Graphical Mode Examples Guide
Thermo-Calc Version 2020a
Diffusion Module
DICTRA Graphical Mode Examples 74

- **D_01** Homogenization of a Binary Fe-Ni Alloy .. 74
- **D_02** Ferrite(bcc)/Austenite(fcc) Transformation in a Binary Fe-C Alloy 76
- **D_03** Evolution of an Fe-Cr-Ni Diffusion Couple .. 79
- **D_04** Fe-C Moving Boundary: Austenite to Ferrite .. 80
- **D_05** γ/α/γ Diffusion couple of Fe-Ni-Cr alloys .. 83
- **D_06** Diffusion Through a Tube Wall .. 89
- **D_07** Multiphase Carburization of a Ni-25Cr-0.0001C alloy .. 92

Precipitation Module
TC-PRISMA Graphical Mode Examples 96

- **P_01**: Isothermal Precipitation of Al3Sc .. 96
 - Tutorial-P_01-Isothermal .. 99
- **P_02**: Stable and Metastable Carbides - Isothermal .. 106
- **P_03**: Stable and Metastable Carbides - TTT Diagram .. 108
- **P_04**: Precipitation of Iron Carbon Cementite .. 111
- **P_05**: Precipitation of γ’ in Ni Superalloys - Isothermal .. 113
- **P_06**: Precipitation of γ’ in Ni Superalloys - Non-isothermal .. 116
- **P_07**: Continuous Cooling Transformation (CCT) Diagram of Ni-Al-Cr γ-γ’ .. 121
 - Tutorial-P_07-CCT .. 124
- **P_08**: Precipitation of Cu-Ti Cu4Ti with Assumptions of Sphere and Needle Morphologies .. 129
- **P_09**: Precipitation of Al-Sc AL3SC with Assumption of Sphere and Cuboid Morphologies .. 134
 - Tutorial-P_09-Al-Sc-Sphere_Cuboid .. 141
- **P_10**: Initial Particle Size Distribution of Fe-Cr-C .. 150
 - Volume Fraction with Initial Particle Size Distribution .. 153
 - Volume Fraction with No Initial Particle Size Distribution .. 154
- **P_11**: Interfacial Energy Function .. 154
 - Mean Radius .. 156
- **P_12**: Comparing Growth Rate Models for an Al-Zr System .. 156
 - Mean Radius .. 159
- **P_13**: Paraequilibrium Precipitation of Cementite Fe-C-Cr .. 159
 - Mean Radius .. 161
Graphical Mode Examples

About the Examples

This guide includes descriptions of the following examples.

<table>
<thead>
<tr>
<th>Category</th>
<th>Example number</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Thermo-Calc Graphical Mode Examples Collection" on the next page includes binary and ternary system examples, Scheil, the Equilibrium Calculator, plus more</td>
<td>T_01 to T_10</td>
</tr>
<tr>
<td>"Thermo-Calc Property Model Examples Collection" on page 31: General and Steel models</td>
<td>General models: PM_G_01 to PM_G_06 Steel models: PM_Fe_01 to PM_Fe_03</td>
</tr>
<tr>
<td>"Process Metallurgy Examples Collection" on page 54</td>
<td>PMET_01 to PMET_03</td>
</tr>
<tr>
<td>"Diffusion Module (DICTRA) Graphical Mode Examples" on page 74</td>
<td>D_01, D_02, D_03 (the Quick Start Guide Examples) D_04 to D_07</td>
</tr>
<tr>
<td>"Precipitation Module (TC-PRISMA) Graphical Mode Examples" on page 96</td>
<td>P_01 to P_13</td>
</tr>
</tbody>
</table>
Thermo-Calc Graphical Mode Examples Collection

T_01: Calculating a Single-Point Equilibrium

This example shows the result from a single-point equilibrium calculation in the Fe-C system. It demonstrates the use of the Equilibrium Calculator and generates a Table Renderer in the Results window. The number of equilibrium conditions is C+2 where C is the number of components, meaning that four conditions are needed in this example:

- **Temperature** is 1000 K
- **Pressure** is 101325 Pa
- **System size** is 1 mole
- **Mass percent carbon** is 0.1%

PROJECT FILE AND VIDEO TUTORIAL INFORMATION

- Folder: Thermo-Calc
- File name: T_01_Single-point_equilibrium.tcu

This example is included as a tutorial on our [website](#) and our [YouTube](#) channel.
Table Result

The displayed results of the calculation show that the BCC_A2 (ferrite) and GRAPHITE phases are stable for this set of equilibrium conditions.

![Table Image]
T_02: Stepping in Temperature in the Fe-C System

This example shows how the fractions of stable phases vary for an Fe-0.1 mass-% C alloy when the temperature is varied between 500 and 2000 K. It demonstrates the use of the Equilibrium Calculator. To allow temperature to vary, the corresponding Axis Definition check box is selected.

PROJECT FILE AND VIDEO TUTORIAL INFORMATION

- Folder: Thermo-Calc
- File name: T_02_Step_in_temperature_in_Fe-C.tcu

This example is included in the tutorial on our [website](#) and [YouTube](#) channel.
Plot Result

In this example, results are displayed graphically using a Plot Renderer activity.

If you want, you can use a Table Renderer to generate text results instead, as shown in this example after adding a Table Renderer to the Equilibrium Calculator and clicking **Perform**.
T_03: Fe-C Phase Diagrams

This example shows the stable Fe-C phase diagram (stable meaning that the graphite phase is entered in the calculation). The same diagram is calculated using the Binary Calculator activity and then using a System Definer and Equilibrium Calculator.

In both cases, a Plot Renderer is used to display results. The purpose of the Binary Calculator is to simplify common calculations for binary systems. In the Equilibrium Calculator two axes are defined: *Mass percent C* and *Temperature*. An axis variable must also be an equilibrium condition.

PROJECT FILE AND VIDEO TUTORIAL INFORMATION

- Folder: Thermo-Calc
- File name: *T_03_Fe-C_phase_diagram.tcu*

This example is included as a tutorial on our [website](#) and our [YouTube](#) channel.
PLOT RESULTS

Equilibrium Calculator Results

This shows the plot result of the System Definer and Equilibrium Calculator system.
Binary Calculator Results

![Graphical Mode Examples](image)

T_04: Fe-Cr-C Ternary Phase Diagram at 1000 K

This example shows a ternary phase diagram in the Fe-Cr-C system at 1000 K. Similar to example "T_03: Fe-C Phase Diagrams on page 10, the same diagram is calculated using a Ternary Calculator and then using a System Definer and Equilibrium Calculator. Two Plot Renderer activities are added to create two plots.

PROJECT FILE AND VIDEO TUTORIAL INFORMATION

- Folder: Thermo-Calc
- File name: T_04_Fe-Cr-C_ternary_phase_diagram.tcu

This example is included as a tutorial on our [website](#) and our [YouTube](#) channel.
PLOT RESULTS

Ternary Calculator

![Ternary Plot](image)
Equilibrium Calculator

Try practicing with two features on the Plot Renderer Configuration window. To toggle between a triangular and a rectangular diagram, click the Show Triangular button then click Perform to see what happens. To toggle the X and Y axis variables, click the Switch Axes button and then click Perform.
T_05: Stable and the Metastable Fe-C Phase Diagrams

This example shows how to overlay results from two calculations in the same plot using the Equilibrium Calculator.

1. The Plot Renderer activity is first created as a successor to Equilibrium Calculator 1.
2. Then right-click the Plot Renderer node and select Add predecessor and the results from both equilibrium calculators are in the same plot. In Equilibrium Calculator 1 the stable phase diagram is calculated and in Equilibrium Calculator 2 the metastable phase.
3. The metastable diagram is obtained by deselecting the graphite phase on System Definer2 → Phases and phase constitution tab.

![Phases and Phase Constitution](image)

PROJECT FILE AND VIDEO TUTORIAL INFORMATION

- Folder: Thermo-Calc
- File name: T_05_Fe-C_stable_and_metastable_phase_diagram.tcu
You can access video tutorials in a variety of ways. When in Thermo-Calc, from the menu select Help → Video Tutorials, or you can go to the website or our YouTube channel.

PLOT RESULT

![Graphical Mode Examples](image-url)
T_06: Serially Coupled Equilibrium Calculators

Sometimes there are multiple solutions for a given set of equilibrium conditions. In other cases the equilibrium calculation does not converge. You can then aid the final calculation by, in effect, telling the software where it should start the search for the equilibrium.

This example shows how to serially couple two Equilibrium Calculator nodes together for more complex equilibrium conditions. For each calculation, the output is to a Table Renderer.

PROJECT FILE AND VIDEO TUTORIAL INFORMATION

- Folder: Thermo-Calc
- File name: T_06_Serial_equilibrium_calculators.tcu

💡 You can access video tutorials in a variety of ways. When in Thermo-Calc, from the menu select Help → Video Tutorials, or you can go to the website or our YouTube channel.

Table Renderer Results

Equilibrium Calculator 1

In the first example, the objective is to calculate the equilibrium at 850° C where the mole fractions of the FCC A1 and BCC A2 phases are 0.5 each for an Fe-Cr-C steel with 10% chromium. In Equilibrium Calculator 1 a simple set of equilibrium conditions (temperature, pressure, system size and composition) are used to find a carbon content where only the FCC A1 and BCC A2 phases are stable. The results from this preliminary calculation are displayed in Table Renderer 1.
Equilibrium Calculator 2

In Equilibrium Calculator 2 the carbon content equilibrium condition is replaced by the condition that the numbers of moles of the BCC A2 phase should be 0.5. The final result is displayed in Table Renderer 2. In this case, the final objective is to calculate the solidus temperature of an Fe-Cr-C steel with 10% Cr and 0.01% C.

<table>
<thead>
<tr>
<th>Component</th>
<th>Mole Fraction</th>
<th>Mass Fraction</th>
<th>Activity</th>
<th>Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.01046</td>
<td>0.00010</td>
<td>0.00137</td>
<td>0.15812</td>
</tr>
<tr>
<td>Cr</td>
<td>0.10658</td>
<td>0.10000</td>
<td>0.00315</td>
<td>-0.55313</td>
</tr>
<tr>
<td>Fe</td>
<td>0.85206</td>
<td>0.89400</td>
<td>0.00387</td>
<td>-0.18595</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stable Phases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moles</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>BCC A2#1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mole Fraction</td>
</tr>
<tr>
<td>Fe</td>
</tr>
<tr>
<td>Cr</td>
</tr>
<tr>
<td>C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FCC A1#1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moles</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>0.23223</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mole Fraction</td>
</tr>
<tr>
<td>Fe</td>
</tr>
<tr>
<td>Cr</td>
</tr>
<tr>
<td>C</td>
</tr>
</tbody>
</table>
Equilibrium Calculator 3

In Equilibrium Calculator 3 the state at 2000 K is calculated and the result is displayed in Table Renderer 3.
Equilibrium Calculator 4

In Equilibrium Calculator 4 the temperature equilibrium condition is replaced by the condition \textit{Fix phase/liquid / 0.0}, meaning that liquid should be stable in an amount of zero moles, i.e. the solidus temperature. The final result is displayed in Table Renderer 4.
System
- Moles: 1.06000
- Mass: 55.48394 [g]
- Temperature: 1701.5127 [K]
- Total Gibbs Energy: -1.49613 [J]
- Entropy: 59770.77122 [J K⁻¹]
- Volume: 7.655686 [m³]

<table>
<thead>
<tr>
<th>Component</th>
<th>Mole Fraction</th>
<th>Mass Fraction</th>
<th>Activity</th>
<th>Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.85206</td>
<td>0.85099</td>
<td>0.000102</td>
<td>-1.08070E5</td>
</tr>
<tr>
<td>O</td>
<td>0.10658</td>
<td>0.10000</td>
<td>0.00030</td>
<td>-1.00050E5</td>
</tr>
<tr>
<td>Fe</td>
<td>0.04136</td>
<td>0.05900</td>
<td>0.00071</td>
<td>-1.08070E5</td>
</tr>
</tbody>
</table>

Stable Phases

<table>
<thead>
<tr>
<th>Phase</th>
<th>Moles</th>
<th>Mass</th>
<th>Volume Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCC_A2#1</td>
<td>1.00000</td>
<td>55.48394</td>
<td>0.00000</td>
</tr>
</tbody>
</table>

Composition

<table>
<thead>
<tr>
<th>Component</th>
<th>Mole Fraction</th>
<th>Mass Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>0.85206</td>
<td>0.85099</td>
</tr>
<tr>
<td>O</td>
<td>0.10658</td>
<td>0.10000</td>
</tr>
<tr>
<td>C</td>
<td>0.04136</td>
<td>0.05900</td>
</tr>
</tbody>
</table>

Fixed Phases

<table>
<thead>
<tr>
<th>Phase</th>
<th>Moles</th>
<th>Mass</th>
<th>Volume Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIQUID#1</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
</tbody>
</table>

Composition

<table>
<thead>
<tr>
<th>Component</th>
<th>Mole Fraction</th>
<th>Mass Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>0.85207</td>
<td>0.85947</td>
</tr>
<tr>
<td>O</td>
<td>0.11178</td>
<td>0.10956</td>
</tr>
<tr>
<td>C</td>
<td>0.00024</td>
<td>0.00047</td>
</tr>
</tbody>
</table>
T_07: User-Defined Functions

This example shows how to implement user-defined functions.

A series of equilibria for an Fe-Cr-C alloy are calculated by varying temperature between 500 and 3000 K. In the configuration window of the Equilibrium Calculator under the **Functions** tab, two identically meaning functions are defined, *fraction solid* and *f solid*, the values of which are plotted against temperature in two Plot Renderer activities. Functions can be entered in terms of *Quantities* Q1, Q2, Q3 and so forth, or by using the Thermo-Calc syntax.

PROJECT FILE AND VIDEO TUTORIAL INFORMATION

- Folder: Thermo-Calc
- File name: *T_07_User_defined_functions.tcu*

💡 You can access video tutorials in a variety of ways. When in Thermo-Calc, from the menu select **Help → Video Tutorials**, or you can go to the [website](#) or our [YouTube channel](#).
Plot Result

This plot example shows the result of the fraction solid function.
T_{08}: Scheil and Equilibrium Solidification

This example shows a comparison for an Al-Si alloy solidified under full local equilibrium and under the Scheil assumptions, i.e. zero diffusion in the solidified material and infinitely fast diffusion in the liquid. The example uses the Scheil Calculator and adds a Plot and Table Renderer.

"T_{10}: Scheil Solidification with Back Diffusion" on page 29

PROJECT FILE AND VIDEO TUTORIAL INFORMATION

- Folder: Thermo-Calc
- File name: T_{08} _Scheil_and_equilibrium_solidification.tcu.

For video tutorial examples using Scheil, see our [website](#) and [YouTube channel](#).
TABLE AND PLOT RESULTS

The plot compares the mole fraction of a solid vs temperature. The table provides the data, which you can also export.
<table>
<thead>
<tr>
<th>Mole fraction of solid</th>
<th>Temperature [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2.22045E-16</td>
<td>654.52000</td>
</tr>
<tr>
<td>-2.22045E-16</td>
<td>654.52000</td>
</tr>
<tr>
<td>-2.22045E-16</td>
<td>654.52000</td>
</tr>
<tr>
<td>0.00105</td>
<td>654.42400</td>
</tr>
<tr>
<td>0.16114</td>
<td>653.42400</td>
</tr>
<tr>
<td>0.27839</td>
<td>652.42400</td>
</tr>
<tr>
<td>0.36780</td>
<td>651.42400</td>
</tr>
<tr>
<td>0.43812</td>
<td>650.42400</td>
</tr>
<tr>
<td>0.49481</td>
<td>649.42400</td>
</tr>
<tr>
<td>0.54143</td>
<td>648.42400</td>
</tr>
</tbody>
</table>
TO SAVE THE TABLE

There are two ways to save the table.

Method 1

In the **Results** window, right click the table and select **Save As...**

Method 2

1. In the **Project** window, click the **Table Renderer**.
2. In the **Configuration** window, click **Save table**.
T_09: Carbide Driving Force Heat Map

This is an example of using *Grid* calculations to plot the driving force for a carbide as a function of two composition variables. With the *Grid* calculation type, a 2D grid is generated from the two calculation axes. After the calculation is done, an equilibrium is calculated in each grid point. A *Plot Renderer* connected to a grid calculation plots the z-axis property for each equilibrium as a function of the two calculation axes. The final plot can be either a heat map or a contour plot.

PROJECT FILE AND VIDEO TUTORIAL INFORMATION

- Folder: Thermo-Calc
- File name: *T_09_Heat_map_of_carbide_driving_force.tcu*

💡 You can access video tutorials in a variety of ways. When in Thermo-Calc, from the menu select **Help → Video Tutorials**, or you can go to the [website](#) or our [YouTube channel](#).

PLOT RESULT

![Heat Map Diagram](image)
T_10: Scheil Solidification with Back Diffusion

See Scheil Calculator for an overview of the different Scheil simulation models available.

The Scheil with back diffusion feature is only available for systems with diffusion data, i.e. it requires the use of a mobility database.

This is an example of a Scheil solidification simulation of a Al-2.1Cu-1Si alloy including back diffusion in the primary phase.

The example uses two of the Scheil Calculator activity nodes with different cooling rates, 10 K/s and 0.005 K/s. The lower cooling rate produces a solidification curve that is closer to the equilibrium curve as shown in the plot result. Both a thermodynamic ALDEMO (aluminum demo) and mobility MALDEMO (Al-alloys mobility) database are used for this calculation.

"T_08: Scheil and Equilibrium Solidification" on page 24

PROJECT FILE AND VIDEO TUTORIAL INFORMATION

- Folder: Thermo-Calc
- File name: T_10_Scheil_with_back_diffusion.tcu.

For video tutorial examples using Scheil, see our website and YouTube channel.
PLOT RESULT

Scheil Solidification Plot

![Scheil Solidification Plot](image-url)
Thermo-Calc Property Model Examples Collection

![Symbol]

The **General models** are available to all users. To run calculations with the **Steel models** (martensite and pearlite) requires a valid maintenance license plus licenses for both the TCFE9 and MOBFE4 databases.

These examples use the **Property Model Calculator**, an activity available with Thermo-Calc.

▶️ **About the Examples**

PM_G_01: Phase Transition

The example uses the Property Model Calculator to predict the transition temperature to the unwanted brittle Sigma phase. The example shows how the temperature is influenced by changes to a steel alloy's composition using the *uncertainty* calculation type and how to create either a *histogram* or *probability* plot.

▶️ **Phase Transition Model** in the *Thermo-Calc User Guide*.

PROJECT FILE AND VIDEO TUTORIAL INFORMATION

- Folder: Property models>General
- File name: *PM_G_01_Phase_Transition.tcu*

☐ This example is included as a tutorial on our [website](#) and our [YouTube](#) channel.
Plot Results

Histogram plot

![Histogram plot](image1)

Probability plot

![Probability plot](image2)
Experienced users can also create custom property models for use with the Property Model Calculator.

Search for Property Model Calculator and Development Framework in the help.

PM_G_02: Coarsening and Interfacial Energy

The example uses the Property Model Calculator and both thermodynamic (FEDEMO) and kinetic (MFDEMO) demonstration steel databases. Using a Grid calculation type it produces these plots: a *heat map*, a *contour plot* and a *cross plot with contour* (where both the interfacial energy and coarsening rate is shown). It also creates a diagram to show the phase fractions vs time and a 3D plot comparing the coarsening rate coefficient.

Coarsening Model and Interfacial Energy Model

PROJECT FILE AND VIDEO TUTORIAL INFORMATION

- Folder: Property models>General
- File name: *PM_G_02_Coarsening_and_Interfacial_energy.tcu*

This example is included as a tutorial on our [website](#) and our [YouTube](#) channel.

Plot Results

Coarsening rate coefficient (heat map)
Coarsening rate coefficient (3D plot)

Two different rotation angles. When viewing in Thermo-Calc you can rotate the plot.
Coarsening rate coefficient (contour plot)

Coarsening rate coefficient
Coarsening rate coefficient and Interfacial energy (overlayed plots)

Phase fractions vs T (One axis)

 Experienced users can also create custom property models for use with the Property Model Calculator.
Search for Property Model Calculator and Development Framework in the help.

PM_G_03: Driving Force and Interfacial Energy

The example uses the Property Model Calculator and a thermodynamic demonstration steel database (FEDEMO). Using a grid calculation type it produces a contour plot comparing the driving force and interfacial energy.

- **Driving Force Model** and **Interfacial Energy Model** in the *Thermo-Calc User Guide*.

PROJECT FILE AND VIDEO TUTORIAL INFORMATION

- Folder: Property models>General
- File name: *PM_G_03_Driving_force_and_Interfacial_energy.tcu*

This example is included as a tutorial on our [website](https://example.com) and our [YouTube](https://example.com) channel.
Plot Result

A contour plot

Phase Fraction

Graphical Mode Examples | 38 of 161
Experienced users can also create custom property models for use with the Property Model Calculator.

- Search for Property Model Calculator and Development Framework in the help.

PM_G_04_Yield_Strength

- Yield Strength Model and About the Yield Strength Model in the *Thermo-Calc User Guide*.

The example uses the Property Model Calculator and the Yield strength property model with a thermodynamic demonstration aluminum database (ALDEMO).

This example compares the Simplified and Seidman models yield strength versus precipitate radius to experimental data for an Al-0.3wt%Sc alloy homogenized at 648 °C for 24 hours and subsequently aged at 350 °C. Although the experimental set up is designed to eliminate grain boundary and solid solution strengthening, these are also included by optimizing the model parameters.
PROJECT FILE AND VIDEO TUTORIAL INFORMATION

- Folder: Property models>General
- File name: PM_G_04_Yield_Strength.tcu

Also see our website and YouTube channel for tutorial videos related to the Property Model Calculator.
Plot Result

Strength vs Radius - Simplified

© Seidman et al., Acta Mat., 2002
Strength vs Radius - Seidman

![Graphical Mode Examples](image)

** Experienced users can also create custom property models for use with the Property Model Calculator. **

** Search for Property Model Calculator and Development Framework in the help. **

PM_G_05_Yield_Strength_NiAlCr

** Yield Strength Model and About the Yield Strength Model in the Thermo-Calc Graphical Mode User Guide. **

The example uses the Property Model Calculator and the Yield strength property model with a thermodynamic demonstration nickel database (NIDEMO).
The Reppich model is developed for calculation of precipitation strengthening in Ni-based super alloys consisting mainly of gammaprime precipitates in a gamma matrix. The example shows a calculation of the precipitation strengthening vs precipitate radius in a Ni-10at%Al-10at%Cr alloy.
PROJECT FILE AND VIDEO TUTORIAL INFORMATION

- Folder: Property models>General
- File name: PM_G_05_Yield_Strength_NiAlCr.tcu

Also see our [website](#) and [YouTube channel](#) for tutorial videos related to the Property Model Calculator.

PLOT RESULT

Mean Radius Reppich Model

Reppich model plotted with results and experimental data for PE16, all data is normalized with the square root of the volume fraction of precipitate.
Experienced users can also create custom property models for use with the Property Model Calculator.

Search for Property Model Calculator and Development Framework in the help.

PM_G_06_Yield_Strength_HEA

- Yield Strength Model and Yield Strength Model Theory in the *Thermo-Calc Graphical Mode User Guide*.

This example requires the use of the TCS High Entropy Alloy (TCHEA) database. A license is required to run the example.

The example uses the **Property Model Calculator** and the **Yield strength** property model with a thermodynamic high entropy alloy database (TCHEA). This is an example of solid solution strengthening, which is the contribution to total strength due to the elastic strains in the crystal lattice caused by alloying elements of a lattice parameter differing from the main constituent. The example shows the solid solution strengthening over the full solubility range for the Mo-Ta system as compared to experimental data.
PROJECT FILE AND VIDEO TUTORIAL INFORMATION

- Folder: Property models>General
- File name: PM_G_06_Yield_Strength_HEA.tcu

Also see our website and YouTube channel for tutorial videos related to the Property Model Calculator.

PLOT RESULT

Strength vs at% Ta
Experienced users can also create custom property models for use with the Property Model Calculator.

Search for Property Model Calculator and Development Framework in the help.

PM_Fe_01: Fe-Cr-C Martensite with Intercritical Annealing

To run calculations with the Steel models (martensite and pearlite) requires a valid maintenance license plus licenses for both the TCFE9 and MOBFE4 databases.

The example uses the Property Model Calculator with the Martensite Fractions and Martensite Temperatures models.

The example shows how to calculate martensite fractions and martensite temperatures (martensite start, Ms, and 90% transformation temperature M90). The alloy is first intercritically annealed and then quenched. Austenite composition is determined by an equilibrium calculation at the annealing temperature. Martensite fraction is calculated as a function of temperature which the alloy is quenched to. The example also shows how Cr content in the alloy influences Ms and M90 after intercritical annealing.

REFERENCE

PROJECT FILE AND VIDEO TUTORIAL INFORMATION
- Folder: Property models >Steel
- File name: PM_Fe_01_Fe-Cr-C_martensite_intercritical_annealing.tcu

Also see our website and YouTube channel for tutorial videos related to the Property Model Calculator.

PLOT RESULTS
Transformation curves

The transformation curves plot showing Fe-Cr-C martensite with intercritical annealing.
PM_Fe_02: Fe-Mn Martensite Morphologies

To run calculations with the Steel models (martensite and pearlite) requires a valid maintenance license plus licenses for both the TCFE9 and MOBFE4 databases.

The example uses the Property Model Calculator with the Martensite Temperatures model. It shows the Ms temperatures of different types of martensites: lath, plate, and ε (hcp), compared with experimental ε Ms values.

PROJECT FILE AND VIDEO TUTORIAL INFORMATION
• Folder: Property Models>Steel
• File name: PM_Fe_02_Fe-Mn_martensite_morphologies.tcu

Also see our website and YouTube channel for tutorial videos related to the Property Model Calculator.

PLOT RESULT

All morphologies

A diagram showing all the Ms temperatures of different types of martensite morphologies (lath, plate and epsilon (hcp) compared with experimental epsilon Ms values.

PM_Fe_03: Fe-C-Mn Pearlite

![Diagram showing Ms temperatures of different types of martensite morphologies compared with experimental epsilon Ms values.]

To run calculations with the **Steel models** (martensite and pearlite) requires a valid maintenance license plus licenses for both the TCFE9 and MOBFE4 databases.

The example uses the Property Model Calculator with the **Pearlite** model.
The example shows how to calculate pearlite growth rate, lamellar spacing, and times of start (2% transformation) and finish (98% transformation) as functions of isothermal heat treating temperature in an Fe-0.69C-1.80Mn alloy (mass %). With maximize growth rate set as the criterion, the model gives maximal growth rate and minimal lamellar spacing. With optimal pearlite as the pearlite mode, the model optimizes partitioning of substitutional alloying element(s) (Mn in this example) according to the criterion, which realizes a smooth transition between ortho-pearlite at high temperature and para-pearlite at low temperature.

REFERENCE

PROJECT FILE AND VIDEO TUTORIAL INFORMATION

- Folder: Property Models>Steel
- File name: *PM_Fe_03_Fe-C-Mn_Pearlite.tcu*

Also see our [website](#) and [YouTube channel](#) for tutorial videos related to the Property Model Calculator.

PLOT RESULTS

Growth Rate
Lamellar Spacing
The TTT (time-temperature-transformation) diagram showing times of start (2% transformation) and finish (98% transformation) as functions of isothermal heat treating temperature in an Fe-0.69C-1.80Mn alloy (mass %).
Process Metallurgy Examples Collection

The Process Metallurgy Module works with TCOX8 and newer versions of the database. The current version of the database is TCOX9.

All other users can test the module with the included OXDEMO database, which is limited to these elements: Al, C, Ca, Fe, O, S, and Si. For more information about this and other products visit our website.

About the Examples

PMET_01: Basic Oxygen Furnace (BOF)

This example does not require a license to run the simulation. It works with both the TCS Metal Oxide Solutions Database (TCOX versions 8 and 9 and newer) as well as the free OXDEMO database.

The example uses the Process Metallurgy Calculator to demonstrate a simplified steelmaking process in a Basic Oxygen Furnace (BOF).

The real-world BOF process is highly exothermic and needs adiabatic calculations. These are not available with the current version of the Process Metallurgy Module.

It is recommended you open the example project file and watch the companion video. The video walks you through setting up the material groups as well as analyzing the results.

You can open the example project file from Thermo-Calc Help → Example Files → Process Metallurgy → PMET_01_Basic_Oxygen_Furnace.tcu.

This example is included as a tutorial on our website and our YouTube channel.

In general, the steps to set up this simulation are described in Defining the Process Metallurgy Calculator. After setting up the steel, slag and gas system, you can generate various plots to analyze the results. Below is a brief summary of this analysis.
See **Phase Groups** for details about how the Process Metallurgy Module plot labels are grouped into the *liquid metal*, *solid metal*, *solid oxides*, *liquid oxides* and *gas* phases.

For this example, a **One axis** calculation type is used for all plots. The *Grid Definition* settings for these plots are also set on the Process Metallurgy Calculator:

- Quantity: Amount of Oxygen (GAS)
- Stepping 0 min to 10 max with 40 steps

Amount of Phase Groups

After the plot is generated, by default you can see the **Amount of phase group** is plotted on the Y-axis as a function of the quantity plotted on the X-axis, in this case the **Amount of Oxygen (GAS)**.
Zooming into the low gas amount (see below), it can be seen that the evolution of the gas phase is retarded. The reason is that the oxygen gas first oxidizes some of the silicon dissolved in the steel to form silicon dioxide (SiO₂). Only when the silicon content in the steel has dropped below a certain level can the oxygen gas burn away the carbon dissolved in the steel to form a carbon monoxide (CO)-rich gas phase.

These reactions can be investigated in more detail with different plots, so we will do that.

Composition of Liquid Metal

For the next plot, you define the following on a Plot Renderer, which you add to the Process Metallurgy Calculator. Keep the X-axis setting. For the Y-axis, choose Composition of a phase group, Liquid Metal, All elements.
In the plot (that uses a linear axis) the reduction of the carbon content can be clearly seen. This reduction of the carbon content is what is termed “steelmaking”. The hot metal coming from the blast furnace has a very high carbon content of typically 4.5 wt%. If it is left to solidify without lowering the carbon content, it will be extremely brittle and be unfit for rolling or forging.

Other changes in steel chemistry occurring in the BOF can be made visible by changing the Y-axis type from linear to logarithmic.

In the example project file only the logarithmic 10 version of the plot is included.
Now you can see the removal of the elements from the liquid steel in the following order: first calcium, then aluminium, then silicon and finally carbon (Ca, Al, Si and C) according to their position on the Ellingham diagram.

Composition of Liquid Slag

Add another Plot Renderer and define the following. Keep the X-axis setting. For the Y-axis, choose Composition of a phase group, Liquid Oxides, All components.
This plot shows how the liquid slag composition changes as a function of the amount of oxygen added to the BOF.

At first, the SiO$_2$ content of the slag rises sharply. This is due to the initial oxidation of the silicon dissolve in the hot metal. The SiO$_2$ that is formed combines with the slag and increases its SiO$_2$ content.

This increased SiO$_2$ content reduces the liquidus temperature of the slag and, as you can see in the first plot, thereby increases the amount of liquid slag and reduces the amount of solid oxides. This is also exactly what happens in reality.

On further addition of oxygen to the liquid steel, the silicon dioxide (SiO2) content in the slag increases further and further as more silicon is oxidized and combines with the slag. At the same time the oxygen partial pressure in the steel slowly increases. After about 6 tonnes of oxygen have been added to the system, the oxygen pressure is high enough to start oxidizing the steel itself.
The slag quickly becomes rich in iron oxide (FeO). When this starts happening, the steelmaking process is complete and the steel is ready to be tapped into a ladle for further steel refining.

PMET_02: Ladle Furnace

This example does not require a license to run the simulation. It works with both the TCS Metal Oxide Solutions Database (TCOX versions 8 and 9 and newer) as well as the free OXDEMO database.

The example uses the Process Metallurgy Calculator to represent a simplified steel refining process in a ladle furnace (LF). It introduces you to the workflow of the Process Metallurgy Module. It is recommended you open the example project file and watch the companion video. The video walks you through setting up the material groups as well as analyzing the results.

You can open the example project file from Thermo-Calc Help → Example Files → Process Metallurgy → PMET_02_Ladle_Furnace.tcu.

This example is included as a tutorial on our website and our YouTube channel.

In general, the steps to set up this simulation are described in Defining the Process Metallurgy Calculator. After setting up the steel, slag and gas system, you can generate various plots to analyze the results. Below is a brief summary of this analysis.

See Phase Groups for details about how the Process Metallurgy Module plot labels are grouped into the liquid metal, solid metal, solid oxides, liquid oxides and gas phases.
The material saved for this example, Steel_LF, could be a typical, but simplified composition of a fully killed SAE 1040 grade steel. The sulfur content, however, is too high for most final applications and must be reduced. Sulfur is usually removed from liquid steel in a ladle furnace using a calcium oxide-rich slag.

In this example, we want to find a slag composition that efficiently desulphurizes the steel. For this particular calculation we choose not to define a constant amount of slag but instead use absolute amounts of components. To do this, we set the Input type for the Slag material group to use Absolute amount. After saving this composition, it becomes the slag material for this example, Slag_LF.

For this example, the gas phase is not considered, which is why the Gas material group has been removed in the example project. This does not mean that no gas phase is allowed to form; it simply means that no gas phase is used to set the calculation conditions.

For this example, a Grid calculation type is used for all plots. The Grid Definition settings for these plots are also set on the Process Metallurgy Calculator:
Leave the number of calculation steps at 10 for both axes in order to shorten the calculation time. With this setting, the calculation should be completed in just under one minute. The number of steps could be increased to maybe 30 x 30 for higher resolution of the results, but this increases the calculation time significantly.

Fraction of Liquid Slag

In the example project file only the *Ratio of liquid slag and sulfur in liquid steel* contour plot is included.

We want to understand whether our slag phase is liquid or not. To create the plot below, add a Plot Renderer node with a **Contour** plot and choose **Fraction of liquid slag** as the **Z-axis variable**. Set the interpolation as **50 x 50** and click **Perform**.
The plot shows that for low amounts of aluminium oxide (Al₂O₃) and silicon dioxide (SiO₂), almost no liquid slag is present. Process metallurgists refer to this as a hard slag.

Such a hard slag is in fact just solid oxide phases that passively float on the liquid steel. It does not react with the liquid steel for kinetic reasons and therefore does not desulfurize the steel.

Practical slag compositions are limited to the top, right field above the “fraction liquid slag = 0.9” contour line. Only here a liquid slag phase is present that can flow and can mix and react with the steel.

Next we are interested in the ability of the slag phase to remove sulfur (s) from the liquid steel.

Sulfur in Liquid Steel
Refer to the *Sulfur in liquid steel* 3D plot included with the example. The red colors in the upper right-hand corner at high SiO₂ and Al₂O₃ content show that the steel contains high amounts of sulfur.

This means that only a little of the sulfur in the liquid steel partitioned into the slag phase and the slag phase has a poor capacity to take up sulfur.

The blue colors in the lower left-hand corner indicate that the liquid steel contains only very low amounts of sulfur, so this indicates a slag composition that is effective at removing sulfur, or in other words, has a high sulfur capacity.

The performed calculations assume thermodynamic equilibrium. As shown in the previous plot, there is almost no liquid slag phase present in the lower left corner at low SiO₂ and Al₂O₃ content. This means that thermodynamic equilibrium would not be achieved due to the very slow kinetics of the reaction between the liquid steel and the solid oxides.

Ratio of Liquid Slag and Sulfur in Liquid Steel

Refer to the *Ratio of liquid slag and sulfur in liquid steel* contour plot included with your example. This is two plots combined into one contour plot. If you created the above *Fraction of Liquid Slag* contour plot, this plot is created simply by adding another set of axes and then defining the Z-axis.

Combining the information contained in the two plots results in an optimum slag composition in a narrow composition band. To smooth the contours, Set the interpolation as 50 x 50.
To map this optimal composition field one more plot can be generated by superimposing contour plots of sulfur content in the liquid steel and fraction of liquid slag.

Since we want to have at least 95% liquid slag, in the set of axis variables for Fraction of liquid slag, click to select the check box next to Use custom contour values and enter 0.95 in the field.

We also want to have less than 0.005% sulfur in the liquid metal, so also select the same check box for the other Z-axes and set the value of sulfur to 0.005. Click Perform.
The optimal slag has a composition delimited by these two contour lines, so below the contour line for sulfur content in the liquid steel and above the contour line for fraction of liquid slag will be both fully liquid and effectively desulfurizes the steel.

PMET_03_Argon_Oxygen_Decarburization

This example does not require a license to run the simulation. It works with both the TCS Metal Oxide Solutions Database (TCOX versions 8 and 9 and newer) as well as the free OXDEMO database.

The example uses the Process Metallurgy Calculator.

You can open the example project file from Thermo-Calc Help → Example Files → Process Metallurgy → PMET_03_Argon_Oxygen_Decarburization.tcu.

See the Process Metallurgy Module examples that are available as video tutorials on our website and our YouTube channel.

The example takes several minutes to run.

The Argon Oxygen Decarburization (AOD) process is a converter process applied in stainless steel making. In this process the oxidation of chromium in the steel melt needs to be prevented while carbon is oxidized. This is achieved by reducing the oxygen partial pressure by having a high Ar-content in the blowing gas. It is a highly exothermic process that requires adiabatic modeling. In this example the conversion of carbon-rich steel scrap is modeled together with additions of Ferronickel and Ferrochrome to a stainless steel.
The AOD-process is characterized by an initially high O₂-content of the blowing gas, which is gradually replaced by Ar. The maximum temperature of the process is typically around 1720 °C. A grid plot of an adiabatic calculation is well suited to model the required simultaneous change of amount of gas and its composition during this process. The black line in the plot above indicates a possible process control path that finally leads to suitable alloy composition close to a X5CrNi 18-10 stainless steel.

In principle, this plot could be used to control the blowing gas flow in a plant process. However, note that the simulation only considers a global gas phase, i.e. additional gas is added but never removed. This means that the given gas phase composition is an average one and not identical to the composition of the gas flowing in at each point in time. Additionally there is a certain impact on the resulting equilibria from the fact that all gas remains in the system and is not removed.

Plots

Slag Basicity
The Slag Basicity plot shows the basicity of the slag (which is a measure for the sulphur capacity of the slag). The process achieves a final basicity of 1.74 which is typical for an AOD-process. The black line in the plot indicates a possible process control path that finally leads to suitable alloy composition close to a X5CrNi 18-10 stainless steel.

S Content in Steel
In the S Content in Steel plot, the sulphur content in the steel melt is slightly reduced during the process from 0.056% in the initial steel scrap to finally ca. 0.035%. The black line in the plot indicates a possible process control path that finally leads to suitable alloy composition close to a X5CrNi 18-10 stainless steel.

Cr Content in Slag
In the Cr Content in Slag plot, the Cr$_2$O$_3$-content in the slag reaches at the end of the process ca. 26 wt-%. This is typical for the AOD-process and requires an additional Cr-recovery step after the conversion to reduce the loss of chromium. The black line in the plot indicates a possible process control path that finally leads to suitable alloy composition close to a X5CrNi 18-10 stainless steel.

Amount of Slag
In the Amount of Slag plot, you can see that the process generates about 15 tons of slag in the total. The black line in the plot indicates a possible process control path that finally leads to suitable alloy composition close to a X5CrNi 18-10 stainless steel.

Liquid Slag Fraction
In the Liquid Slag Fraction plot, you can see that towards the end of the process the slag is calculated to be mostly liquid. The black line in the plot indicates a possible process control path that finally leads to suitable alloy composition close to a X5CrNi 18-10 stainless steel.
Diffusion Module (DICTRA) Graphical Mode Examples

Examples using up to three elements are available to all users. The other examples require a Diffusion Module (DICTRA) license to calculate and plot results.

These examples use the Diffusion Calculator. All examples use demonstration database packages included with your installation no matter what licenses you have.

About the Examples

D_01 Homogenization of a Binary Fe-Ni Alloy

The single phase example simulates the diffusion of Fe and Ni at a temperature of 1400 K in a planar domain. At this temperature the material is fully austenitic, i.e. the only phase present is the so-called fcc (face centered cubic) phase. Initially, there is a linear variation in Ni going from 10 mass-% on the left-hand side to 50 mass-% on the right-hand side.

This example is available as a video tutorial on our website and YouTube channel. In previous versions of the software (prior to 2017b) it is example 19.
Composition of Ni vs Distance

PROJECT FILE NAME

- Folder: Diffusion Module - DICTRA
- File name: D_01_Diffusion_Single_Phase.tcu

This example is part of the *Diffusion Module (DICTRA) Quick Start Guide* available to all users. A version of the example is also available for Console Mode.
D_02 Ferrite(bcc)/Austenite(fcc) Transformation in a Binary Fe-C Alloy

The moving phase boundary example simulates the growth of ferrite (bcc) into austenite (fcc). The austenite is assumed to be initially homogeneous with the composition Fe-0.15 mass-% C. The transformation temperature is 1050 K. The initial thickness of the austenite is 2 mm and an initially very thin ferrite (1 nm) is also present at the start of the simulation.

This example is available as a video tutorial on our website and YouTube channel.
Position of interface vs time
Composition profile C

![Composition profile C graph](image)

PROJECT FILE NAME

- Folder: Diffusion Module - DICTRA
- File name: D_02_Diffusion_Moving_Boundary.tcu

This example is part of the *Diffusion Module (DICTRA) Quick Start Guide* available to all users. A version of the example is also available for Console Mode.
D_03 Evolution of an Fe-Cr-Ni Diffusion Couple

The multiphase example simulates the evolution of an Fe-Cr-Ni diffusion couple during a 100 hour heat treatment at 1100° C (1373.15 K). Both end members of the diffusion couple are duplex ferrite plus austenite, but the majority phase is ferrite on the left-hand side and austenite on the right.

With this type of simulation it is assumed that the material is fully equilibrated at each grid point, i.e. the local phase fractions, phase compositions and so forth are obtained from an equilibrium calculation with the local overall composition as a condition.

Phase fraction of FCC

![Graphical Mode Examples](image)

PROJECT FILE NAME

- Folder: Diffusion Module - DICTRA
- File name: *D_03_Diffusion_Multiphase.tcu*

This example is part of the *Diffusion Module (DICTRA) Quick Start Guide* available to all users. A version of the example is also available for Console Mode.

D_04 Fe-C Moving Boundary: Austenite to Ferrite

This example simulates the austenite to ferrite transformation in a Fe-0.01 mass% C steel during continuous cooling. The simulation starts at a temperature where only austenite is stable, ferrite nucleates and grows into the austenite during cooling in the two phase region. Plots of thermal and carbon composition profiles are generated.
Thermal profile

![Thermal profile graph](image)

- Line 1: At upper interface of region first
- Line 2: At upper interface of region first
Carbon composition profile

![Graphical Mode Examples](image)

PROJECT FILE NAME

- Folder: Diffusion Module - DICTRA
- File name: *D_04_Diffusion_Fe-C_Moving_Boundary_Austenite_to_Ferrite.tcu*

This example is available to all users.
D_05 γ/α/γ Diffusion couple of Fe-Ni-Cr alloys

This example demonstrates the evolution of a ternary Fe-Cr-Ni diffusion couple. A thin slice of ferrite (α phase) (38%Cr, 0%Ni) is clamped between two thicker slices of austenite (γ phase) (27%Cr, 20%Ni). The assembly is subsequently heat treated at 1373 K.

This set up corresponds to diffusion couple in Kajihara, Lim, and Kikuchi (1993)\(^1\). Also see Kajihara and Kikuchi (1993)\(^2\).

Interface Position
Concentration profiles at 3600 s
Concentration profiles at 36000 s
Concentration profiles at 36 0000 s
Concentration profiles at 3 600 000 s
Diffusion paths

This is a simple example of diffusion through a tube wall. The tube material is an Fe-0.06Mn-0.05C alloy. Two plots comparing distance to the U-fraction of manganese and composition of carbon are generated to visualize the austenite region. A cylindrical geometry is used with mixed zero flux and activity boundary conditions.

On the inside wall a carbon activity of 0.9 is maintained whereas on the outside the carbon activity is very low. This example demonstrates the use of boundary conditions, advanced plotting and tables.

This example is based on Console Mode exab6. When in Console Mode, you can open the example from Thermo-Calc (File → Examples Files → Diffusion Module).
Composition of C vs Distance
U-fraction of Mn vs Distance

![Graphical Mode Examples](image)

Table Composition C vs Distance

![Table Composition C vs Distance](image)
PROJECT FILE NAME

- Folder: Diffusion Module - DICTRA
- File name: D_06_Diffusion_Carburization_Tube.tcu

D_07 Multiphase Carburization of a Ni-25Cr-0.0001C alloy

This example is about carburization of a Ni-25Cr-0.0001C alloy. In this case the M7C3 and M3C2 carbides are entered as spheroid phases in an FCC_A1 matrix. It is similar to Graphical Mode example D_06 except the default Simulation condition is automatically set to use the Homogenization model.

The Isothermal calculation is run for 1000 hours at a temperature of 1123 K using the Mixed zero flux and activity left boundary condition. Results are plotted using two Plot Renderers and a Table Renderer.

This example is based on Console Mode exd1b. When in Console Mode, you can open the example from Thermo-Calc (File → Examples Files → Diffusion Module).

This example is available as a video tutorial on our website and YouTube channel.
Phase fraction vs distance

![Graphical representation of phase fraction vs distance with two lines indicating the fraction of phases over distance.](image-url)
Table of Composition profiles

<table>
<thead>
<tr>
<th>Distance [m]</th>
<th>1: W(C)</th>
<th>2: W(CR)</th>
<th>3: W(Ni)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000001</td>
<td>2.95046</td>
<td>24.35835</td>
<td>72.70409</td>
</tr>
<tr>
<td>0.000001E+0</td>
<td>2.95046</td>
<td>24.35835</td>
<td>72.70409</td>
</tr>
<tr>
<td>0.00002</td>
<td>2.95046</td>
<td>24.35835</td>
<td>72.70409</td>
</tr>
<tr>
<td>0.00003</td>
<td>2.95046</td>
<td>24.35835</td>
<td>72.70409</td>
</tr>
<tr>
<td>0.00004</td>
<td>2.95046</td>
<td>24.35835</td>
<td>72.70409</td>
</tr>
<tr>
<td>0.00005</td>
<td>2.95046</td>
<td>24.35835</td>
<td>72.70409</td>
</tr>
<tr>
<td>0.00006</td>
<td>2.95046</td>
<td>24.35835</td>
<td>72.70409</td>
</tr>
<tr>
<td>0.00007</td>
<td>2.95046</td>
<td>24.35835</td>
<td>72.70409</td>
</tr>
<tr>
<td>0.00008</td>
<td>2.95046</td>
<td>24.35835</td>
<td>72.70409</td>
</tr>
<tr>
<td>0.00009</td>
<td>2.95046</td>
<td>24.35835</td>
<td>72.70409</td>
</tr>
<tr>
<td>0.0001</td>
<td>2.95046</td>
<td>24.35835</td>
<td>72.70409</td>
</tr>
</tbody>
</table>

Graphical Mode Examples | 94 of 161
Composition of C vs Distance

![Graphical Mode Examples](image)

PROJECT FILE NAME

- Folder: Diffusion Module - DICTRA
- File name: D_07_Diffusion_Carburization_Multiphase.tcu
Precipitation Module (TC-PRISMA) Graphical Mode Examples

Examples that use up to three elements are available to all users. The other examples require a Precipitation Module (TC-PRISMA) license to calculate and plot results.

All examples use demonstration database packages included with your installation. You can open the examples from the main menu: File ➔ or Help ➔ Examples Files.

Unless specified in tables for each example, all the numerical parameters are assumed default values.

P_01: Isothermal Precipitation of Al₃Sc

This example simulates the kinetics of precipitation of Al₃Sc from an FCC_A1 solution phase. The simulation results can be compared with experimental data collected from Marquis and Seidman¹ and Novotny and Ardell (2001)².

PROJECT FILE, STEP-BY-STEP INSTRUCTIONS AND VIDEO TUTORIAL INFORMATION

- Folder: Precipitation Module - TC-PRISMA
- File name: _P_01_Precipitation_Al-Sc_AL3SC.tcu

This example is available as a video tutorial on our website and YouTube channel.

You can also use the step-by-step instructions included in a PDF to follow the video or compare to the project file in Thermo-Calc.

EXAMPLE SETTINGS

System (System Definer)

<table>
<thead>
<tr>
<th>Database package</th>
<th>Demo: Aluminum-based alloys (ALDEMO, MALDEMO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elements</td>
<td>Al, Sc</td>
</tr>
</tbody>
</table>

Conditions (Precipitation Calculator)

<table>
<thead>
<tr>
<th>Composition</th>
<th>Al-0.18Sc Mole percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix phase</td>
<td>FCC_A1</td>
</tr>
<tr>
<td>Precipitate phase</td>
<td>AL3SC</td>
</tr>
</tbody>
</table>

Precipitate Phase Data Parameters (Precipitation Calculator)

<table>
<thead>
<tr>
<th>Nucleation sites</th>
<th>Bulk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interfacial energy</td>
<td>Calculated</td>
</tr>
</tbody>
</table>

Calculation Type (Precipitation Calculator)

<table>
<thead>
<tr>
<th>Calculation type</th>
<th>Isothermal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>350° C</td>
</tr>
<tr>
<td>Simulation time</td>
<td>1.0E7 seconds</td>
</tr>
</tbody>
</table>

PLOT RESULTS
Mean radius
Isothermal Precipitation Calculation: Example P_01 – Precipitation Al-Sc AL3SC

This example shows you how to set up an isothermal precipitation calculation for the formation of AL3SC in an aluminium-scandium alloy at 350° using the Precipitation module (TC-PRISMA).

This is one of the most basic calculations using the Precipitation module (TC-PRISMA), so it is a good place to start if you are new to this simulation type.

HELPFUL INFORMATION

- All users can run this calculation, even those who do not have a license for the Precipitation module (TC-PRISMA).
- A companion video is available for this example, which can be watched here: https://www.youtube.com/playlist?list=PLfv6McToaTGSpqyuLoY3b_UV-8xpglUKj
- This calculation is based on Precipitation module example P_01 – Precipitation Al-Sc AL3SC, which is included in your installation. To run the example file, open Thermo-Calc and select Help > Examples Files. Open the Precipitation module (TC-PRISMA) folder. Double-click the example file and click Perform at the bottom centre of the Configuration window in Thermo-Calc.

ABOUT THE EXAMPLE

This example simulates the kinetics of precipitation of Al3Sc from an FCC_A1 solution phase.

SETTING UP THE SYSTEM

1. Open Thermo-Calc in Graphical Mode.
2. Under templates, click Precipitation Simulation.
3. All the nodes for a precipitation calculation are added to the Project window:
4. Click the **System Definer 1** node.

5. Set the database package to **DEMO: Aluminium based alloys**, which loads both thermodynamic and kinetic demonstration aluminium databases.

6. From the periodic table, select the elements **Al (aluminium) then Sc (scandium)**. Be sure to select Al first so that it is the dependant element.

7. Just to the right of the periodic table, select **Mole Percent** as the **Amount**.

8. Enter 0.18 for Sc. This automatically sets Al to 99.82.
Our system is now defined, but before we start the precipitation calculation, we will do a quick one axis calculation to find the phases present around 350°.

ONE AXIS CALCULATION

Why We Do This

In order to set up an isothermal precipitation calculation, we need to know which phases are present at 350°. A one axis calculation gives us this information.

Setting up a One Axis Calculation

1. In the **Project** window, right-click the **System Definer 1** node, and from the **Create New Successor** menu select **Equilibrium Calculator**.
2. In the **Configuration** window, select a **Temperature** in **Celsius** and enter 300.
3. Under **Calculation Type**, select **One axis**.
4. We are looking for the phases present around 350 degrees, so under **Axis Definitions** enter the **Temperature** range from Min 300 to Max 700 to capture the temperature wanted.
5. Keep the default values for everything else.
6. Our system is now defined.

7. Right-click the **Equilibrium Calculator** node and select **Create New Successor>Plot Renderer**.
8. In the **Project** window, right-click the **Plot Renderer 2** node you just created and select **Perform Now**.

Interpreting the Results of the One Axis Calculation

Once the calculation is complete, a plot is displayed in the **Results** window. This plot shows you which phases are present at each temperature between 300° and 700° and the amount of that phase at each temperature.
If you hover your cursor over any of the lines on the plot, a label gives you the name of the phase, the temperature and the amount of the phase at that temperature.

We can see that there are two phases present at 350°C. FCC_A1 is at the very top of the plot and makes up more than 99% of the system. The remainder of the system is made up of Al3SC, which is near the very bottom of the plot and is the precipitate phase in the alloy we are considering.

Remember these two phases because we will use them in our precipitation calculation.
Isothermal Precipitation Calculation
Example P_01 – Precipitation Al-Sc AL3SC

PRECIPITATION CALCULATION

Setting up the Precipitation Calculation

1. In the Project window, click the Precipitation Calculator 1 node.
2. Notice that the composition we set in the System Definer auto-populated here.
3. Under Matrix Phase, select FCC_A1, which is the primary phase we saw present in the one axis calculation.

NOTE: If you do not see any phases listed here it is probably because you do not have a kinetic database selected. If so, simply go back to the System Definer and add a kinetic (mobility) database.

4. Under Precipitate Phase select AL3SC from the Phase menu because that is the other phase present around 350°, as shown in the one axis calculation.
5. Accept the default settings in the Precipitate Phase section. You could choose to define your own interfacial energy settings if you have them.
6. Under Calculation Type, make sure Isothermal is selected.
7. Enter 350 as the Temperature and select Celsius.
8. Enter 1.0E7 as the Simulation time and select Seconds, which is ten million seconds.

9. In the Project window, click the Plot Renderer 1 node.
10. Under Y-axes, from the Axis type menu select Logarithmic 10 for a better view of the plot.
11. Click Perform at the bottom, centre of the Configuration window.
Interpreting the Results of the Precipitation Calculation

Once the calculation is complete, your plot is shown in the **Results** window.

This plot shows the Mean radius of the AL3SC precipitate as a function of time.

At the beginning, which is the left-most side of the plot, the mean radius is quite small and then grows rapidly over time, which is represented by moving rightward on the plot.
Setting Other Variables in the Precipitation module (TC-PRISMA)

The Precipitation module (TC-PRISMA) offers many variables that you can plot for the same calculation.

1. Click the **Plot Renderer 1** node.
2. In the Y-axes section, select the **Axis variable** menu to see what other options are available.
3. Once you have made your selection, click **Perform** at the bottom, centre of the **Configuration** window to create a new plot.
P_02: Stable and Metastable Carbides - Isothermal

This example simulates the kinetics of precipitation of both stable and metastable carbides from ferrite phase. It demonstrates that metastable carbides (cementite, M7C3) may first emerge and then disappear and the stable phase (M23C6) prevails.

This example uses the Equilibrium Calculator and a *One axis* calculation to determine how the phases change with temperature. We are interested in the carbide precipitation at 1053K where only the carbide M23C6 is stable according to the equilibrium calculation. The Precipitation Calculator is used to do an isothermal calculation of the three phases (cementite, M23C6 and M7C3) where cementite and M7C3 are metastable phases.

PROJECT FILE AND VIDEO TUTORIAL INFORMATION

- Folder: Precipitation Module - TC-PRISMA
- File name: *P_02_Precipitation_Fe-Cr_Cementite-M7C3-M23C6.tcu*

Also see [our website](#) and [YouTube channel](#) for other examples of the Precipitation Module.

EXAMPLE SETTINGS

<table>
<thead>
<tr>
<th>System (System Definer)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Database package</td>
<td>Demo: Steels and Fe-alloys (FEDEMO,MFEDEMO)</td>
</tr>
<tr>
<td>Elements</td>
<td>Fe, C, Cr</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions (Precipitation Calculator)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition</td>
<td>Fe-0.1C-12Cr Mass percent</td>
</tr>
<tr>
<td>Matrix phase</td>
<td>BCC_A2</td>
</tr>
</tbody>
</table>
Precipitate phases
- Cementite, M23C6 and M7C3

Graphical Mode Examples

<table>
<thead>
<tr>
<th>Precipitate Phase Data Parameters (Precipitation Calculator)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grain size (click Show details to display this setting)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Precipitate Phase Data Parameters (Precipitation Calculator)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nucleation sites</td>
</tr>
<tr>
<td>Interfacial energy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calculation Type (Precipitation Calculator)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculation type</td>
</tr>
<tr>
<td>Temperature</td>
</tr>
<tr>
<td>Simulation time</td>
</tr>
</tbody>
</table>

PLOT RESULTS

Equilibrium Calculator: How the phases change with temperature

![Plot showing phase changes with temperature](image-url)
Precipitation Calculator: Volume fractions

![Graphical Mode Examples – 108 of 161](image)

P_03: Stable and Metastable Carbides - TTT Diagram

In this example, the kinetics of precipitation of both stable and metastable carbides is calculated from the ferrite phase. It demonstrates that metastable carbides may first emerge and then disappear and the stable phase prevails.

This example uses the Equilibrium Calculator and a One axis calculation type to determine how the phases change with temperature. Using this result, the Precipitation Calculator is used to do a TTT (Time-Temperature-Transformation) diagram calculation of the three phases (cementite, M23C6 and M7C3) at the grain boundaries.

For a TTT diagram calculation, select TTT diagram in Calculation Type, then enter Min, Max, and Step of Temperature, as well as Max annealing time. In Stop criterion, choose Volume fraction of phase and enter the value.

PROJECT FILE AND VIDEO TUTORIAL INFORMATION

- Folder: Precipitation Module - TC-PRISMA
- File name: P_03_Precipitation_Fe-C-Cr_TTT_Cementite-M7C3-M23C6.tcu
Also see our website and YouTube channel for other examples of the Precipitation Module.

EXAMPLE SETTINGS

<table>
<thead>
<tr>
<th></th>
<th>Demos: Steels and Fe-alloys (FEDEMO and MFEDEMO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>System (System Definer)</td>
<td></td>
</tr>
<tr>
<td>Database package</td>
<td>Fe, C, Cr</td>
</tr>
<tr>
<td>Conditions (Precipitation Calculator)</td>
<td></td>
</tr>
<tr>
<td>Composition</td>
<td>Fe-0.1C-12Cr Mass percent</td>
</tr>
<tr>
<td>Matrix phase</td>
<td>BCC_A2</td>
</tr>
<tr>
<td>Precipitate phases</td>
<td>Cementite, M23C6 and M7C3</td>
</tr>
<tr>
<td>Matrix Phase Data Parameters (Precipitation Calculator)</td>
<td></td>
</tr>
<tr>
<td>Grain size</td>
<td>1.0E-4 m</td>
</tr>
<tr>
<td>Precipitate Phase Data Parameters</td>
<td></td>
</tr>
<tr>
<td>Nucleation sites</td>
<td>Grain boundaries</td>
</tr>
<tr>
<td>Interfacial energy</td>
<td>Cementite 0.167 J/m², M23C6 0.252 J/m², M7C3 0.282 J/m²</td>
</tr>
<tr>
<td>Calculation Type (Precipitation Calculator)</td>
<td></td>
</tr>
<tr>
<td>Calculation type</td>
<td>TTT diagram</td>
</tr>
<tr>
<td>Temperature</td>
<td>500° to 800° C with 25° C steps</td>
</tr>
<tr>
<td>Max. annealing time</td>
<td>1.0E8 seconds</td>
</tr>
<tr>
<td>Stop criteria</td>
<td>Volume fraction of phase is set to 0.0001</td>
</tr>
<tr>
<td>Options > Numerical Parameters</td>
<td></td>
</tr>
<tr>
<td>No. of grid points over one order of magnitude in radius</td>
<td>150</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\text{Max no. of grid points over one order of magnitude in radius} & \quad 200 \\
\text{Min no. of grid points over one order of magnitude in radius} & \quad 100
\end{align*}
\]

Plot Results

Equilibrium Calculator: How the phases change with temperature
Precipitation Calculator: TTT diagram

![Graphical Mode Examples: TTT diagram](image)

P_04: Precipitation of Iron Carbon Cementite

Simulate the kinetics of precipitation of carbides from a BCC Fe solution phase. This example is based on Wert (1949)\(^1\).

This example uses two Experimental File Reader activities with the Precipitation Calculator and an isothermal calculation, to plot the volume fraction of the cementite phase.

PROJECT FILE AND VIDEO TUTORIAL INFORMATION

- Folder: Precipitation Module - TC-PRISMA
- File name: *P_04_Precipitation_Fe-C_Cementite.tcu*

Also see [our website](#) and [YouTube channel](#) for other examples of the Precipitation Module.

EXAMPLE SETTINGS

System (System Definer)

<table>
<thead>
<tr>
<th>Database package</th>
<th>Demo: Steels and Fe-alloys (FEDEMO and MFEDEMO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elements</td>
<td>Fe, C</td>
</tr>
</tbody>
</table>

Conditions (Precipitation Calculator)

<table>
<thead>
<tr>
<th>Composition</th>
<th>Fe-0.016C mass percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix phase</td>
<td>BCC_A2</td>
</tr>
<tr>
<td>Precipitate phase</td>
<td>Cementite</td>
</tr>
</tbody>
</table>

Matrix Phase Data Parameters (Precipitation Calculator)

<table>
<thead>
<tr>
<th>Grain aspect ratio (click Show details to display this setting)</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dislocation density (click Show details to display this setting)</td>
<td>1.5e11m⁻³</td>
</tr>
</tbody>
</table>

Precipitate Phase Parameters (Precipitation Calculator)

<table>
<thead>
<tr>
<th>Nucleation sites</th>
<th>Dislocations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interfacial energy</td>
<td>0.24 J/m²</td>
</tr>
<tr>
<td>Growth rate model (click Show details)</td>
<td>Advanced</td>
</tr>
</tbody>
</table>

Calculation Type (Precipitation Calculator)

<table>
<thead>
<tr>
<th>Calculation type</th>
<th>Isothermal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>102° C</td>
</tr>
<tr>
<td>Simulation time</td>
<td>600 000 seconds</td>
</tr>
</tbody>
</table>

PLOT RESULTS
Volume Fraction

![Graphical Mode Examples](image)

P_05: Precipitation of γ’ in Ni Superalloys - Isothermal

This example simulates the kinetics of precipitation of γ’ phase from γ phase. The simulation results can be compared with experimental data collected from Sudbrack et al. (2008)\(^1\).

This example uses three Experimental File Reader activities with the Precipitation Calculator. It does an isothermal calculation to plot the volume fraction, mean radius and number density of the cementite phase.

DIS_FCC_A1 needs to be selected on the System Definer.

PROJECT FILE AND VIDEO TUTORIAL INFORMATION

- Folder: Precipitation Module - TC-PRISMA
- File name: P_05_Precipitation_Ni-Al-Cr_Isothermal_Gamma-Gamma_prime.tcu

Also see [our website](#) and [YouTube channel](#) for other examples of the Precipitation Module.

Example Settings

<table>
<thead>
<tr>
<th>System (System Definer)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Database package</td>
<td>Demo: Nickel-based Super Alloys (NIDEMO and MNIDEMO)</td>
</tr>
<tr>
<td>Elements</td>
<td>Ni, Al Cr</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions (Precipitation Calculator)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition</td>
<td>Ni-9.8Al-8.3Cr Mole percent</td>
</tr>
<tr>
<td>Matrix phase</td>
<td>DIS-FCC_A1 (see note above about how to select this phase)</td>
</tr>
<tr>
<td>Precipitate phase</td>
<td>FCC_L12#2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Precipitate Phase Data Parameters (Precipitation Calculator)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nucleation sites</td>
<td>Bulk</td>
</tr>
<tr>
<td>Interfacial energy</td>
<td>0.012 J/m²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calculation Type (Precipitation Calculator)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculation type</td>
<td>Isothermal</td>
</tr>
<tr>
<td>Temperature</td>
<td>800° C</td>
</tr>
<tr>
<td>Simulation time</td>
<td>1 000 000 seconds</td>
</tr>
</tbody>
</table>

Plot Results

Database package: Demo: Nickel-based Super Alloys (NIDEMO and MNIDEMO)

Elements: Ni, Al Cr

Composition: Ni-9.8Al-8.3Cr Mole percent

Matrix phase: DIS-FCC_A1 (see note above about how to select this phase)

Precipitate phase: FCC_L12#2

Nucleation sites: Bulk

Interfacial energy: 0.012 J/m²

Calculation type: Isothermal

Temperature: 800° C

Simulation time: 1 000 000 seconds
Volume Fraction

Number Density
Mean Radius

![Graphical Mode Examples](image)

P_06: Precipitation of γ’ in Ni Superalloys - Non-isothermal

This example simulates the kinetics of precipitation of γ’ phase from γ phase in Ni-8Al-8Cr and Ni-10Al-10Cr at.% alloys during continuous cooling. The simulation results can be compared with experimental results from Rojhirunsakool et al. (2013)¹.

> When you run (Perform) this example, it takes about 10 minutes for the calculations to complete.

> DIS_FCC_A1 needs to be selected on the System Definer.

PROJECT FILE AND VIDEO TUTORIAL INFORMATION

- Folder: Precipitation Module - TC-PRISMA
- File name: P_06_Precipitation_Ni-Al-Cr_Non-isothermal_Gamma-Gamma_prime.tcu

EXAMPLE SETTINGS

In these examples a linear, continuously cooling condition is set up. This is done on the Precipitation Calculator settings window in the **Calculation Type** section:

1. Select a **Non-Isothermal**.
2. Select a **Temperature Unit** and **Time Unit** from the lists.
3. Click **Thermal Profile**, where **Time-Temperature** profile points are entered to describe the stepwise heat treatment schedule with linear segments. Up to 999 rows of data points can be entered.

 In these examples two rows of data points are needed for starting time 0s and temperature 1150° C, as well as end time 3300s and temperature 380° C.

4. Click the **Plot Renderer** node to select the **Separate multimodal PSD** check box.

 Plotting the size distribution from the final simulation time of 3300 seconds, you can see there are several peaks, although these are not completely separated. As above, select the **Separate multimodal PSD** check box to separate the peaks.

5. Adjust the **Valley depth ratio** setting to 0.05 to separate into two peaks as shown in the **Ni-10Al-10Cr plot example**. You can experiment with this setting to see how the size distribution evolves with time, for example, try entering several values as plot times 400 600 3300.

System (System Definer)

<table>
<thead>
<tr>
<th>Database package</th>
<th>Demo: Nickel-based Super Alloys (NIDEMO and MNIDEMO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elements</td>
<td>Ni, Al, Cr</td>
</tr>
</tbody>
</table>

Conditions (Precipitation Calculator)

<table>
<thead>
<tr>
<th>Composition (Ni-8Al-8Cr)</th>
<th>Ni-8Al-8Cr Mole percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition (Ni-10Al-10Cr)</td>
<td>Ni-10Al-10Cr Mole percent</td>
</tr>
<tr>
<td>Matrix phase</td>
<td>DIS_FCC_A1 (see note above about how to select this phase)</td>
</tr>
</tbody>
</table>
Precipitate phase

FCC_L12#2

Matrix Phase Data Parameters (Precipitation Calculator)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobility enhancement prefactor (click Show details to display this setting)</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Precipitate Phase Data Parameters (Precipitation Calculator)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nucleation sites</td>
<td>Bulk</td>
</tr>
<tr>
<td>Interfacial energy</td>
<td>0.023 J/m²</td>
</tr>
</tbody>
</table>

Calculation Type (Precipitation Calculator)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculation type</td>
<td>Non-isothermal</td>
</tr>
<tr>
<td>Temperature unit</td>
<td>Celsius</td>
</tr>
<tr>
<td>Time unit</td>
<td>Seconds</td>
</tr>
</tbody>
</table>

Temperature

<table>
<thead>
<tr>
<th>Time [s]</th>
<th>Temperature [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1150.0</td>
</tr>
<tr>
<td>3300.0</td>
<td>380.0</td>
</tr>
</tbody>
</table>

Simulation time (Ni-8Al-8Cr)

3300 s

Simulation time (Ni-10Al-10Cr)

3300 s

Multimodal PSD (Plot Renderer)

Separate multimodal PSD for 8Al-8Cr

The Valley depth ratio is set to 0.05 for both plots. The number of Points is increased to 200 for an average radius plot.

Separate multimodal PSD for 10Al-10Cr

The Valley depth ratio is set to 0.18 for both plots.

Plot Results
Mean Radius Ni-8Al-8Cr

Mean Radius Ni-10Al-10Cr
Size Distribution (PSD) Ni-8Al-8Cr

Size Distribution (PSD) Ni-10Al-10Cr
P_07: Continuous Cooling Transformation (CCT) Diagram of Ni-Al-Cr γ-γ’

In this example, a Continuous Cooling Transformation (CCT) diagram for a Ni-10Al-10Cr γ-γ’ alloy is calculated and plotted with superimposition of the cooling rate values.

PROJECT FILE, STEP-BY STEP INSTRUCTIONS AND VIDEO TUTORIAL INFORMATION

- Folder: Precipitation Module - TC-PRISMA
- File name: *P_07_Precipitation_Ni-Al-Cr_CCT_Gamma-Gamma_prime.tcu*

This example is available as a video tutorial on our website and YouTube channel.

You can also use the step-by-step instructions included in a PDF to follow the video or compare to the project file in Thermo-Calc.

EXAMPLE SETTINGS

<table>
<thead>
<tr>
<th>System (System Definer)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Database package</td>
<td>Demo: Nickel-based Super Alloys (NIDEMO and MNIDEMO)</td>
</tr>
<tr>
<td>Elements</td>
<td>Ni, Al, Cr</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions (Precipitation Calculator)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition</td>
<td>Ni-10Al-10Cr Mole percent</td>
</tr>
<tr>
<td>Matrix phase</td>
<td>DIS_FCC_A1</td>
</tr>
<tr>
<td>Precipitate phase</td>
<td>FCC_L12#2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Precipitate Phase Data Parameters (Precipitation Calculator)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nucleation sites</td>
<td>Bulk</td>
</tr>
<tr>
<td>Interfacial energy</td>
<td>0.023 J/m²</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>

Calculation Type (Precipitation Calculator)

<table>
<thead>
<tr>
<th>Calculation type</th>
<th>CCT Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Min to Max</td>
<td>500 to 1200 Kelvin</td>
</tr>
<tr>
<td>Cooling rate(s)</td>
<td>.01 .1 1 10 100 K/s</td>
</tr>
<tr>
<td>Stop criteria</td>
<td>Volume fraction of phase 1.0E-4</td>
</tr>
</tbody>
</table>

PLOT AND TABLE RESULTS

![Graph showing CCT Diagram results with temperature vs. time graph and table results]
<table>
<thead>
<tr>
<th>Temperature [K]</th>
<th>FCC_L12#2 (Bulk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1147.52034</td>
<td>0.53291</td>
</tr>
<tr>
<td>1151.74192</td>
<td>4.83553</td>
</tr>
<tr>
<td>1155.24636</td>
<td>44.76534</td>
</tr>
<tr>
<td>1158.85368</td>
<td>411.49173</td>
</tr>
<tr>
<td>1161.48750</td>
<td>3851.47779</td>
</tr>
</tbody>
</table>
Continuous Cooling Transformation (CCT) Diagram of Ni-Al-Cr γ-γ’

Precipitation Example P_07

HELPFUL INFORMATION

- All users can run this calculation, even those who do not have a license for the Precipitation module (TC-PRISMA).
- A companion video is available for this example, which can be watched here: https://www.youtube.com/playlist?list=PLfv6McToaTGSpqvul0Y3b_UV-8xpqLUKj
- This calculation is based on Precipitation module example P_07 – Precipitation Ni-Al-Cr CCT_Gamma-Gamma_prime, which is included in your installation. To run the example file, open Thermo-Calc and select Help > Examples Files. Open the Precipitation module (TC-PRISMA) folder. Double-click the example file and click Perform at the bottom centre of the Configuration window in Thermo-Calc.

ABOUT THE EXAMPLE

This example shows you how to simulate a CCT diagram for gamma prime (γ’) precipitation in a Ni-Cr-Al alloy using the Precipitation module known as TC-PRISMA.

CCT stands for Continuous Cooling Transformation and is a calculation that maintains the same cooling rate the entire time.

The system is a Ni-10Al-10Cr γ - γ’ alloy and it is calculated and plotted with superimposition of the cooling rate values using the Precipitation module (TC-PRISMA).

SETTING UP THE SYSTEM

1. Open Thermo-Calc in Graphical Mode.
2. Under templates, click Precipitation Simulation.
3. All the nodes for a precipitation calculation are added to the Project window:
4. Click the **System Definer 1** node.
5. Set the database package to **DEMO: Nickel based superalloys**, which loads both thermodynamic and kinetic demonstration nickel databases.
6. From the periodic table, select the elements **Ni** (nickel), **Al** (aluminium) then **Cr** (chromium). Be sure to select Ni first so that it is the dependant element.
7. Just to the right of the periodic table, select **Mole Percent** as the **Amount**.
8. Enter 10 for **Al** and 10 for **Cr**, which automatically sets **Ni** to 80 mole percent.
9. Click the **Phases and Phase Constitution** tab.
10. Click to select both check boxes next to the disordered FCC phase, DIS_FCC_A1.

Our system is now defined, so we will set up the precipitation calculation.

SETTING UP THE PRECIPITATION CALCULATION

1. In the Project window, click the Precipitation Calculator 1 node.
2. Notice that the composition we set in the System Definer auto-populated here.
3. Under Matrix Phase, from the Phase list select Dis_FCC_A1, which is the disordered FCC phase.
4. Under Precipitate Phase from the Phase list select FCC_L12#2.
5. Change the Interfacial energy to User-defined then enter 0.023 in the field.
6. Under Calculation Type, select CCT Diagram, which stands for Continuous-Cooling-Transformation and means that the same cooling rate is maintained throughout the calculation.
7. In the fields, set the Min (minimum) Temperature to 500 and the Max (maximum) to 1200 and choose Kelvin as the temperature unit.
8. We will enter several cooling rates for our calculation. The rates are separated by a space, so enter these values as shown: 0.01 0.1 1 10 100.
9. Keep the default Stop criteria of 1E-4 volume fraction of the γ’ phase.
10. The calculation is now set, so click Perform CCT Diagram Simulation at the bottom, centre of the Configuration window.
INTERPRETING THE RESULTS OF THE PRECIPITATION CALCULATION

In this plot, the blue, horizontal line shows the time it takes for gamma prime to transform at each of the cooling rates according to the stop criteria, which we set as 1e-4 volume fraction.

In this plot, the blue line shows the time it takes for γ' to transform at each of the cooling rates according to the stop criteria, which we set as 1e-4 volume fraction. The cooling rates are represented by the multi-coloured curved lines.
If you hover your mouse over the intersection of the blue line and any of the vertical lines, a yellow box shows the approximate time it takes for γ′ to transform according to the stop criteria, which is a volume fraction of 1e-4, followed by the approximate temperature. In the image above, we can see a time of 0.54147 seconds and a temperature of 1147.60 Kelvin for the cooling rate of 100.0 K/s, which is represented by the yellow line.

SHOWING THE RESULTS AS A TABLE

You can also view these results in the form of a table, which gives you more precise results.

1. In the Project window, right-click the Precipitation Calculator 1 node and select Create New Successor>Table Renderer.
2. Right-click the Table Renderer 1 node and select Perform Now.

<table>
<thead>
<tr>
<th>Time [s]</th>
<th>FCC_L12#2 (Bulk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.53291</td>
<td>1147.52034</td>
</tr>
<tr>
<td>4.83553</td>
<td>1151.74192</td>
</tr>
<tr>
<td>44.76534</td>
<td>1155.24636</td>
</tr>
<tr>
<td>411.49174</td>
<td>1158.85368</td>
</tr>
<tr>
<td>3851.40881</td>
<td>1161.48822</td>
</tr>
</tbody>
</table>

Your table is shown in the Results window and shows the same information as in the plot - for each cooling rate the temperature and the time it takes for γ′ to transform according to the stop criteria, which is a volume fraction of 1e-4.
P_08: Precipitation of Cu-Ti CU4TI with Assumptions of Sphere and Needle Morphologies

In this isothermal calculation example, the precipitation of Cu4Ti phase in a Cu-Ti binary alloy is calculated. To make a comparison, two separate simulations are performed, one assuming spherical morphology without elastic strain energy, and the other assuming needle morphology whose shape, determined by competition between interfacial energy and elastic strain energy, is changed during the simulation. The transformation strain is obtained from Borchers1. The results are compared with experiment results from Kampmann et al2.

This example takes a few minutes to run.

PROJECT FILE AND VIDEO TUTORIAL INFORMATION

- Folder: Precipitation Module - TC-PRISMA
- File name: P_08_Precipitation_Cu-Ti_CU4TI1_Sphere_Needle.tcu

Also see [our website](#) and [YouTube channel](#) for other examples of the Precipitation Module.

EXAMPLE SETTINGS

To ensure that the settings are done on the correct Precipitation Calculators, the **Sphere** and **Needle** nodes are renamed from **Precipitation Calculator** to match their morphology. The morphology is set in the **Precipitate Phase** section when you click **Show details**.

<table>
<thead>
<tr>
<th>System (System Definer)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Database package</td>
<td>Demo: Copper-based alloys (CUDEMO and MCUDEMO)</td>
</tr>
</tbody>
</table>

1 Borchers C. 1999. "Catastrophic Nucleation during Decomposition of Cu-0.9at.%Ti." Phil. Mag. A 79(3):537-547

<table>
<thead>
<tr>
<th>Elements</th>
<th>Cu, Ti</th>
</tr>
</thead>
</table>

Sphere and Needle Conditions (Precipitation Calculator)

<table>
<thead>
<tr>
<th>Composition</th>
<th>Cu-1.9Ti Mole percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix phase</td>
<td>FCC_L12</td>
</tr>
<tr>
<td>Precipitate phase</td>
<td>CU4Ti1</td>
</tr>
</tbody>
</table>

Matrix Phase Data Parameters (Precipitation Calculator)

<table>
<thead>
<tr>
<th>Mobility enhancement prefactor (click Show details to display this setting)</th>
<th>100</th>
</tr>
</thead>
</table>

Precipitate Phase Data Parameters (Precipitation Calculator)

<table>
<thead>
<tr>
<th>Nucleation sites</th>
<th>Bulk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interfacial energy</td>
<td>The default</td>
</tr>
<tr>
<td>Morphology (click Show details to display this setting)</td>
<td>For the Sphere node (renamed from Precipitation Calculator), keep the default. For the Needle node (renamed from Precipitation Calculator), Needle is selected.</td>
</tr>
</tbody>
</table>
| Transformation strain (click Show details to display this setting) | For the Sphere node (renamed from Precipitation Calculator), keep the default. For the Needle node (renamed from Precipitation Calculator), User defined is selected. In this example, the following settings are defined:
 - ε11 and ε22 are set to 0.022
 - ε33 is set to 0.003 |

Calculation Type (Precipitation Calculator)

<table>
<thead>
<tr>
<th>Calculation type</th>
<th>Isothermal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>350° C</td>
</tr>
<tr>
<td>Simulation time</td>
<td>10,000 seconds</td>
</tr>
</tbody>
</table>

Datasets (Experimental File Reader)

| Borchers Mean radius vs Time | Data sets included with this example and imported to two Experimental |
and Borchers Number density vs Time. These data sets are used for the Mean Radius and Number Density plots, respectively.

PLOT RESULTS

Mean Aspect Ratio

![Graph showing Mean Aspect Ratio vs Time](image)
Number Density

![Graphical Examples](image)
PSD and ASD
Mean Radius

![Graphical Mode Examples](image)

P_09: Precipitation of Al-Sc AL3SC with Assumption of Sphere and Cuboid Morphologies

In this isothermal calculation example, the precipitation of Al\textsubscript{3}Sc phase from FCC\textsubscript{A1} matrix phase in an Al-Sc binary alloy is simulated. To make a comparison, two separate calculations are performed, one assuming spherical morphology without elastic strain energy, and the other assuming cuboid morphology whose shape is determined by competition between interfacial energy and elastic strain energy. The simulation results are compared with experimental data collected from Marquis and Seidman1 and Novotny and Ardell (2001)2. In addition, mean cubic factor and cubic factor distribution are also plotted for cuboid shape to illustrate the spherical-cuboidal transition during precipitation.

PROJECT FILE, STEP-BY STEP INSTRUCTIONS AND VIDEO TUTORIAL INFORMATION

- Folder: Precipitation Module - TC-PRISMA
- File name: P_09_Precipitation_Al-Sc_AL3SC_Sphere_Cuboid.tcu

This example is available as a video tutorial on our website and YouTube channel.

You can also use the step-by-step instructions included in a PDF to follow the video or compare to the project file in Thermo-Calc.

Example Settings

To ensure that the settings are done on the correct Precipitation Calculators, the Sphere and Cuboid nodes are renamed from Precipitation Calculator to match their morphology. The morphology is set in the Precipitate Phase section when you click Show details. See P_08 for an example of this.

<table>
<thead>
<tr>
<th>System (System Definer)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Database package</td>
<td>Demo: Aluminum-based alloys (ALDEMO, MALDEMO)</td>
</tr>
<tr>
<td>Elements</td>
<td>Al, Sc</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sphere and Cuboid Conditions (Precipitation Calculator)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition</td>
<td>Al-0.18Sc Mole percent</td>
</tr>
<tr>
<td>Matrix phase</td>
<td>FCC_A1</td>
</tr>
</tbody>
</table>
Precipitate phase
AL3SC

Matrix Phase Data Parameters (Precipitation Calculator)

| Elastic properties (click Show details to display this setting) | For the **Sphere** node (renamed from Precipitation Calculator), the default, **Disregard** is kept.
For the **Cuboid** node (renamed from Precipitation Calculator), choose **Cubic**. Then enter the elastic constants accordingly. Default elastic constants are given based on the major element of the alloy system. In this example that is |
|---|--|
| | • c11 is 108.2 GPa
• c12 is 61.3 GPa
• c44 is 28.5 GPa |

Precipitate Phase Data Parameters (Precipitation Calculator)

<table>
<thead>
<tr>
<th>Nucleation sites</th>
<th>Bulk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interfacial energy</td>
<td>The default</td>
</tr>
</tbody>
</table>

Morphology (click Show details to display this setting)

| For the **Sphere** node (renamed from Precipitation Calculator), keep the default. |
| For the **Cuboid** node (renamed from Precipitation Calculator), **Cuboid** is selected. |

Transformation strain (click Show details to display this setting)

| For the **Sphere** node (renamed from Precipitation Calculator), keep the default. |
| For the **Cuboid** node (renamed from Precipitation Calculator), **Calculate from molar volume** is selected to obtain a purely dilatational strain. |

Calculation Type (Precipitation Calculator)

<table>
<thead>
<tr>
<th>Calculation type</th>
<th>Isothermal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>350° C</td>
</tr>
<tr>
<td>Simulation time</td>
<td>1.0E9 seconds</td>
</tr>
</tbody>
</table>

Datasets (Experimental File Reader)

| Dataset 1 and Dataset 2 | Data sets included with this example and imported to one Experimental File Reader. It is used for the Mean Radius plot. |

Plot Results
Mean Radius
PSD

![Size Distribution](image)

- Size distribution of ALSCC (Bulk) [Fit: 1, 0.95 (Exp) (Smooth)]
- Size distribution of ALSCC (Bulk) [Fit: 1, 0.95 (Exp) (Gaussian)]

Graphical Mode Examples | 138 of 161
Mean Radius and Cubic Factor

![Graphical Mode Examples](image-url)
PSD and Cubic Factor

![Graphical Mode Examples](image-url)
Precipitation of Al-Sc AL3SC with Assumption of Sphere and Cuboid Morphologies: Precipitation Example P_09

HELPFUL INFORMATION

- All users can run this calculation, even those who do not have a license for the Precipitation module (TC-PRISMA).
- A companion video is available for this example, which can be watched here: https://www.youtube.com/playlist?list=PLfv6McToaTGSpqyuLoY3b_UV-8xpgLUkJ
- This calculation is based on Precipitation module example P_09 – Precipitation_{Al-Sc_AL3SC_Sphere_Cuboid}, which is included in your installation. To run the example file, open Thermo-Calc and select Help > Examples Files. Open the Precipitation module (TC-PRISMA) folder. Double-click the example file and click Perform at the bottom centre of the Configuration window in Thermo-Calc.

ABOUT THE EXAMPLE

This example shows you how to calculate the precipitation of Al3Sc phase from FCC_A1 matrix phase in an Al-Sc binary alloy using the Precipitation module (TC-PRISMA).

Two separate calculations are performed so you can make a comparison of the results, one assuming spherical morphology without elastic strain energy, and the other assuming cuboid morphology whose shape is determined by competition between interfacial energy and elastic strain energy.

In addition, mean cubic factor and cubic factor distribution are plotted for cuboid shape to illustrate the spherical-cuboidal transition during precipitation.

If you run the example file included in your software, the simulation results are compared with experimental data collected from Marquis and Seidman (2001) and Novotny and Ardell (2001).
SETTING UP THE SYSTEM

1. Open Thermo-Calc in Graphical Mode.
2. Under templates, click **Precipitation Simulation**.
3. All the nodes for a precipitation calculation are added to the **Project** window:

4. Click the **System Definer 1** node.
5. Set the database package to **DEMO: Aluminium based alloys**, which loads both thermodynamic and kinetic demonstration aluminium databases.
6. From the periodic table, select the elements **Al** (aluminium) then **Sc** (scandium). Be sure to select Al first so that it is the dependant element.
7. Just to the right of the periodic table, select **Mole Percent** as the **Amount**.
8. Enter **0.18** for Sc. This automatically sets Al to **99.82**.
Our system is now defined, so we will set up the precipitation calculations.

SETTING UP THE PRECIPITATION CALCULATIONS

We will have two precipitation calculations in this example, one assuming spherical morphology without elastic strain energy, and the other assuming cuboid morphology whose shape is determined by competition between interfacial energy and elastic strain energy. We will then compare the results of the two calculations.

Setting up the Precipitation Calculation with Spherical Morphology

1. In the **Project** window, right-click the **Precipitation Calculator 1** node and select **Rename**. Enter **Sphere**, then press enter or click **OK**.

2. Notice that the composition we set in the **System Definer** auto-populated here.

3. Under **Matrix Phase** from the **Phase** list select **FCC_A1**.

4. Under **Precipitate Phase** from the **Phase** list select **AL3SC**.

5. Under **Calculation Type**, select **Isothermal**, which means that the same temperature is maintained throughout the calculation.

6. Enter **350** as the **Temperature** and select **Celsius**.

7. Enter **1.0E9** as the **Simulation time** and select **Seconds**.

Our first calculation is set, so we will configure the plot.
Configuring the Plot

1. In the Project window, right-click Plot Renderer 1 and select Rename. Name the plot Mean radius then press enter or click OK.
2. Under Y-axes, change the units to nm (nanometres) and from the Axis type list select Logarithmic 10.

The plot is now set, but we will set up another calculation and link it to the same plot renderer before we run the simulation.

Setting up the Precipitation Calculation with Cuboid Morphology

1. In the Project window, right-click the Sphere node and select Clone.
2. Right-click the new calculator node and select Rename.
3. Name the node Cuboid and click OK.
4. On the Configuration window to the right of Matrix Phase click Show Details.
5. From the Elastic Properties list select Cubic. The program automatically suggests a good set of default values, so we will leave them as they are.
6. To the right of Precipitate Phase, click Show Details.
7. From the Morphology list select Cuboid.
8. From the Transformation strain list select Calculate from molar volume.
The second calculation is now set up, so we will link it to the Plot Renderer node.

Linking the Plot to the Calculation with Cuboid Morphology

1. In the **Project** window, right-click the **Mean radius** node and select **Add Predecessor > Cuboid**.
2. Notice that in the **Configuration** window there are two tabs associated with this plot, one for **Sphere** and one for **Cuboid**. We already configured the Sphere settings, so we just need to set up the Cuboid tab.
3. Click the **Cuboid** tab.
4. Under **Y-axes**, change the unit to **nm** (nanometers) and from the **Axis type** list select **Logarithmic 10**.
5. Our calculation is now ready, so right-click the **Mean radius** node and select **Perform Now**.
INTERPRETING THE RESULTS OF THE PRECIPITATION CALCULATIONS

In this plot, the blue line represents the sphere calculation and the red line represents the cuboid calculation. You can see that, in this instance, they are almost identical.

By ‘radius for non-spherical particles’ we mean the radius of equivalent spheres with the same volume.

If you run the example file that is included in your software, the plot also contains an experimental file, which you can see closely matches the calculations.

PLOTTING ADDITIONAL VARIABLES

We will now use the same calculation to set up additional plots using the many plot variables that are available in the program. The examples below include two Y-axes each.

Plotting Mean Radius and Cuboid Factor

This plot will have two Y-axes: Mean radius and Cuboid factor.

1. Right-click the Cuboid node and add a Plot Renderer.
2. Right-click the new node and rename it Mean radius and Cuboid factor.
3. Under Y-axes click the green plus sign to add another axis.
4. Leave the first axis variable as Mean radius, but change the units to nm (nanometers) and set the axis type to Logarithmic 10.
5. Set the second Axis variable to Mean cubic factor.
6. Click to clear the Automatic Scaling check box. In the fields, enter the Limits from 1 to 1.41 and the step to 0.1.
7. The plot is now set, so right-click the **Mean radius and Cuboid factor** node and select **Perform Now**.

Interpreting the Results of Mean Radius and Cuboid Factor

The blue line represents the evolution of the average radius of the cubic particles as a function of time. Again, for non-spherical precipitates this means the radius of equivalent spheres with the same volume.

In this plot, the blue line represents the evolution of the average radius of the cubic particles as a function of time. The red line shows the average cubic factor as a function of time.
The red line shows the average cubic factor as a function of time. A value of one represents a spherical shape. A square root of two represents a cubic shape.

The evolution of the shape when the particles grows is determined by competition between interfacial energy and elastic strain energy. In general the shape is close to spherical at small particle sizes because the interfacial energy term dominates.

At large sizes the elastic energy dominates and it is therefore more favourable with a non-spherical shape. We can see that the particles get a more cubic form at later times when they grow to larger sizes.

Plotting Particle Size and Cubic Factor Distribution

This final plot will show the particle size and cubic factor distribution at the end of the simulation.

This plot will also have two Y-axes, so we will clone the previous plot.

1. Right-click the **Mean radius and Cuboid factor** node and select **Clone**.
2. Right-click the new node and rename it **PSD and Cuboid factor**.
3. Under the **Y-axes**, select **Size Distribution** as the first **Axis variable**.
4. Change the **Axis type** to **Linear**.
5. Set the second Y-axis to **Cubic factor distribution** and enter a **Time** of 1e9 **Seconds**.
6. Click to clear the **Automatic Scaling** check box. Enter the **Limits** from 1 to 1.45 and the **step** to 0.1.
7. Under **Size X-axis**, change the unit to **nm** (nanometers).
8. Click **Perform** at the bottom centre of the **Configuration** window.
Interpreting the Results of Particle Size Distribution and Cuboid Factor

The blue curve, which shows the particle size distribution, is close to the regular LSW size distribution that we would have expected for spherical particles.

The cubic factor distribution shows that the smallest particles are closer to spherical and that the larger ones get more and more cubic.

References

P_10: Initial Particle Size Distribution of Fe-Cr-C

This example demonstrates the effect of initial particle size distribution of the precipitate phases on the overall precipitation kinetics. It uses two Precipitation Calculators to simulate and compare carbide precipitations from a ferritic BCC_A2 matrix in a Fe-0.1C-12Cr alloy. Three carbides, CEMENTITE, M23C6 and M7C3, are included in the calculations for competitive precipitations, and the precipitation kinetics are compared with or without initial particle size distribution.

The example illustrates the use of the particle size distribution setting. You can import data from a spreadsheet or text file (.xls, .xlsx, .csv or .txt formats are acceptable). The Preexisting Particle Size Distribution window shown below, provides a graphical representation of the radius versus corresponding frequencies.

PROJECT FILE AND VIDEO TUTORIAL INFORMATION

- Folder: Precipitation Module - TC-PRISMA
- File name: P_10_Precipitation_Initial_PSD_FeCrC.tcu
Also see our website and YouTube channel for other examples of the Precipitation Module.
EXAMPLE SETTINGS

<table>
<thead>
<tr>
<th>System (System Definer)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Database package</td>
<td>Demo: Steels and Fe-alloys (FEDEMO and MFDEMO)</td>
</tr>
<tr>
<td>Elements</td>
<td>Fe, C, Cr</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions (Precipitation Calculator)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition</td>
<td>Fe-0.1C-12Cr Mass percent</td>
</tr>
<tr>
<td>Matrix phase</td>
<td>BCC_A2</td>
</tr>
<tr>
<td></td>
<td>All other defaults are kept.</td>
</tr>
<tr>
<td>Precipitate phases</td>
<td>CEMENTITE, M23C6 and M7C3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Precipitate Phase Data Parameters (Precipitation Calculator)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nucleation sites</td>
<td>Grain boundaries (all calculations): Calculated from the matrix settings with a wetting angle of 90°</td>
</tr>
<tr>
<td>Interfacial energy</td>
<td>User-defined function $f(r,T)$ (all calculations):</td>
</tr>
<tr>
<td></td>
<td>- CEMENTITE: 0.167 J/m²</td>
</tr>
<tr>
<td></td>
<td>- M23C6 0.252 J/m²</td>
</tr>
<tr>
<td></td>
<td>- M7C3 0.282 J/m²</td>
</tr>
<tr>
<td>Preexisting size distribution (click Show details to display this setting)</td>
<td>For the Precipitation Calculator including particle size distribution, and for all precipitate phases, this check box is selected. For each precipitate phase (CEMENTITE, M23C6 and M7C3), click Edit particle size distribution to make changes to the parameters. A window opens with a graphical representation of the radius vs number density.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calculation Type (Precipitation Calculator)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculation type</td>
<td>Isothermal</td>
</tr>
<tr>
<td>Temperature</td>
<td>1053 K</td>
</tr>
<tr>
<td>Simulation time</td>
<td>400 000 seconds</td>
</tr>
</tbody>
</table>

PLOT RESULTS
Volume Fraction with Initial Particle Size Distribution
Volume Fraction with No Initial Particle Size Distribution

![Graphical Mode Examples](image)

P_11: Interfacial Energy Function

In some cases, interfacial energy may be a function of temperature and/or particle radius. This example uses four Precipitation Calculators at four temperature points in 30 K increments: 673 K, 703 K, 733 K, and 763 K. It is an isothermal calculation to examine the mean radius of an Al-0.12Sc system. It uses an FCC_A1 matrix phase and AL3SC precipitate phase with bulk nucleation sites and user-defined interfacial energy function. The user defined interfacial energy function uses an error function to set a smooth transition of the interfacial energy from 0.065 J/m² to 0.085 J/m² for particle radii below and above $1e^{-8}$ m and $5e^{-8}$ m, respectively.

A dataset based on Iwamura and Miura (1) data is compared with the calculated results.

Project File and Video Tutorial Information

• Folder: Precipitation Module - TC-PRISMA
• File name: \textit{P_11_Interfacial_energy_function.tcu}

Also see our website and YouTube channel for other examples of the Precipitation Module.

EXAMPLE SETTINGS

<table>
<thead>
<tr>
<th>System (System Definer)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Database package</td>
<td>Demo: Aluminum-based Alloys (ALDEMO, MALDEMO)</td>
</tr>
<tr>
<td>Elements</td>
<td>Al, Sc</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions (Precipitation Calculator)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition</td>
<td>Al-0.12Sc Mole percent</td>
</tr>
<tr>
<td>Matrix phase</td>
<td>FCC_A1</td>
</tr>
<tr>
<td></td>
<td>All other defaults are kept.</td>
</tr>
<tr>
<td>Precipitate phase</td>
<td>AL3SC</td>
</tr>
<tr>
<td></td>
<td>Nucleation sites (all calculations): Bulk (6.025\times10^{-28} \text{ m}^3)</td>
</tr>
<tr>
<td></td>
<td>Interfacial energy (all calculations): User-defined function (f(r,T) = 0.075 + 0.011 \times \text{erf} \left(\frac{r-3\times10^{-8}}{1\times10^{-8}}\right) \text{ J/m}^2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calculation Type (Precipitation Calculator)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculation type</td>
<td>Isothermal (all calculations)</td>
</tr>
<tr>
<td>Temperature</td>
<td>Four temperature points in 30 K increments: 673 K, 703 K, 733 K, and 763 K.</td>
</tr>
<tr>
<td>Simulation time</td>
<td>1 000 000 seconds (all calculations)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Datasets (Experimental File Reader)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wamura 2004 (Dataset 1)</td>
<td>Data set included with this example and imported to one Experimental File Reader.</td>
</tr>
</tbody>
</table>

PLOT RESULTS
Mean Radius

P_12: Comparing Growth Rate Models for an Al-Zr System

This example compares the Simplified, General and Advanced growth rate models for an Al-Zr system. The resulting plot compares the mean radius of the spheres for each AL3ZR_D023 precipitate phase calculated for each type of growth rate model.

The example takes several minutes to run.

All models treat a spherical particle (precipitate) of stoichiometric composition or with negligible atomic diffusivity. Local equilibrium at the precipitate-matrix interface is assumed.

When you use the Advanced model, the velocity of a moving phase interface and the operating tie-line are solved together from flux-balance equations. This model can treat both high supersaturation and cross diffusion rigorously. It can also capture the transition between NPLE (non-partitioning local equilibrium) and PLE (partitioning local equilibrium) without any ad hoc treatment.
The *Simplified* model is based on the quasi-steady state diffusion approximation, and estimates solute partitioning with matrix composition and nuclei composition instead of time-consuming stepwise tie-line calculations. It also neglects cross diffusion for simplicity.

The *General* model can be considered the same theoretical approximation as, but an improvement over, the *Simplified* model, with cross-diffusion terms taken into account, as well as adjustment of Gibbs-Thomson effect and effective diffusivity implemented.

A dataset based on Knipling et al. (1) data is compared with the calculated results.

PROJECT FILE AND VIDEO TUTORIAL INFORMATION

- Folder: Precipitation Module - TC-PRISMA
- File name: *P_12_Precipitation_Al-Zr_GrowthRateModel_comparison.tcu*

Also see [our website](#) and [YouTube channel](#) for other examples of the Precipitation Module.

EXAMPLE SETTINGS

<table>
<thead>
<tr>
<th>System (System Definer)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Database package</td>
<td>Demo: Aluminum-based Alloys (ALDEMO, MALDEMO)</td>
</tr>
<tr>
<td>Elements</td>
<td>Al, Zr</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions (Precipitation Calculator)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition</td>
<td>Al-0.2Zr Mole percent</td>
</tr>
<tr>
<td>Matrix phase</td>
<td>FCC_A1</td>
</tr>
<tr>
<td></td>
<td>All other defaults are kept.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Precipitate phase</th>
<th>AL3ZR_D023</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Click Show details to select the Growth rate model (Simplified, Advanced and General). All other defaults are kept.</td>
</tr>
</tbody>
</table>

Calculation Type (Precipitation Calculator)

<table>
<thead>
<tr>
<th>Calculation type</th>
<th>Isothermal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>425 Celsius</td>
</tr>
<tr>
<td>Simulation time</td>
<td>400 hours</td>
</tr>
</tbody>
</table>

Datasets (Experimental File Reader)

| 2008 Knipling | Data set included with this example and imported to one Experimental File Reader. |
PLOT RESULTS

Mean Radius

![Graph showing mean radius over time](image)

P_13: Paraequilibrium Precipitation of Cementite Fe-Cr

In this example, the precipitation of cementite during tempering of a Fe-Cr-C steel is simulated considering two interface conditions: one is the usual ortho-equilibrium condition; the other is the para-equilibrium condition. The simulation results are compared with the experimental data from Sakuma et al (1980) T. Sakuma, N. Watanabe, and T. Nishizawa, "The effect of alloys element on the coarsening behavior of cementite particles in ferrite", *Trans. JIM*, v. 21, 1980, pp.159-168.

The example may take over two hours to run.

This example demonstrates that the early stage of the cementite precipitation can only be accounted for by a simulation applying the para-equilibrium condition, under which the precipitation kinetics are controlled by the diffusion of C. The comparison also shows a later
stage gradual transition from the para-equilibrium condition to the ortho-equilibrium condition, and if the tempering time is long enough the diffusion of Cr has a dominating effect on the coarsening of cementite.

PROJECT FILE AND VIDEO TUTORIAL INFORMATION

- Folder: Precipitation Module - TC-PRISMA
- File name: P_13_Precipitation_Fe-Cr_Paraequilibrium_Precipitation_of_Cementite.tcu

Also see [our website](#) and [YouTube channel](#) for other examples of the Precipitation Module.

EXAMPLE SETTINGS

<table>
<thead>
<tr>
<th>System (System Definer)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Database package</td>
<td>Demo: Steels and Fe-alloys (FEDEMO, MFDEMO)</td>
</tr>
<tr>
<td>Elements</td>
<td>Fe, Cr, C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions (Precipitation Calculator)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition</td>
<td>Fe-0.95Cr-1.065C Mass percent</td>
</tr>
<tr>
<td>Matrix phase</td>
<td>BCC_A2</td>
</tr>
<tr>
<td></td>
<td>All other defaults are kept.</td>
</tr>
<tr>
<td>Precipitate phase</td>
<td>CEMENTITE</td>
</tr>
<tr>
<td></td>
<td>Click Show details to select the Growth rate model (Simplified and Para-eq). All other defaults are kept.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calculation Type (Precipitation Calculator)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculation type</td>
<td>Isothermal</td>
</tr>
<tr>
<td>Temperature</td>
<td>773 Kelvin</td>
</tr>
</tbody>
</table>
Simulation time | 20 hours for the paraequilibrium model and 600 hours for the simplified model.

Datasets (Experimental File Reader)

1980 Sakuma | Data set included with this example and imported to one Experimental File Reader.

Plot Results

Mean Radius

Comparing results from Para-eq (PE) and Simplified (OE) growth models.