO3_HT | Assessed | | WO3_LT | Assessed | | Y2S2A_Y2SI2O7 | Assessed | | Y2S2B_Y2SI2O7 | Assessed | | Y2S2D_Y2SI2O7 | Assessed | | Y2S2G_Y2SI2O7 | Assessed | | Y2SIO5 | Assessed | | ZR11NB4O32 | Estimated | | ZR13NB4O36 | Estimated | | ZR15NB4O40 | Estimated | | ZR3Y4O12 | Assessed | | ZR5NB2O15 | Estimated | | ZR6NB2O17 | Estimated | | ZR7NB2O19 | Estimated | | ZR8NB2O21 | Estimated | | ZRF4 | Assessed | | Stoichiometric Compound | Molar Volume Status | |-------------------------|---------------------| | ZRO8S2 | Assessed | | ZRS2 | Assessed | | ZRTI2O6 | Assessed | | ZRTIO4_ALPHA | Estimated | ## **TCOX10 Properties Data** ## In this section: | TCOX10 Viscosity for Ionic Liquids | 49 | |--|----| | TCOX10 Molar Volume Model | 52 | | Molar Volume Assessed Systems and Phases | 53 | ## **TCOX10 Viscosity for Ionic Liquids** Using the CALPHAD approach, viscosity of oxide slags is critically assessed based on the evaluation of unary, binary, ternary and important higher order systems. By coupling to TCOX10, a two-sublattice ionic liquid viscosity model is employed to describe the ionic behavior of the oxide melts. It enables predicting viscosity of the oxide slags for various industrial applications, for example, iron-making and steel-making. The predicted viscosity is connected to the distribution and connectivity of species in the oxide melts, which gives predictions in the whole compositional range and a broad range of temperatures. #### **Included Oxides** $\label{eq:continuous} \text{FeO, Fe}_2\text{O}_3, \text{CaO, MgO, Al}_2\text{O}_3, \text{SiO}_2, \text{CaF}_2, \text{Cr}_2\text{O}_3, \text{Na}_2\text{O}, \text{MnO, TiO}_2, \text{ZrO}_2, \text{P}_2\text{O}_5, \text{Gd}_2\text{O}_3, \text{La}_2\text{O}_3, \text{V}_2\text{O}_5, \text{NiO, CuO}_4, \text{CuO}_4, \text{CuO}_5, \text{CuO}_6, \text{CuO}_8, \text$ ## **Model Description** The model for TCS Metal Oxide Solutions Database (TCOX) viscosity of slag: $$RTln\eta = RTln\eta_0 + E$$ where η is viscosity, $\eta_0 = \frac{hN_A}{V_m}$ and E is activation energy. The excess parameters are expanded via R-K. An example of viscosity of A-B liquid oxide: $$RTln\eta_{A-B} = y_A(RTln\eta_0^A + E_A) + y_B(RTln\eta_0^B + E_B) + \sum_i y_A \cdot y_B(y_A - y_B)^i \cdot VISC^i$$ The parameter of VISC stands for $R \cdot T \cdot In(viscosity)$. In Thermo-Calc software, VISC is implemented as VISC(ionic). In order to quickly acquire the actual viscosity, the parameter of DVIS(ionic) should be used. By coupling to the database, it makes use of the site fractions of each species, which reflects the structural change in the oxide melt. Units for the viscosity of oxide slag: - Pa·s (pascal-second) is the SI unit, mostly used for oxide slag - CGS unit is poise (P), 1 poise=0.1 Pa·s - Centipoise is also common (cP) because it is equivalent to mPa·s. ## **Unary Assessed Systems** Al_2O_3 CaF₂, CaO , CaS, Cr₂O₃, CuO_x CaO and CaS are estimated based on other predictions and data of ternaries. Fe-O MgO, MnO Na₂O, NiO P_2O_5 SiO₂ TiO₂ V₂O₅ ZrO₂ ## **Binary Assessed Systems** Al₂O₃-Gd₂O₃, Al₂O₃-La₂O₃, Al₂O₃-Na₂O, Al₂O₃-SiO₂ CaF₂-Al₂O₃, CaF₂-MgO, CaF₂-SiO₂, CaF₂-TiO₂, CaF₂-V₂O₅, CaO-Al₂O₃, CaO-P₂O₅ CaO-SiO₂, Cu_xO-SiO₂ Fe_xO-Na₂O, Fe_xO-TiO₂, Fe_xO-CaO, Fe_xO-SiO₂ MgO-Al₂O₃, MgO-SiO₂, MnO-SiO₂, MnO-TiO₂ Na₂O-P₂O₅, Na₂O-SiO₂, Na₂O-V₂O₅, NiO-SiO₂ ## **Ternary Assessed Systems** $\mathsf{Al_2O_3}\text{-}\mathsf{MgO}\text{-}\mathsf{SiO_2}$ ${\sf CaF_2-AI_2O_3-TiO_2}, \, {\sf CaF_2-AI_2O_3-V_2O_5}, \, {\sf CaF_2-CaO-AI_2O_3}, \, {\sf CaF_2-CaO-Cr_2O_3}, \,$ $\mathsf{CaF}_2\mathsf{,-CaO-SiO}_2\mathsf{,}\ \mathsf{CaO-Al}_2\mathsf{O}_3\mathsf{-SiO}_2\mathsf{,}\ \mathsf{CaO-Al}_2\mathsf{O}_3\mathsf{-ZrO}_2\mathsf{,}\ \mathsf{CaO-CaS-SiO}_2$ $CaO-Cr_2O_3-SiO_2$, $CaO-MgO-SiO_2$, $CaO-NiO-SiO_2$, $CaO-SiO_2-Cr_2O_3$ $CaO-SiO_2-TiO_2$, $Cu_xO-Al_2O_3-SiO_2$ $\mathsf{Fe_2O_3}\text{-}\mathsf{Na_2O}\text{-}\mathsf{SiO_2},\,\mathsf{Fe_2O_3}\text{-}\mathsf{Al_2O_3}\text{-}\mathsf{SiO_2},\,\mathsf{Fe_xO}\text{-}\mathsf{CaO}\text{-}\mathsf{Al_2O_3},\,\mathsf{Fe_xO}\text{-}\mathsf{CaO}\text{-}\mathsf{SiO_2}$ $Fe_xO-MgO-SiO_2$ $MnO-SiO_2-TiO_2$ $\mathsf{Na_2O}\text{-}\mathsf{Al_2O_3}\text{-}\mathsf{SiO_2},\,\mathsf{Na_2O}\text{-}\mathsf{CaO}\text{-}\mathsf{SiO_2},\,\mathsf{Na_2O}\text{-}\mathsf{MgO}\text{-}\mathsf{SiO_2},\,\mathsf{MgO}\text{-}\mathsf{SiO_2}\text{-}\mathsf{TiO_2}$ ## **TCOX10 Molar Volume Model** Molar volume can be used to establish a connection with some significant physical properties, for example, viscosity, electrical conductivity and surface tension. It is the reciprocal of density multiplied by molar mass. ## **Model Description** The model used to describe the molar volume at ambient pressures is: $$V_m(T) = V_0 exp(\int\limits_{T_0}^T 3lpha dT)$$ A simple polynomial is used to model non-magnetic volumetric expansivity above 298K: $$3\alpha = a + bT + cT^2 + dT^3 + eT^{-2}$$ The model described above is implemented in Thermo-Calc software with two parameters, V0 and VA, and α is the linear thermal expansivity at 1 bar and 3α is the volumetric thermal expansivity. ## **Molar Volume Descriptions** | Parameter | Unit | Description | |-------------------------------|---------------------|--| | V0 (phase, constituent array) | m ³ /mol | Volume at 1 bar and reference temperature TO | | VA (phase, constituent array) | None | $\int\limits_{T_0}^T 3lpha dT$ | ## **Molar Volume Assessed Systems and Phases** For the molar volume properties data included with the TCS Metal Oxide Solutions Database (TCOX), the molar volume parameters have been assessed or estimated. Below is the list of the status of the systems and phases that the estimated ones are marked with a subscript of E, otherwise they are assessed. Also see TCOX10 Stoichiometric Compounds. ## **Liquid Solution Phases** #### **Unary Systems** CaO, MgO, Al₂O₃, SiO₂, MnO ^E, FeO, Fe₂O₃, CaF₂, MgF₂, TiO₂, Cr₂O₃ ^E, V₂O₅ ^E, ZrO₂ ^E, P₂O₅ ^E, Nb₂O₅ ^E, NiO ^E, WO₃ ^E, La₂O₃ ^E, CoO ^E, MoO₃ ^E and CaS ^E #### **Binary Systems** $$\label{eq:al2O3-CaO2} \begin{split} \text{Al}_2\text{O}_3\text{-CaO}, & \text{Al}_2\text{O}_3\text{-MgO}, \text{Al}_2\text{O}_3\text{-SiO}_2, \text{CaF}_2\text{-Al}_2\text{O}_3, \text{CaF}_2\text{-CaO}, \text{CaF}_2\text{-MgO}, \text{CaF}_2\text{-MgF}_2, \text{CaF}_2\text{-SiO}_2, \text{CaF}_2\text{-SiO}_2, \text{MgO-SiO}_2, \text{MnO-SiO}_2 \end{split}$$ #### **Ternary Systems** $$\label{eq:align_substitution} \begin{split} & \text{Al}_2\text{O}_3\text{-MgO-SiO}_2, \, \text{Al}_2\text{O}_3\text{-TiO}_2\text{-SiO}_2, \, \text{CaF}_2\text{-Al}_2\text{O}_3\text{-TiO}_2, \, \text{CaF}_2\text{-CaO-Al}_2\text{O}_3, \, \text{CaF}_2\text{-CaO-SiO}_2, \, \text{CaF}_2\text{-MgO-Al}_2\text{O}_3, \, \text{CaO-Al}_2\text{O}_3\text{-SiO}_2, \, \text{CaO-Al}_2\text{O}_3\text{-TiO}_2, \, \text{CaO-MgO-Al}_2\text{O}_3, \, \text{CaO-MgO-SiO}_2, \, \text{CaO-MnO-SiO}_2, \, \text{CaO-Al}_2\text{O}_3\text{-SiO}_2, \, \text{Fe}_{\text{x}}\text{O-CaO-Al}_2\text{O}_3, \, \text{Fe}_{\text{x}}\text{O-CaO-MgO}, \, \text{Fe}_{\text{x}}\text{O-CaO-SiO}_2, \, \text{Fe}_{\text{x}}\text{O-MgO-SiO}_2, \text{Fe}_{\text{x}}\text{O-M$$ #### **Quaternary and Quinary Systems** ${\rm CaF_2-AI_2O_3-MgO-SiO_2,\ CaF_2-CaO-MgO-AI_2O_3,\ CaO-AI_2O_3-MnO-SiO_2,\ CaO-MgO-AI_2O_3-SiO_2,\ Fe_xO-CaO-MgO-SiO_2,\ Fe_xO-CaO-MgO-AI_2O_3-SiO_2,\ Fe_xO-CaO-MnO-SiO_2,\ Fe_xO-CaO-MgO-AI_2O_3-SiO_2,\ Fe_xO-CaO-MnO-SiO_2,\ Fe_xO-CaO-MnO$ ## **Alloy Phases** ## BCC A2 Al, Ca ^E, Co, Cr, Cu, Fe, Mg, Mn, Mo, Nb, Ni, P, S, Si, Ti, V, W, Y, Zr Al-C, C-Ca ^E, C-Co, C-Cr, C-Cu, C-Fe, C-Gd, C-Mg, C-Mn, C-Mo, C-Nb, C-Ni, C-P, C-S, C-Si, C-Ti, C-V, C-W, C-Y ^E, C-Zr ^E,
Ca-O ^E, Co-O, Cr-O ^E, Cu-O, Fe-O ^E, Gd-O ^E, La-O ^E, Mg-O, Mn-O, Ni-O ^E, Ni-Ti, Ni-V, O-P ^E, O-S, O-Si ^E, O-Ti ^E, O-V ^E, O-W ^E, O-Y ^E, O-Zr ^E, Ti-Zr #### FCC A1 Al, Ca, Co, Cr, Cu, Fe, Mg, Mo, Nb, Ni, P, S, Si, Ti, V, W, Zr Al-C, Al-O ^E, C-Ca ^E, C-Co, C-Cr, C-Cu, C-Fe, C-Gd, C-Mg, C-Mn, C-Mo, C-Nb, C-Ni, C-P, C-S, C-Si, C-Ti, C-V, C-W, C-Y ^E, C-Zr, Ca-O ^E, Co-O ^E, Cr-O ^E, Cu-O ^E, Fe-O ^E, Gd-O ^E, La-O ^E, Mg-O, Mn-Ni, Mn-O, Mo-O, Nb-O, Ni-O ^E, Ni-Si, Ni-Ti, Ni-V, Ni-W, O-P ^E, O-S, O-Si ^E, O-Ti ^E, O-V ^E, O-W, O-Y ^E, O-Zr ^E ## HCP_A3 Al, Co, Cr, Cu, Fe, Mg, Mn, Mo, Nb, Ni, Si, Ti, V, W, Y, Zr Al-C, Al-O ^E, C-Ca ^E, C-Co, C-Cr,C-Cu ^E, Fe-C, C-Gd ^E, C-Mg ^E, C-Mn ^E, C-Mo, C-Nb, C-Ni ^E, C-Si ^E, C-Ti, C-V, C-W, C-Y ^E, C-Zr, Ca-O ^E, Cr-O ^E, Cu-O ^E, Fe-O ^E, Gd-O ^E, La-O ^E, Mn-O ^E, Mo-O ^E, Nb-O ^E, Ni-O ^E, O-Si ^E, O-Ti ^E, O-V ^E, O-W ^E, O-Y ^E, O-Zr ^E #### **DHCP** Al E, Ca E, Cu E, Mg E, Mn E, Ni E, Y E Al-O E, Cu-O E, Gd-O E, La-O E #### CUB_A13 Al E, Co E, Cr E, Cu E, Fe E, Mg E, Mn, Mo E, Nb E, Ni E, Si E, Ti E, V E, Zr E Al-C E, C-Co E, C-Cr E, C-Cu E, C-Mg E, C-Mn E, C-Mo E, C-Nb E, C-Ni E, C-Si E, C-Ti E, C-V, C-Zr E ## CBCC_A12 Al E, Co E, Cr E, Cu E, Fe E, Mg E, Mn, Mo E, Nb E, Ni E, Si E, Ti E, V E, Zr E Al-C ^E, C-Co ^E, C-Cr ^E, C-Cu ^E, C-Mg ^E, C-Mn ^E, C-Mo ^E, C-Nb ^E, C-Ni ^E, C-Si ^E, C-Ti ^E, C-V, C-Zr ^E #### DIAMOND FCC A4 Al ^E, C ^E, P ^E, Al-O, O-P ^E #### **Solid Solution Phases** #### Anorthite Al-Ca-O-Si, Al-Na-O-Si #### Alabandite Ca-S, Co-S, Cr-S, Cu-S, Fe-S, Gd-S, La-S, Mg-S, Mn-S, S-Y E, S-Zr ## AlPO₄ Al-O-P ## Anhydrite Ca-O-S, Co-O-S, Cu-O-S, Fe-O-S, Mg-O-S, Mn-O-S, Ni-O-S ## **Apatite** Gd-O-Si, O-Si-Y E #### Bronze Ca-O-V, Fe-O-V E ## Calcium Ferro-aluminates C3A1: Al-Ca-O, Ca-Fe-O E C12A7: Al-Ca-O E C1A1: Al-Ca-O C1A2: Al-Ca-O C1A6: Al-Ca-O C2F: Al-Ca-O, Ca-Fe-O ## $Ca_3P_2O_8$ (α and β) Ca-O-P, Ca-O-Si ^E, Mg-O-P $Ca_2P_2O_7$ (α , β and γ) Ca-O-P, Mg-O-P Ca_2SiO_4 (α and α ') Ca-O-P, Ca-O-Si, Fe-O-P, Gd-O-Si ^E, Mg-O-P, Mn-O-P, O-Si-Y ^E $Ca_3S_3Fe_4O_x$ Ca-Fe-S E, Ca-Fe-S-O (not assessed) ``` Ca_4Nb_2O_9_HT11 Ca-Nb-O E Ca_4Nb_2O_9_LT21 Ca-O, Ca-Nb-O ^E Ca_3Co_2O_6 Ca-Co^E, Ca-Cu^E, Ca-Co-O, Ca-Cu-O^E Ca_3Co_4O_9 This is Ca₃Co₄O₉ dissolving Cu. Ca-Co ^E, Ca-Cu ^E, Ca-Co-O ^E, Ca-Cu-O ^E CaCr_2O_4_A Al-Ca-O ^E, Ca-Cr-O ^E, Ca-Fe-O CaF₂_S1 Ca E, Mg E, Ca-F CaF₂_S2 Ca ^E, Cu ^E, Mg ^E, Ca-F CaMO₃ O-Y E, Ca-Mn-O, Ca-O-Ti, Ca-O-Y, Ca-O-Zr, Mn-O-Y, O-Ti-Y, O-Y-Zr Carnegieite (\alpha and \beta) Al-Na-O-Si, Fe-Na-O-Si CaSFeO Ca-Fe-S ^E CaSO₄_HT Ca-O-S, Co-O-S, Mg-O-S ``` ``` CaV_2O_4 ``` Al-Ca-O, Ca-Cr-O, Ca-Fe-O, Ca-O-V, Ca-O-Y ## CaV_2O_6 Ca-O-V, Co-O-V, Mg-O-V, Mn-O-V, Ni-O-V ## CaY_4O_7 Ca-Gd-O, Ca-O-Y E ## CaZrO₃_C O-Y E, Ca-O-Y, Ca-O-Zr ## Chalcopyrite S ^E, Cu-S, Fe-S ^E, Cu-Fe-S ## Co_9S_8 Co-S E, Fe-S E, Ni-S E, Co-Mg, #### Columbite Fe E, Ca-Fe $^{\rm E}$, Ca-Mg $^{\rm E}$, Ca-Nb $^{\rm E}$, Co-Fe, Co-Mg, Co-Nb, Ca-Fe-O $^{\rm E}$, Co-Mg-O $^{\rm E}$, Co-Nb-O, Fe-Mg-O $^{\rm E}$, Fe-Nb-O, Mg-Mn-O $^{\rm E}$, Mg-Nb-O, Mn-Nb-O #### Cordierite Al-Fe-O-Si, Al-Mg-O-Si, Al-Mn-O-Si #### Corundum Al-O, Co-O, Cr-O, Fe-O, Mg-O, Mn-O, Ni-O, O-Ti, O-V Al-Cr-O, Al-Fe-O $^{\rm E}$, Al-Ni-O $^{\rm E}$, Cr-Fe-O, Cr-Mn-O $^{\rm E}$, Cr-O-Ti $^{\rm E}$, Cr-O-V $^{\rm E}$, Fe-Mn-O $^{\rm E}$, Fe-Ni-O $^{\rm E}$, Fe-O-Ti $^{\rm E}$, Fe-O-V $^{\rm E}$ ## Cr_2S_3 Cr-S, Fe-S ## Cr_3S_4 Cr-S, Fe-S, Mn-S E ``` CrNbO₄ ``` Cr, Nb, Cr-Nb, Cr-O, Nb-O ^E, Cr-Nb-O ^E ## $Cr_2P_4O_{13}$ Cr-O-P ^E, Cr-O-V ^E, Fe-O-P ^E, Fe-O-V ## $Cr_2Ti_2O_7$ Al-O-Ti ^E, Cr-O-Ti ^E, Fe-O-Ti ^E ## CuF₂ Cr-F, Cu-F ## CuLa₂O₄ Co-La-O, Cu-La-O ## CuP_2O_6 Co-O-P, Cu-O-P E, Ni-O-P ## CuO Cu-O, Co-O, Co-Cu-O ## Cuprite Cu-O, Na-O ## Cristobalite O-Si, Al-O-P ## Delafossite Al-Cu-O, Cr-Cu-O, Cu-Fe-O, Cu-Mn-O, Cu-O-Y ## Digenite Cu-S, Fe-S, Mg-S ^E, Mn-S, Cu-Fe-S ^E, Cu-Mg-S ^E, Cu-Mn-S ## $DyMn_2O_5$ Gd-Mn-O, Mn-O-Y ``` FeF₃ Al-F, Co-F, Cr-F, F-Fe Fe₂O₁₂S₃ Al-O-S, Cr-O-S, Fe-O-S FeNb₁₄O₃₆ Co-Nb-O ^E, Fe-Nb-O ^E FeNb₃₆0₉₁ Co-Nb-O ^E, Fe-Nb-O ^E FeNb₆₈O₁₇₁ Co-Nb-O ^E, Fe-Nb-O ^E FePO₄ Fe-O-P, Mn-O-P FeVO₄ Al-O-V, Fe-O-V Fluorite Al ^E, Ca ^E, Cr ^E, Fe ^E, Mg ^E, Mn ^E, Ni ^E, Si ^E, Y ^E, Zr ^E Al-O ^E, Ca-O, Cr-O, Gd-O ^E, La-O ^E, O-Y ^E, O-Zr Garnet Al-Ca-O-Si GdF_3 F-Gd, F-Y Gd_2Si_2O_7 ``` Gd-O-Si, La-O-Si La-O, Fe-O-Y, La-Ni-O, Ni-O-Y, ``` Gd_2SiO_5 Gd-O-Si, La-O-Si Halite O E, Al-O E, Ca-O, Co-O, Cr-O E, Cu-O E, Fe-O E, Gd-O E, Mg-O, Mn-O, Na-O, Ni-O, Ti-O, V-O E Ca-Mn-O, Fe-Mg-O, Fe-Ni-O Hatrurite Ca-O-Si, Gd-O-Si ^E, O-Si-Y ^E β1-Heazlewoodite S ^E, Co-S, Fe-S ^E, Ni-S ^E, β2-Heazlewoodite S^E, Fe-S^E, Ni-S^E, LaF₃ F-Gd, F-La, F-Y La₂S₃ Gd-S, La-S La₂MnO₄ Co-La-O, La-Mn-O ^E, La-Ni-O La_3Ni_2O_7 La-Ni-O La_4Ni_3O_{10} La-Ni-O LaAP Al-Ca-O, Al-La-O, Al-O-Y, Ca-Co-O, Ca-Cu-O, Ca-Fe-O, Ca-Ni-O, Co-La-O, Co-O-Y, Cu-La-O, Cu-O-Y, Fe- ``` ``` LaYP La-O, Y-O, La-O-Y \alpha-M₂O₃ Gd-O, La-O, Y-O, Zr-O E \beta-M_2O_3 Al-O, Ca-O, Co-O, Gd-O, La-O, Y-O, Zr-O ^E c-M_2O_3 Al-O ^E, Ca-O, Co-O, Cr-O, Fe-O ^E, Gd-O ^E, La-O ^E, Mn-O ^E, Ni-O ^E, Y-O, Zr-O ^E h-M_2O_3 Ca-O, Gd-O, La-O, Y-O ^{\rm E}, Zr-O ^{\rm E} x-M_2O_3 Ca-O, Gd-O, La-O, Y-O, Zr-O E M_{4}O_{7} Ti-O, V-O, Al-O-V ^E, Mn-O-V ^E M_6O_{11} Ti-O, V-O M_7O_{13} Ti-O, V-O MgF_2 Co-F, F-Fe, F-Mg, F-Mn, F-Ni, F-V Mg_2P_2O_7 (\alpha and \beta) Ca-O-P, Mg-O-P Mg_2V_2O_7 Co-O-V E, Mg-O-V, Ni-O-V E ``` ``` Mg_3P_2O_8 Ca-O-P, Mg-O-P Mg_3V_2O_8 Co-O-V, Mg-O-V, Ni-O-V MgWO₄-type Al-Nb-O, Al-O-W, Co-Nb-O, Co-O-W, Fe-Nb-O, Fe-O-W, Mg-Nb-O, Mg-O-W, Mn-Nb-O, Mn-O-W, Nb-Ni- O, Nb-O-W, Ni-O-W Mn_4Nb_2O_9 Co-Nb-O, Fe-Nb-O ^E, Mg-Nb-O, Mn-Nb-O MoS_2 Mo-S ^E, S-W ^E Mullite Al-O-Si E NaAl₁₁O₁₇ Al-Na-O Na_2Al_{12}O_{19} Al-Na-O E α-NaFeO₂ Cr-Na-O, Fe-Na-O β-NaFeO₂ O-Si, Al-Na-O, Fe-Na-O γ-NaFeO₂ O-Si, Al-Na-O, Fe-Na-O ``` ``` \delta-NaAlO₂ Al-Na-O, Al-Na-O-Si NbO_2 Nb-O Nb_2O_5 Mg-O ^{\rm E}, Nb-O, V-O ^{\rm E} Nepheline (\alpha and \beta) Na-Al-Si-O γ-Nepheline Na-Al-Si-O, Na-Fe-Si-O Ni₆MnO₈-type Mg-Mn-O, Mn-Ni-O E Ni_7S_6 Fe-S ^E, Ni-S ^E Ni_9S_8 Fe-S ^E, Ni-S ^E NiMnO_3 Mn-O ^E, Ni-O ^E NiNb_2O_6 Nb-Ni-O Olivine Ca-O-Si, Co-O-Si, Cr-O-Si, Cu-O-Si E, Fe-O-Si, Mg-O-Si, Mn-O-Si, Ni-O-Si Pentlandite Fe-S E, Ni-S E, Fe-Ni-S ``` #### Perovskite Co-La, Co-Mn, Co-O, Cr-La, Cr-Mn, Cr-O, Fe-La, La-O, Co-La-O, Cr-La-O, Fe-La-O, La-Mn-O #### Pseudo-brookite Al-O-Ti, Al-O-V, Co-O-Ti, Mg-O-Ti, Mn-O-Ti ^E, Ni-O-Ti ^E ## **Pyrite** Co-S, Fe-S, Mn-S, Ni-S, Cu-Fe-S ## Pyrochlore Gd-O, La-O, Zr-O, Gd-La-O ^E, Gd-O-Ti (partly assessed), Gd-O-Y ^E, Gd-O-Zr ^E, La-O-Ti (partly assessed), La-O-Y^E, La-O-Zr ^E, O-Ti-Y (partly assessed), O-Ti-Zr ^E, O-Y-Zr (partly assessed) #### **Pyroxenes** Low clino-pyroxene: Mg-O-Si Clino-pyroxene: Fe-O-Si, Mg-O-Si, Ni-O-Si, Ca-Mg-O-Si Ortho-pyroxene: Fe-O-Si, Mg-O-Si, Ca-Mg-O-Si Proto-pyroxene: Ca-O-Si, Co-O-Si, Cr-O-Si, Fe-O-Si, Mg-O-Si, Ni-O-Si #### **Pyrrhotite** Al-S ^E, Co-S, Cr-S, Cu-S, Fe-S, Gd-S, Mg-S ^E, Mn-S, Nb-S ^E, Ni-S, S-Ti, S-V ^E, S-Zr, #### Quartz O-Si, Al-O-P #### Rhodonite Ca-O-Si, Co-O-Si, Fe-O-Si, Mg-O-Si, Mn-O-Si #### Rutile Mn-O, O-Ti, O-Zr, Al-O-Ti ## α-Spinel Co-O E, Cu-O, Mn-O E, Ni-O E Al-Co-O ^E, Al-Cu-O, Al-Mn-O ^E, Al-Ni-O, Co-Cr-O ^E, Co-Fe-O ^E, Co-Mn-O ^E, Cr-Cu-O, Cr-Mg-O ^E, Cr-Mn-O ^E, Cu-Fe-O ^E, Cu-Mn-O ^E, Fe-Mg-O ^E, Fe-Mn-O ^E, Mg-Mn-O ^E, Ni-Mn-O ^E ## Spinel Al-O, Co-O E, Cr-O E, Cu-O, Fe-O E, Mg-O E, Mn-O E, Ni-O E Al-Co-O ^E, Al-Cr-O ^E, Al-Cu-O, Al-Fe-O ^E, Al-Mn-O ^E, Al-Ni-O, Al-O-Ti, Al-O-V, Ca-Co-O, Ca-Cr-O, Ca-Cu-O, Ca-Fe-O, Ca-Mg-O, Ca-Ni-O, Co-Cr-O ^E, Co-Cu-O, Co-Fe-O ^E, Co-Mg-O ^E, Co-Mn-O ^E, Co-Mo-O, Co-Ni-O, Co-O-Ti, Cr-Cu-O, Cr-Fe-O ^E, Cr-Mg-O ^E, Cr-Mn-O ^E, Cr-Mo-O, Cr-Ni-O ^E, Cr-O-Ti ^E, Cr-O-V ^E, Cu-Fe-O ^E, Cu-Mg-O ^E, Cu-Mn-O ^E, Cu-Mo-O, Cu-Ni-O, Cu-O-Ti ^E, Cu-O-V ^E, Fe-Mg-O ^E, Fe-Mn-O ^E, Fe-Mo-O ^E, Fe-Ni-O ^E, Mg-Mn-O ^E, Mg-Ni-O ^E, Mg-O-Ti, Mg-O-V, Mn-Mo-O, Mn-Ni-O ^E, Mn-O-Ti, Mn-O-V, Mo-Ni-O, Ni-O-Ti, Ni-O-V ## Thio-spinel Co-S, Ni-S Co-Cr-S, Co-Cu-S, Co-Fe-S, Co-Mn-S, Co-Ni-S, Cr-Cu-S, Cr-Fe-S, Cr-Mn-S, Cr-Ni-S, Cu-Ni-S ^E, Fe-Ni-S, Mn-Ni-S, Ti_5O_9 O-Ti, O-V **Tridymite** O-Si, Al-O-P V₂O_SS O-V E V_3O_5 -HT O-Ti, O-V, Al-O-V E, Cr-O-V $V_{5}O_{9}$ O-Ti, O-V VO₂-LT O-V, O-W Wollastonite Ca-O-Si, Fe-O-Si, Mg-O-Si, Mn-O-Si ``` YAG ``` Al-Gd-O ^E, Al-La-O ^E, Al-O-Y, Cr-Gd-O ^E, Cr-La-O ^E, Cr-O-Y ^E, Fe-Gd-O ^E, Fe-La-O ^E, Fe-O-Y #### YAM Al-Gd-O ^E, Al-La-O ^E, Al-O-Y ^E, Ca-O-Si, Gd-O-Si, La-O-Si, O-Si-Y ## YAP Al-Ca, Al-Gd, Al-La, Al-Y, Ca-Co, Ca-Cr, Ca-Fe, Ca-Mn ^E, Co-Gd, Co-La, Co-Y, Cr-Gd, Cr-La, Cr-Y, Fe-Gd ^E, Fe-La Al-Gd-O, Al-La-O, Al-O-Y, Ca-Co-O, Ca-Cr-O, Ca-Fe-O, Co-Gd-O, Co-La-O, Co-O-Y, Cr-Gd-O, Cr-La-O, Cr-Y-O, Fe-Gd-O, Fe-La-O, Fe-O-Y, Gd-Mn-O, La-Mn-O, Mn-O-Y, ## Y_2TiO_5 Gd-Ti-O, La-Ti-O, Y-Ti-O ## Y_3NbO_7 Nb-O-Y ## YNbO₄ Nb-O-Y #### Zircon Gd-Si, Gd-O-P, Gd-O-Si, O-P-Y, O-Si-Y E, O-Si-Zr ## $m-ZrO_2$ Al-O ^E, Ca-O, Cr-O, Gd-O ^E, La-O ^E, Y-O ^E, O-Zr ## $t-ZrO_2$ Ca-O, Cr-O, Gd-O ^E, La-O ^E, Y-O ^E, O-Zr, ## β-ZrTiO₄ O-Ti-Zr # TCS Metal Oxide Solutions Database (TCOX) Revision History #### **Current Database Version** Database name (acronym): TCS Metal Oxide Solutions Database (TCOX) Database owner: Thermo-Calc Software AB Database version: 10.0 ## **Changes in the Most Recent Database Release** ## **Changes from TCOX9 to TCOX10** Software release version 2020b (June 2020) - Addition of 3 new elements: N, Na, H (Hydrogen only in gas). - H: Added H, H2, C1H4 and H2O to the gas phase. - N: Added description of 17 binary and 28 ternary systems. Nitrogen is only assessed in metallic systems, so for example SiAlONs are not described in this database. - Na: Assessed or added from literature 8 binary metallic systems. Added Na-O from literature and assessed the Na-S system. Assessed 8 ternary Me-Na-O and 11 higher order oxide systems as indicated in the TCOX information sheet. - The following systems have been assessed for version 10:
C-Ca-O and C-Mg-O. - The following systems have been reassessed for version 10: Cr-O, Ca-Cr-O, Cr-Si-O, Ca-Cr-Si-O. - Reassessed the vacancy fraction on the FCC metallic sublattice to get a Va-fraction of 1e-5 at liquidus (this was earlier 1e-4). - Minor changes to the following systems: Co-Ni-O, Co-Fe-Ni-O, Co-Fe-Ti-O, Mo-O, Al-Mo-O, Mg-Mo-O, Mn-Mo-O, Mo-Ni-O, Nb-O, La-P-O, P-Zr-O, Ti-Zr-O. - Assessed a separation between liquid metal and SiO₂ in the following Me-O-Si systems: Me = Ca, Gd, La, Mg, Mo, Nb, Ni, P, Ti, V, W, Y, Zr. - Added/Assessed molar volumes to the database, both for solid and liquid oxides and metals. - Assessed viscosity for the liquid metal and oxide. Included oxides: FeO, Fe₂O₃, CaO, MgO, Al₂O₃, SiO₂, CaF₂, Cr₂O₃, Na₂O, MnO, TiO₂, ZrO₂, P₂O₅, Gd₂O₃, La₂O₃, V₂O₅, NiO, CuO_x. #### **Previous Releases** TCOX1 was originally released in 1992. ## **TCOX8 TO TCOX9** Software release version: 2019b (June 2019) - Addition of Ti: Assessed or added from literature all binary and a few ternary metallic systems. Assessed Ti-O and Ti-S binary systems. Assessed 19 ternary Me-Ti-O, two Me-Ti-S and 23 higher order oxide systems as indicated in the TCOX information sheet. Ti+2/+3/+4 is included in the liquid oxide, so the correct distribution of oxidation states in the slag can be calculated. - The following systems have been assessed for version 9: CaO-SiO₂-VO_x. The correct distribution of oxidation states in the slag (+3/+4/+5) can now be calculated. - The following systems have been reassessed for version 9: Ca-O-V, Mg-O-V, O-Si-V, and CaO-SiO₂-Y₂O₃. - The following systems have been estimated for version 9: MgO-SiO₂-VO_x, MnS-NbS, MnS-VS. - Changed model for VO solid solution, from Halite to FCC_A1 to be consistent with cubic TiO. Reassessed solubility of V₂O₃ in CaO/CoO/FeO/MgO/MnO/NiO Halite due to change of model for VO. Assessed C-V-O, modeling complete solid solution between VC_x and VO_y (same applies to the C-Ti-O system). - Merged CoV₂O₆ and NiV₂O₆ compounds to the CaV₂O₆ phase. - Removed the SO₄-2 species in the liquid phase. - Minor changes to the following systems: W-O, Al-Cr-O, Ca-Ni-O, Co-O-V, Cr-Cu-O, Mg-Mn-O, Co-Mn-O, Co-Mo-O, Co-O-P, Nb-O-P, Ni-O-Si, Ni-O-V, Al-Ca-Ni-O, Al-Ni-O-Y, Ca-Co-Cu-O, Ca-Co-Ni-O, Co-Mn-O-Y, Fe-La-Ni-O, Gd-Mn-O-Si. #### TCOX7 to TCOX8 Software release version: 2018b (June 2018) - Addition of 6 new elements: Co, Mo, P, V, W, Ar (only in gas). - Co: Assessed or added from literature all binary and a few ternary metallic systems. Added/Assessed Co-F, Co-O and Co-S. Assessed 29 ternary Co-Me₂-O, Co-Me₂-S and Co-Me₂-F systems and 13 higher order oxide systems as indicated in the TCOX information sheet. - Mo: Assessed or added from literature all binary and a few ternary metallic systems. Added/Assessed Mo-O and Mo-S. Assessed 6 ternary Me1-Mo-O and Me1-Mo-S systems as indicated in the TCOX information sheet. - P: Assessed or added from literature all binary and a few ternary metallic systems except F-P, Gd-P, La-P, Mg-P, P-V, P-W and P-Zr. Assessed 18 ternary Me1-O-P systems and 11 higher order oxide and oxy-fluoride systems as indicated in the TCOX information sheet. - V: Assessed or added from literature all binary and a few ternary metallic systems except P-V. Assessed 13 ternary Me1-V-O systems as indicated in the TCOX information sheet. - W: Assessed or added from literature all binary and a few ternary metallic systems except Ca-W, F-W and P-W. Assessed 13 ternary Me1-W-O systems as indicated in the TCOX information sheet. - The following systems have been assessed for version 8: CaF₂-CoF₂/CrF₃/MnF₂, CoF₂-GdF₃/MgF₂/NiF₂, FeF₃-NiF₂, GdF₃-YF₃, LaF₃-ZrF₄, Al-Cu-S, Al-La-S, Ca-Y-S, Al-Ni-S and Cr-Ni-S. - The following systems have been reassessed for version 8: F-Fe, Mg-Ni-O-Si, CaO-NiO-SiO₂, Mn-Ni-O, Al-Ni-O, Mn-Si-O, Al-Mn-Si-O, Al-Fe-Mn-Si-O, Ca-Mn-Si-O, Ni-Si-O, Ca-Ni-Si-O, Mg-Ni-Si-O, Al-Cu-O, Al-Cu-Si-O. - The following systems have been estimated for version 8: La-Mg-S, Mn-Zr-S, Gd-Mg-S, Fe-Zr-S, Fe-Gd-S, Fe-La-S, Cu-La-S, Cu-Si-S, Nb-S, Fe-Nb-S - The large complex gaseous phase has been removed. A reduced gaseous mixture is used including only the important species. If a complete gas is needed, it should be appended from the SGTE substance database. - α -Ca₂SiO₄ and α '-Ca₃P₂O₈ is merged into one phase. Reassessed solubility of Fe, Gd, Mg, Mn and Y due to change of models. - Removed Ni-solubility in Corundum. #### TCOX6 to TCOX7 Software release version: 2017a (March 2017). - Addition of 6 new elements: Cu, F, S, Gd, La and Nb. - Cu: Added all binary and a few ternary metallic systems. Added Cu-O and Cu-S. Assessed Al₂O₃-Cu-O, CaO-Cu-O, Cu-Cr-O, Cu-Fe-O, Cu-O-La₂O₃, Cu-O-MgO, Cu-Mn-O, Cu-Nb-O, Cu-Ni-O, Cu-Si-O, Cu-Y-O, Al₂O₃-Cu-O-SiO₂, CaO-Cu-Fe-O, CaO-Cu-O-SiO₂, Cu-Fe-O-SiO₂, Cu-O-MgO-SiO₂, Cu-Cr-S, Cu-Fe-S, Cu-Mg-S, Cu-Mn-S, Cu-Ni-S, Cu-O-S, Cu-Fe-O-S. - F: Added liquid and solid AlF₃, CaF₂, CrF₂, CrF₃, CuF, CuF₂, FeF₂, FeF₃, GdF₃, LaF₃, MgF₂, MnF₂, NbF₂, NbF₅, NiF₂, SiF₄, YF₃, ZrF₄. Assessed Ca-CaF₂, CaF₂-CaO, GdF₃-Gd₂O₃, MgF₂-MgO, AlF₃-CaF₂, AlF₃-MgF₂, AlF₃-ZrF₄, CaF₂-FeF₂, CaF₂-GdF₃, CaF₂-LaF₃, CaF₂-MgF₂, MgF₂-GdF₃, MgF₂-LaF₃, MgF₂-YF₃, AlF₃-Al₂O₃-CaF₂-CaO, CaF₂-CaO-MgF₂-MgO, CaF₂-Cr₂O₃, CaF₂-CaO-FeO-Fe₂O₃-FeF₂, CaF₂-SiO₂-CaO-SiF₄, Al₂O₃-CaF₂-MgO, Al₂O₃-CaF₂-SiO₂, MgF₂-MgO-SiO₂. Estimated CaF₂-CaSO₄, AlF₃-SiO₂. - S: Assessed or added from literature: Al-S, Ca-S, Cr-S, Cu-S, Fe-S, Mg-S, Mn-S, Ni-S, Si-S, Y-S, Al-Fe-S, Ca-Fe-S, Ca-Mg-S, Ca-Mn-S, Cr-Fe-S, Cu-Cr-S, Cu-Fe-S, Cu-Mg-S, Cu-Mn-S, Cu-Ni-S, Fe-Mg-S, Fe-Mn-S, Fe-Ni-S, Mg-Mn-S, Al-O-S, Ca-O-S, Cu-O-S, Fe-O-S, Mg-O-S, Mn-O-S, Si-O-S, CuS-SiO₂, FeS-SiO₂, MnS-SiO₂, Al₂O₃-CaO-CaS, Al₂O₃-MgO-MgS, Al₂O₃-MnO-MnS, CaO-SiO₂-CaS, MgS-SiO₂, Al₂O₃-CaO-CaS-MnO-MnS, Cu-Fe-O-S, CaF₂-CaS. Estimated Gd-S, La-S, CaF₂-CaS, CaF₂-CaSO₄. - Gd: Added all binary metallic systems except Gd-La. Added Gd-O and estimated Gd-S. Assessed Al₂O₃-Gd₂O₃, CaO-Gd₂O₃, Cr₂O₃-Gd₂O₃, Fe₂O₃-Gd₂O₃, Gd₂O₃-MgO, Gd₂O₃-NiO, Gd₂O₃-SiO₂, Gd₂O₃-ZrO₂, Al₂O₃-Gd₂O₃-ZrO₂, CaO-Gd₂O₃-SiO₂, Gd₂O₃-SiO₂-ZrO₂. - La: Added all binary metallic systems except Gd-La, La-Nb and La-Si. Added La-O and estimated La-S. Assessed Al₂O₃-La₂O₃, CaO-La₂O₃, Cr₂O₃-La₂O₃, Cu-O-La₂O₃, Fe-O-La₂O₃, La₂O₃-Mn-O, La₂O₃-Nb₂O₅, La₂O₃-NiO, La₂O₃-SiO₂, La₂O₃-ZrO₂, Al₂O₃-La₂O₃-Y₂O₃, Al₂O₃-La₂O₃-ZrO₂. - Nb: Added all binary metallic systems except La-Nb. Assessed Nb-O. Assessed Al₂O₃-Nb₂O₅, CaO-Nb₂O₅, Cr₂O₃-Nb₂O₅, CuO-Nb₂O₅, Fe-Nb-O, La₂O₃-Nb₂O₅, MgO-Nb₂O₅, MnO-Nb₂O₅, Nb₂O₅-NiO, Nb₂O₅-SiO₂, CaO-Nb₂O₅-SiO₂. - The following systems have been assessed for version 7: Al_2O_3 -CaO-Cr $_2O_3$, SiO_2 -Fe-Mn-O, CaO-FeO-MnO, Al_2O_3 -Fe-Mn-O, SiO_2 -Al $_2O_3$ -Fe-Mn-O. - The following systems have been estimated for version 7: CaO-Mn-O-Y₂O₃, Fe-O-NiO-SiO₂. - Added assessment of Mg-Mn-O and Cr₂O₃-MgO-SiO₂ from literature. - The following systems have been reassessed for version 7: CaO-SiO₂-ZrO₂, CaO-SiO₂-Y₂O₃, Al₂O₃-CaO-SiO₂-Y₂O₃. - Modelled Fe₂O₃ solubility in MULLITE. - Modelled ZrO₂ solubility in APATITE. - Modelled Y₂O₃ solubility in ZIRCON. - Merging CF (CaO.Fe $_2$ O $_3$), α -CACR $_2$ O $_4$ and CAY $_2$ O $_4$ to one phase: CAV2O4. #### TCOX5.1 to TCOX6 Software release version: 2015a (June 2015) The following systems have been assessed for version 6: Al-Ca-Fe-Si-O, Al-Ca-Mg-Zr-O, Al-Ca-Y-O, Al-Fe-Mg-O, Al-Mg-Y-O, Al-Mn-Si-O, Al-Si-Zr-O, Ca-Fe-Mg-O, Ca-Fe-Mg-Si-O, Ca-Mg-Zr-O, Ca-Si-Y-O, Ca-Si-Zr-O, Ca-Y-Zr-O, Fe-Mg-Si-O, Mg-Si-Y-O and Mg-Y-Zr-O. - Added assessments of Mg-Y and Mg-Zr from literature. - The following systems have been reassessed for version 6: Al-Ca-Zr-O, Al-Cr-Zr-O, Al-Mg-Zr-O, Al-Ni-O, Al-Zr-O, Fe-Mg-O, Fe-Mg-Si-O, Fe-Y-O, Fe-Zr-O, Mn-Si-O and Ni-Si-O. - The following systems have been estimated for version 6: Al-Ca-Si-Y-O, C-Ca, C-Mg, Ca-Cr, Ca-Mn, Ca-Y, Ca-Mg-Mn-O, Ca-Ni-Si-O, Mg-Ni-Si-O and Mg-Si-Zr-O. - Added interaction for Ca-Fe in HCP identical to FCC and BCC. This makes the HCP phase not stable in the binary phase diagram. Reassessed liquid phase. - Modified Al-Fe-O CORUNDUM. - Modelled CaO solubility in ORTHO PYROXENE. - Estimation of Al-Fe-Mn-O to fit a Mn/Si steel in Fe-Al-Mn-Si-O. - Added a parameter in liquid Al-Si-O to get rid of a miscibility gap at high SiO₂ in Al-Mn-Si-O in equilibrium with Mn. - Added Ca₂FeSi₂O₇ (MELILITE) and estimated the "binaries" Ca₂FeSi₂O₇-Ca₂MgSi₂O₇ and - Ca₂FeSi₂O₇-Ca₂AlFeSiO₇. - Merged YAM and CUSPIDINE phases to get complete solubility between Y4Al2O9 and Ca2Si2Y2O9. - Corrected a misprint in liquid Al-Ca-Zr-O, so the miscibility gap was removed. - Changed back to the old description for ANORTHITE. #### TCOX4 TO TCOX5.1 TCOX5 released in October 2012 and TCOX5.1 released in January 2013. - Included Y₂O₃ and ZrO₂. Also added available descriptions for Y-O and Zr-O from literature, with small modifications due to model compatibility with TCOX. Many binary and ternary systems with these two new components are assessed for TCOX5. - Al₂O₃-CaO-Fe-O, Al₂O₃-CaO-MnO, Al₂O₃-Fe-O-SiO₂, CaO-Cr-O-SiO₂, CaO-MnO-SiO₂, MgO-Al₂O₃-CrO-Cr₂O₃, FeO-Fe₂O₃-MgO-SiO₂ have been added from published assessments or assessed for TCOX5. - Merged phases Mn₂O₃ and cubic Y₂O₃ to one single phase: M2O3C. - Removed all intermetallic phases and carbides. Updated metallic liquid, fcc, bcc etc. to the latest available descriptions. - Changed model for oxygen in DIAMOND_FCC_A4. Oxygen is now modeled as an interstitial element, instead of using a substitutional model as before. This change was done due to computational problems with the DIAMOND_FCC_A4 phase when Si was not defined in the system. - Modification of the ANORTHITE phase stability in the Al₂O₃-CaO-MgO-SiO₂ system. - Simplified the model for the ALPHA SPINEL phase due to computational problems. - Reassessed Al-Cr-O and Cr-O due to an unwanted miscibility gap in the Al₂O₃-Cr₂O₃ system close to Cr-O. - Removed charged species from the gas phase. - Al₂O₃-CaO-NiO,
Al₂O₃-NiO, CaO-Cr-O, CaO-Mn-O, Cr-O-MgO, Cr-O-SiO₂ and MgO-NiO are reassessed. - Added Ca to the SPINEL phase. Solubility of Ca in Fe₃O₄ and Mn₃O₄ has been assessed. - Added ASSESSED_SYSTEMS. It is now possible to calculate the Me-O binaries using the BINARY Module in Thermo-Calc.