TC-Python Documentation
Release 2019a

Thermo-Calc Software AB

Nov 19, 2018

CONTENTS

TC-Python Quick Install Guide 1
1.1 Step 1: Install a Python Distribution 1
1.1.1 Imstall Anaconda e e e e e e 1
1.2 Step 2: Install Thermo-Calc and the TC-Python SDK 1
1.3 Step 3: Install TC-Python e 2
1.4 Step 4: Install an IDE (Integrated Development Environment) 2
1.5 Step 5: Open the IDE and Run a TC-Python Example 3
1.5.1 Open the TC-Python Projectin PyCharm 3
1.5.2 Fixing potential issues with the environment 3
1.6 Updating to a neWer VErsion o v v vt v vttt e e e e e e e 4
Mac OS: Setting Environment Variables 5
Architecture overview 7
3.1 TCPython o . o o e e e e e e e e e e e 7
3.2 SystemBuilderand Systemo e 8
33 Calculation e e 8
3.3.1 Single equilibrium calculations L e e e 9
3.3.2 Precipitation calculations L. L e e e 9
3.3.3 Scheil calculations e 10
3.3.4 Property diagram calculationso 0oL 10
3.3.,5 Phasediagramcalculations L oL 11
3.3.6 Diffusioncalculations 11
3.3.7 Property model calculations e e e 12
34 Result. 12
Best Practices 15
4.1 Re-useandsavingofresults e e e 15
4.2 Al TC-Python objects are non-copyable 15
4.3 Python Virtual Environmentso 16
4.4 Using with TCPython() efficiently o 16
4.5 Parallel calculations 17
4.6 Handling crashes of the calculationengine 18
4.7 Using TC-Python within a Jupyter Notebook or the Pythonconsole 19
API Reference 21
5.1 Calculations e e e e e e e 21
5.1.1 ~ Module “single_equilibrium™ oL 21
5.1.2 Module “precipitation™o e 26
5.1.3 Module “scheil” 43

5.1.4 Module “step_or_map_diagrams™ L.

5.1.5 Module “diffusion”
5.1.6 Module “propertymodel” L e e e
5.2 Module “system™ e e e e
53 Module “entities™ e e e e e e e e e e
54 Module “SErver” L e
5.5 Module “quantity_factory” e e e e e e e e e e e e e
5.6 Module “utils”
5.7 Module “exceptions™ e e e e e e e e
5.8 Module “abstract_base” e e e e e e e
6 Troubleshooting
6.1 “No module named tc_python” error on firstusage
6.2 “pip install” fails with “Failed to establish a new network connection” or similar
Python Module Index

CHAPTER
ONE

TC-PYTHON QUICK INSTALL GUIDE

This quick guide helps you to get a working TC-Python API installation.

There is a PDF guide included with your installation. In the Thermo-Calc menu, select Help — Manuals
Folder. Then double-click to open the Software Development Kits (SDKs) folder.

Note: A license is required to run TC-Python.

1.1 Step 1: Install a Python Distribution

If you already have a Python distribution installation, version 3.5 or higher, skip this step.

These instructions are based on using the Anaconda platform for the Python distribution. Install version
3.5 or higher to be able to work with TC-Python, although it is recommended that you use the most recent
version.

1.1.1 Install Anaconda

1. Navigate to the Anaconda website: https://www.anaconda.com/download/.

2. Click to choose your OS (operating system) and then click Download. Follow the instructions. It is recom-
mended you keep all the defaults.

1.2 Step 2: Install Thermo-Calc and the TC-Python SDK

Note: TC-Python is available starting with Thermo-Calc version 2018a.

1. Install Thermo-Calc and choose a Custom installation.
See Custom Standalone Installation in the Thermo-Calc Installation Guide.

If you have already installed Thermo-Calc, you need to find the installation file (e.g. Windows *.exe,
Mac *.zip and Linux *.run) to relaunch the installer and then continue with the next steps.

2. On the Select Components window, click to select the TC-Python check box.
3. On the Install TC-Python window, click Next.

https://www.anaconda.com/download/

TC-Python Documentation, Release 2019a

4. When the installation is complete, the TC-Python folder opens and includes the *.whl file needed
for the next step. There is also an Examples folder with Python files you can use in the IDE to
understand and work with TC-Python.

The installation location for this API is the same as for other SDKs and based on the OS. For details,
see Default Directory Locations in the Thermo-Calc Installation Guide.

1.3 Step 3: Install TC-Python

On Windows, it is recommended that you use the Python distribution prompt (i.e. Anaconda, ...), espe-
cially if you have other Python installations. Do not use Virtual Environments unless you have a good
reason for that.

1. Open the command line. For example, in Anaconda on a Windows OS, go to
Start—Anaconda— Anaconda Prompt.

2. At the command line, enter the following. Make sure there are no spaces at the end of the string or
in the folder name or it will not run:

pip install <path to the TC-Python folder>/TC_Python-<version>-py3-none-
—any.whl

For example, on a ‘Windows OS Standalone custom installation,
when you install for all wusers, the path to the TC-Python folder is
C:\Users\Public\Documents\Thermo-Calc\2019a\SDK\TC-Python\

Details for Mac and Linux installations are described in Default Directory Locations in the Thermo-
Calc Installation Guide. Note that on Linux typically pip3 is used.

3. Press <Enter>. When the process is completed, there is a confirmation that TC-Python is installed.

1.4 Step 4: Install an IDE (Integrated Development Environment)

Any editor can be used to write the Python code, but an IDE is recommended, e.g. PyCharm. These
instructions are based on the use of PyCharm.

Use of an IDE will give you access to code completion, which is of great help when you use the API as it
will give you the available methods on the objects you are working with.

1. Navigate to the PyCharm website: https://www.jetbrains.com/pycharm/download.

2. Click to choose your OS and then click Download. You can use the Community version of Py-
Charm.

3. Follow the instructions. It is recommended you keep all the defaults.

Note: For Mac installations, you also need to set some environment variables as described below in Mac
OS: Setting Environment Variables.

2 Chapter 1. TC-Python Quick Install Guide

https://www.jetbrains.com/pycharm/download

TC-Python Documentation, Release 2019a

1.5 Step 5: Open the IDE and Run a TC-Python Example

After you complete all the software installations, you are ready to open the IDE to start working with
TC-Python.

It is recommended that you open one or more of the included examples to both check that the installation
has worked and to start familiarizing yourself with the code.

1.5.1 Open the TC-Python Project in PyCharm
When you first open the TC-Python project and examples, it can take a few moments for the Pycharm
IDE to index before some of the options are available.

1. Open PyCharm and then choose File—Open. The first time you open the project you will need to
navigate to the path of the TC-Python installation as done in Step 4.

For example, on a Windows oS Standalone custom installation,
when you install for all wusers, the path to the TC-Python folder is
C:\Users\Public\Documents\Thermo-Calc\2019a\SDK\TC-Python\

Details for Mac and Linux installations are described in the Default Directory Locations section in
the Thermo-Calc Installation Guide.

2. Click on the Examples folder and then click OK.
3. From any subfolder:
* Double-click to open an example file to examine the code.

* Right-click an example and choose Run .

1.5.2 Fixing potential issues with the environment

In most cases you should run TC-Python within your global Python 3 interpreter and not use Virtual
Environments unless you have a good reason to do so. A common problem on first usage of TC-Python
is the error message “No module named tc_python”. You can resolve this and other problems with the
interpreter settings as follows:

1. Go the menu File—Settings.

. Navigate in the tree to Project.YourProjectName and choose Project Interpreter.

2
3. Click on the settings symbol close to the Project Interpreter dropdown menu and choose Add.
4. Now choose System Interpreter and add your existing Python 3 interpreter.

5

. Select your added interpreter and confirm.

Note: If you are not following the recommended approach and create a new project (File—New
Project...), you need to consider that by default the options to choose the interpreter are hidden within
the Create Project window. So click on Project Interpreter: New Virtual Environment and in most
cases choose your System Interpreter instead of the default New Virtual Environment.

Note: If youreally need to use a Virtual Environment, please consider the hints given in the Best Practices
chapter.

1.5. Step 5: Open the IDE and Run a TC-Python Example 3

TC-Python Documentation, Release 2019a

1.6 Updating to a newer version

When updating to a newer version of Thermo-Calc, you always need to also install the latest version of
TC-Python. It is not sufficient to run the installer of Thermo-Calc. The procedure is generally identical
to Step 3:

pip install <path to the TC-Python folder>/TC_Python-<version>-py3-none-any.
—whl

In case of problems you may wish to uninstall the previous version of TC-Python in advance:

pip uninstall TC-Python
pip install <path to the TC-Python folder>/TC_Python-<version>-py3-none-any.

However, that should normally not be required. Note that on Linux usually pip3 is used.

You can check the currently installed version of TC-Python by running:

pip show TC-Python

4 Chapter 1. TC-Python Quick Install Guide

CHAPTER
TWO

MAC OS: SETTING ENVIRONMENT VARIABLES

In order to use TC-Python on Mac you need to set some environment variables.

TC19A_HOME=/Applications/Thermo-Calc-2019a.app/Contents/
Resources

If you use a license server:
LSHOST=<name-of-the-license—-server>
If you have a node-locked license:

LSHOST= NO-NET LSERVRC=/Applications/Thermo-Calc-2019%a.app/
Contents/Resources/lservrc

In PyCharm, you can add environment variables in the configurations.

Select Run—Edit Configurations to open the Run/Debug Configurations window. Choose Templates
and then Python. Enter the environment variable(s) by clicking the button to the right of the Environment
Variables text field. Now the environment variables(s) will be set for each new configuration by default.

The same way for configuring the environment variables can be used on other operating systems as if
necessary.

TC-Python Documentation, Release 2019a

6 Chapter 2. Mac OS: Setting Environment Variables

CHAPTER
THREE

ARCHITECTURE OVERVIEW

TC-Python contains classes of these types:
e TCPython — this is where you start with general settings.
* SystemBuilder and System — where you choose database and elements etc.
¢ Calculation — where you choose and configure the calculation.

* Result — where you get the results from a calculation you have run.

3.1 TCPython

This is the starting point for all TC-Python usage.
You can think of this as the start of a “wizard”.

You use it to select databases and elements. That will take you to the next step in the wizard, where you configure the
system.

Example:

from tc_python import =«

with TCPython() as start:
start.select_database_and_elements (...
e.t.c

after with clause

or like this

with TCPython () :
SetUp () .select_database_and_elements(...
e.t.c

after with clause

Note: For your information this starts a process running a calculation server. Your code, via TC-Python, uses socket
communication to send and receive messages to and from that server.

When your Python script has run as far as this row

after with clause

the calculation server automatically shuts down, and all temporary files are deleted. It is important to ensure that this
happens by structuring your Python code using a with () clause as in the above example.

TC-Python Documentation, Release 2019a

Note: To re-use results from previous calculations, set a folder where TC-Python saves results, and looks for previous
results.

This is done with the function set_cache_folder ().

from tc_python import =«

with TCPython () as start:
start.set_cache_folder ("cache™)

This folder can be a network folder and shared by many users. If a previous TC-Python calculation has run with the
same cache_folder and EXACTLY the same system and calculation settings, the calculation is not re-run. Instead the
result is automatically loaded from disk.

It is also possible to explicitly save and load results.

from tc_python import =«

with TCPython () as start:

#... diffusion calculation (could be any calculation type)
calculation_result.save_to_disk ('path to folder'")
#...

loaded_result = start.load_result_from_disk().diffusion('path to folder')

3.2 SystemBuilder and System

A SystemBuilder is returned when you have selected your database and elements in TCPython.
The SystemBuilder lets you further specify your system, for example the phases that should be part of your system.

Example:

from tc_python import =«

with TCPython () as start:
start.select_database_and_elements ("ALDEMO", ["AL", "Sc"])
e.t.c

When all configuration is done, you call get_system () which returns an instance of a System class. The System
class is fixed and cannot be changed. If you later want to change the database, elements or something else, change the
SystemBuilder and call get_system () again, or create a new SystemBuilder and call get_system().

From the System you can create one or more calculations, which is the next step in the “wizard”.

Note: You can use the same System object to create several calculations.

3.3 Calculation

The best way to see how a calculation can be used is in the TC-Python examples included with the Thermo-Calc
installation.

8 Chapter 3. Architecture overview

TC-Python Documentation, Release 2019a

Some calculations have many settings. Default values are used where it is applicable, and are overridden if you specify
something different.

When you have configured your calculation you call calculate () to start the actual calculation. That returns a
Result, which is the next step.

3.3.1 Single equilibrium calculations

In single equilibrium calculations you need to specify the correct number of conditions, depending on how many
elements your System contains.

You do that by calling set_condition ().

An important difference from other calculations is that single equilibrium calculations have two functions to get result
values.

The calculate () method, which gives a Result, is used to get actual values. This result is “temporary”’, meaning
that if you run other calculations or rerun the current one, the resulting object no longer gives values corresponding to
the first calculation.

This is different from how other calculations work. If you want a Result that you can use after running other calcula-
tions, you need to call calculate_with_state ().

Note: calculate () is the recommended function and works in almoast all situations. Also it has much better
performance than calculate_with_state ().

Example:

from tc_python import =«

with TCPython () as start:
gibbs_energy = (
start.

select_database_and_elements ("FEDEMO", ["Fe'", "Cr", "C"]).

get_system() .

with_single_equilibrium_calculation() .
set_condition (ThermodynamicQuantity.temperature (), 2000.0).
set_condition (ThermodynamicQuantity.mole_fraction_of_a_component ("Cr

set_condition (ThermodynamicQuantity.mole_fraction_of_a_component ("C"),

calculate() .
get_value_of ("G")

3.3.2 Precipitation calculations

All that can be configured in the Precipitation Calculator in Graphical Mode can also be done here in this calculation.
However, you must at least enter a matrix phase, a precipitate phase, temperature, simulation time and compositions.

Example:

from tc_python import =«

with TCPython() as start:

(continues on next page)

3.3. Calculation 9

TC-Python Documentation, Release 2019a

(continued from previous page)

precipitation_curve = (
start.
select_thermodynamic_and_kinetic_databases_with_elements ("ALDEMO",
—"MALDEMO", ["Al", "Sc"]).
get_system() .
with_isothermal_precipitation_calculation() .
set_composition("Sc", 0.18).
set_temperature (623.15) .
set_simulation_time (leb).
with_matrix_phase (MatrixPhase ("FCC_A1") .
add_precipitate_phase (PrecipitatePhase ("AL3SC"))) .
calculate ()

3.3.3 Scheil calculations

All Scheil calculations available in Graphical Mode or Console Mode can also be done here in this calculation. The
minimum you need to specify are the elements and compositions. Everything else is set to a default value.

Example:

from tc_python import =«

with TCPython() as start:
temperature_vs_mole_fraction_of_solid = (
start.

select_database_and_elements ("FEDEMO", ["Fe", "C"]).

get_system() .

with_scheil_calculation ().
set_composition("C", 0.3).
calculate () .
get_values_of (ScheilQuantity.temperature (),

ScheilQuantity.mole_fraction_of_all_solid_phases())

3.3.4 Property diagram calculations

For the property diagram (step) calculation, everything that you can configure in the Equilibrium Calculator when
choosing Property diagram in Graphical Mode can also be configured in this calculation. In Console Mode the
property diagram is created using the Step command. The minimum you need to specify are elements, conditions and
the calculation axis. Everything else is set to default values, if you do not specify otherwise.

Example:

from tc_python import =«

with TCPython() as start:
property_diagram = (
start.
select_database_and_elements ("FEDEMO", ["Fe", "C"]).
get_system() .
with_property_diagram_calculation() .
with_axis(CalculationAxis (ThermodynamicQuantity.temperature()) .
set_min (500) .

(continues on next page)

10 Chapter 3. Architecture overview

TC-Python Documentation, Release 2019a

(continued from previous page)

set_max (3000)) .

set_condition (ThermodynamicQuantity.mole_fraction_of_a_component ("C"),
— 0.01).

calculate () .

get_values_grouped_by_stable_phases_of (ThermodynamicQuantity.
—temperature (),

ThermodynamicQuantity.volume_

—fraction_of_a_phase ("ALL"))

)

3.3.5 Phase diagram calculations

For the phase diagram (map) calculation, everything that you can configure in the Equilibrium Calculator when
choosing Phase diagram in Graphical Mode can also be configured in this calculation. In Console Mode the phase
diagram is created using the Map command. The minimum you need to specify are elements, conditions and two
calculation axes. Everything else is set to default values, if you do not specify otherwise.

Example:

from tc_python import =«

with TCPython () as start:
phase_diagram = (
start.
select_database_and_elements ("FEDEMO", ["Fe", "C"]).
get_system() .
with_phase_diagram_calculation() .
with_first_axis(CalculationAxis (ThermodynamicQuantity.temperature()) .
set_min (500) .
set_max (3000)) .
with_second_axis(CalculationAxis (ThermodynamicQuantity.mole_fraction_
—of_a_component ("C")) .
set_min (0) .
set_max (1)) .
set_condition (ThermodynamicQuantity.mole_fraction_of_a_component ("C"),
— 0.01).
calculate () .
get_values_grouped_by_stable_phases_of (ThermodynamicQuantity.mass_
—fraction_of_a_component ("C"),
ThermodynamicQuantity.
—temperature())

)

3.3.6 Diffusion calculations

For diffusion calculations, everything that you can configure in the Diffusion Calculator can also be configured in this
calculation. The minimum you need to specify are elements, temperature, simulation time, a region with a grid and
width, a phase and an initial composition.

Example:

from tc_python import =«

(continues on next page)

3.3. Calculation 11

TC-Python Documentation, Release 2019a

(continued from previous page)

with TCPython () as start:
diffusion_result = (
start.
select_thermodynamic_and_kinetic_databases_with_elements ("FEDEMO",
< "MFEDEMO", ["Fe", "Ni"]).
get_system() .
with_isothermal_diffusion_calculation() .
set_temperature (1400.0) .
set_simulation_time (108000.0).
add_region (Region ("Austenite") .
set_width (1E-4) .
with_grid(CalculatedGrid.linear () .set_no_of_points (50)).
with_composition_profile (CompositionProfile() .
add("Ni", ElementProfile.linear(10.0, 50.0))
) .
add_phase ("FCC_A1")) .
calculate())

distance, ni_fraction = diffusion_result.get_mass_fraction_of_component_at_time (
—"Ni", 108000.0)

3.3.7 Property model calculations

For property model calculations, everything that you can configure in the Property Model Calculator in Graphical
Mode can also be configured in this calculation. The minimum you need to specify are elements, composition and
which property model you want to use.

Example:

from tc_python import =«

with TCPython () as start:
print ("Available property models: ".format (start.get_property_models()))
property_model = (
start.
select_database_and_elements ("FEDEMO", ["Fe", "C"]).
get_system() .
with_property_model_calculation ("Driving force").
set_composition("C", 1.0).
set_argument ("precipitate", "GRAPHITE"))

print ("Available arguments: ".format (property_model.get_arguments()))
result = property_model.calculate ()

print ("Available result quantities: ".format (result.get_result_quantities()))
driving_force = result.get_value_of ("normalizedDrivingForce™)

3.4 Result

All calculations have a method called calculate () that starts the calculations and when finished, returns a Result.
The Result classes have different methods, depending on the type of calculation.

The Result is used to get numerical values from a calculation that has run.

12 Chapter 3. Architecture overview

TC-Python Documentation, Release 2019a

The Result can be saved to disc by the method save_to_disc ()
Previously saved results can be loaded by the method 1oad_result_from_disk () on the SetUp class.

Example:

code above sets up the calculation
r = calculation.calculate()
time, meanRadius = r.get_mean_radius_of ("AL3SC")

The Result objects are completely independent from calculations done before or after they are created. The objects
return valid values corresponding to the calculation they were created from, for their lifetime. The only exception is if
youcall calculate () and not calculate_with_state () on a single equilibrium calculation.

As in the following example you can mix different calculations and results.

Example:

#
some code to set up a single equilibrium calculation

#

single_eqg _result = single_eq_calculation.calculate_with_state()
#

some code to set up a precipitation calculation

#

prec_result = precipitation_calculation.calculate ()

#

some code to set up a Scheil calculation

#

scheil _result = scheil_calculations.calculate ()

now it is possible to get results from the single equilibrium calculation,
without having to re-run it (because it has been calculated with saving of the,
—~state)

gibbs = single_eqg_result.get_value_of ("G")

3.4. Result 13

TC-Python Documentation, Release 2019a

14 Chapter 3. Architecture overview

CHAPTER
FOUR

BEST PRACTICES

4.1 Re-use and saving of results

To re-use results from previous calculations, set a folder where TC-Python saves results, and looks for previous results.

This is controlled by the method tc¢_python.server.SetUp.set_cache_folder ().

from tc_python import =«

with TCPython() as start:
start.set_cache_folder ("cache™)

This folder can be a network folder and shared by many users. The calculation is not re-run if there is a previous
TC-Python calculation with the same cache folder and exactly the same settings; the result is instead loaded from disk.

Another possibility is to explicitly save the result to disk and reload it later:

from tc_python import =«

with TCPython () as start:

... the system and calculator are set up and the calculation is performed
result = calculator.calculate()
result.save_to_disk("./result_dir")

You can then load the result again in another session:

from tc_python import =«

with TCPython () as start:
result = SetUp () .load_result_from disk().diffusion("./result_dir")
x, frac = result.get_mole_fraction_of_component_at_time ("Cr", 1000.0)

4.2 All TC-Python objects are non-copyable

Never create a copy of an instance of a class in TC-Python, neither by using the Python built-in function deepcopy ()

nor in any other way. All classes in TC-Python are proxies for classes in the underlying calculation server and normally
hold references to result files. A copied class object in Python would consequently point to the same classes and result
files in the calculation server.

Instead of making a copy, always create a new instance:

15

TC-Python Documentation, Release 2019a

from tc_python import =«
with TCPython () as start:
system = start.select_database_and_elements ("FEDEMO", ["Fe", "Cr"]).get_system()

calculator = system.with_single_equilibrium_calculation ()

*do not+ copy the ‘calculator’ object, create another one instead
calculator_2 = system.with_single_equilibrium_calculation/()

now you can use both calculators for different calculations

4.3 Python Virtual Environments

A Python installation can have several virtual environments. You can think of a virtual environment as a collection of
third party packages that you have access to in your Python scripts. tc_python is such a package.

To run TC-Python, you need to install it into the same virtual environment as your Python scripts are running in. If
your scripts fail on import tc_python, you need to execute the following command in the terminal of the same
Python environment as your script is running in:

pip install TC_Python-<version>-py3-none—any.whl

If you use the PyCharm IDE, you should do that within the Terminal built into the IDE. This Terminal runs automat-
ically within your actual (virtual) environment.

To prevent confusion, it is recommend in most cases to install TC-Python within your global interpreter, for example
by running the pip install command within your default Anaconda prompt.

4.4 Using with TCPython() efficiently

Normally you should call with TCPython() only once within each process.

Note: When leaving the with-clause, the Java backend engine process is stopped and all temporary data is deleted.
Finally when entering the next with-clause a new Java process is started. This can take several seconds.

If appropriate, it is safe to run with TCPython() in a loop. Due to the time it takes this only makes sense if the
calculation time per iteration is longer than a minute.

To prevent calling with TCPython() multiple times and cleaning up temporary data, you can use the following pattern.

Example:

from tc_python import =«
#

def calculation(calculator):
you could also pass the 'session’ or ‘system object if more appropriate
calculator.set_condition("W(Cr)", 0.1)
further configuration

result = calculator.calculate()

(continues on next page)

16 Chapter 4. Best Practices

TC-Python Documentation, Release 2019a

(continued from previous page)

#
result.invalidate () # 1f the temporary data needs to be cleaned up immediately
if name == '_ _main_ ':
with TCPython () as session:
system = session.select_database_and_elements ("FEDEMO", ["Fe", "Cr"]).get_
—system()
calculator = system.with_single_equilibrium_calculation ()

for i in range (50) :
calculation (calculator)

4.5 Parallel calculations

It is possible to perform parallel calculations with TC-Python using multi-processing.

Note: Please note that multi-threading is not suitable for parallelization of computationally intensive tasks in
Python. Additionally the Thermo-Calc core is not thread-safe. Using suitable Python-frameworks it is also possible
to dispatch the calculations on different computers of a cluster.

A general pattern that can be applied is shown below. This code snippet shows how to perform single equilibrium
calculations for different compositions in parallel. In the same way all other calculators of Thermo-Calc can be used
or combined. For performance reasons in a real application, probably numpy arrays instead of Python arrays should
be used.

Example:

import concurrent.futures

from tc_python import =«

def do_perform(parameters) :
this function runs within an own process
with TCPython () as start:
elements = ["Fe", "Cr", "Ni", "C"]
calculation = (start.select_database_and_elements ("FEDEMO", elements) .
get_system() .
with_single_equilibrium_calculation().
set_condition ("T", 1100).
set_condition("w(Cc)", 0.1 / 100).
set_condition("W(Ni)", 2.0 / 100))

phase_fractions = []
cr_contents = range (parameters["cr_min"],
parameters(["cr_max"],
parameters["delta_cr"])
for cr in cr_contents:
result = (calculation.
set_condition ("W(Cr)", cr / 100).
calculate ())

(continues on next page)

4.5. Parallel calculations 17

TC-Python Documentation, Release 2019a

(continued from previous page)

phase_fractions.append(result.get_value_of ("NPM(BCC_A2)"))

return phase_fractions

if _ name_ == "_ main_ ":
parameters = [
{"index": 0, "cr_min": 10, "cr_max": 15, "delta_cr": 1},
{"index": 1, "cr_min": 15, "cr_max": 20, "delta_cr": 1}

bcc_phase_fraction = []
num_processes = 2

with concurrent.futures.ProcessPoolExecutor (num_processes) as executor:
for result_from process in zip (parameters, executor.map (do_perform,
—parameters)) :
params can be used to identify the process and its parameters
params, phase_fractions_from_process = result_from process
bcc_phase_fraction.extend (phase_fractions_from_process)

use the result in ‘bcc_phase fraction', for example for plotting

4.6 Handling crashes of the calculation engine

In some cases the Thermo-Calc calculation engine can crash. If batch calculations are performed, this brings down the
complete batch. To handle this situation there is an exception you can use.

’UnrecoverableCalculationException

That exception is thrown if the calculation server enters a state where no further calculations are possible. You should
catch that exception outside of the with TCPython() clause and continue within a new with-clause.

Example:

from tc_python import =«

for temperature in range (900, 1100, 10):
try:
with TCPython () as start:
diffusion_result = (
start.
select_thermodynamic_and_kinetic_databases_with_elements ("FEDEMO",
< "MFEDEMO", ["Fe", "Ni"]).
get_system() .
with_isothermal_diffusion_calculation().
set_temperature (temperature) .
set_simulation_time (108000.0) .
add_region (Region ("Austenite™) .
set_width (1E-4) .
with_grid(CalculatedGrid.linear () .set_no_of_points (50)).
with_composition_profile (CompositionProfile() .
add ("Ni", ElementProfile.linear(10.0, 50.0))

(continues on next page)

18 Chapter 4. Best Practices

TC-Python Documentation, Release 2019a

(continued from previous page)

) .
add_phase ("FCC_A1")) .
calculate())

distance, ni_fraction = diffusion_result.get_mass_fraction_of_component_
—at_time ("Ni", 108000.0)
print (ni_fraction)

except UnrecoverableCalculationException as e:
print ('Could not calculate. Continuing with next...'")

4.7 Using TC-Python within a Jupyter Notebook or the Python con-
sole

TC-Python can also be used from within an interactive Jupyter Notebook and a Python console as well as similar prod-
ucts. The main difference from a regular Python program is that it is not recommended to use a with-clause to manage
the TC-Python resources. That is only possible within a single Jupyter Notebook cell. Instead the standalone functions
tc _python.server.start_api_server () and tc python.server.stop api_server () should
be used for manually managing the resources.

Note: The resources of TC-Python are primarily the Java-process running on the backend side that performs the
actual calculations and the temporary-directory of TC-Python that can grow to a large size over time, especially if
precipitation calculations are performed. If a with-clause is used, these resources are automatically cleared after use.

You need to make sure that you execute the two functions tc_python.server.start_api_server ()
and tc_python.server.stop_api_server () exactly once within the Jupyter Notebook session. If not
stopping TC-Python, extra Java-processes might be present and the temporary disk-space is not cleared. However,
these issues can be resolved manually.

The temporary directories of TC-Python are named, for example, TC_TMP4747588488953835507 that has a
random ID. The temporary directory on different operating systems varies according to the pattern shown in the table.

Operating sys- | Temporary directory

tem

Windows C:\Users{UserName} \AppData\Local\Temp\TC_TMP4747588488953835507

MacOS /var/folders/g7/7du8lti_b7mm84n184fn3k9100001g/T/
TC_TMP4747588488953835507

Linux /tmp/TC_TMP4747588488953835507

In a Jupyter Notebook some features of an IDE such as auto-completion (TAB-key), available method lookup (press .
and then TAB) and parameter lookup (set the cursor within the method-parenthesis and press SHIFT + TAB or SHIFT
+ TAB + TAB for the whole docstring) are also available.

Example using TC-Python with a Jupyter Notebook:

4.7. Using TC-Python within a Jupyter Notebook or the Python console 19

TC-Python Documentation, Release 2019a

: Jupyter TC-Python with Jupyter NotebooK Last Checkpoint: a few seconds ago (autosaved)

File

In [1]:

In [2]:

In [3]:

In [4]:

Edit

|+ = & & ¥

View Insert Cell Kernel Widgets Help

MRun B C M code 5

from tc python import *
start_api_server ()

system =
calc = system.with single equilibrium calculation()

temp = 8
ni_conc
cr_conc

t condition(ThermodynamicQuantity.temperature(),
condition

set_.
result = calc.calculate()

SetUp() .select database and elements ("FEDEMO",

ThermodynamicQuantity.mass_ fraction
condition (ThermodynamicQuantity.mass fraction .

["Fe",

temp) .

_component ("Ni"), ni_conc
& component ("Cr"),

i,

A

| Python [conda env:Anaconda3] O

Logout

Trusted

"Cr"]) .get system()

cr_conc

result.get_value of (Thermodyna:nicQuar_tity.mole_fra:tion_c-f_a_ptase ("ECC_A1"))

0.3345580340424432

stop_api_server()

20

Chapter 4. Best Practices

CHAPTER
FIVE

API REFERENCE

5.1 Calculations

5.1.1 Module “single_equilibrium”

class tc_python.single_equilibrium.SingleEquilibriumCalculation (calculator)
Bases: tc_python.abstract_base.AbstractCalculation

Configuration for a single equilibrium calculation.

Note: Specify the conditions and possibly other settings, the calculation is performed with calculate ().

calculate () — tc_python.single_equilibrium.SingleEquilibriumTempResult
Performs the calculation and provides a temporary result object that is only valid until something gets
changed in the calculation state. The method calculate () is the default approach and should be used
in most cases.

Returns Anew SingleEquilibriumTempResult object which can be used to get specific
values from the calculated result. It is undefined behaviour to use that object after the state
of the calculation has been changed.

Warning: If the result object should be valid for the whole program lifetime, use
calculate _with state () instead.

calculate_with_state () — tc_python.single_ equilibrium.SingleEquilibriumResult
Performs the calculation and provides a result object that will reflect the present state of the calculation
during the whole lifetime of the object. This method comes with a performance and temporary disk space
overhead. It should only be used if it is necessary to access the result object again later after the state has
been changed. In most cases you should use the method calculate ().

Returns A new SingleEquilibriumResult object which can be used later at any time to
get specific values from the calculated result.

disable_global_minimization ()
Turns the global minimization completely off.

Returns This SingleEquilibriumCalculation object

enable_global minimization ()
Turns the global minimization on (using the default settings).

Returns This SingleEquilibriumCalculation object

21

TC-Python Documentation, Release 2019a

get_components () — List[str]
Returns a list of components in the system (including all components auto-selected by the database(s)).

Returns The components

remove_all conditions ()
Removes all set conditions.

Returns This SingleEquilibriumCalculation object

remove_condition (quantity: Union[tc_python.quantity_factory.ThermodynamicQuantity, str])
Removes the specified condition.

Parameters quantity — the ThermodynamicQuantity to set as condition, a console syntax
strings can be used as an alternative (for example “X(Cr)”)

Returns This SingleEquilibriumCalculation object

run_poly_ command (command: str)
Runs a Thermo-Calc command from the console POLY-module immediately in the engine.

Parameters command — The Thermo-Calc console command

Returns This SingleEquilibriumCalculation object

Note: It should not be necessary for most users to use this method, try to use the corresponding method
implemented in the API instead.

Warning: As this method runs raw Thermo-Calc commands directly in the engine, it may hang the
program in case of spelling mistakes (e.g. forgotten equals sign).

set_component_to_entered (component: str)
Sets the specified component to the status ENTERED, that is the default state.

Parameters component — The component name
Returns This SingleEquilibriumCalculation object

set__component_to_suspended (component: str)
Sets the specified component to the status SUSPENDED, i.e. it is ignored in the calculation.

Parameters component — The component name
Returns This SingleEquilibriumCalculation object

set_condition (quantity: Union[tc_python.quantity_factory. ThermodynamicQuantity, str], value:

float)
Sets the specified condition.

Parameters

e quantity — The ThermodynamicQuantity to set as condition, a console syntax string
can be used as an alternative (for example “X(Cr)”)

* value - The value of the condition
Returns This SingleEquilibriumCalculation object

set_phase_to_dormant (phase: str)
Sets the phase to the status DORMANT, necessary for calculating the driving force to form the specified
phase.

22 Chapter 5. API Reference

TC-Python Documentation, Release 2019a

Parameters phase — The phase name

Returns This SingleEquilibriumCalculation object

set_phase_to_entered (phase: str, amount: float)

Sets the phase to the status ENTERED, that is the default state.
Parameters
* phase — The phase name
* amount — The phase fraction (between 0.0 and 1.0)

Returns This SingleEquilibriumCalculation object

set_phase_to_fixed (phase: str, amount: float)

Sets the phase to the status FIXED, i.e. it is guaranteed to have the specified phase fraction after the
calculation.

Parameters
* phase — The phase name
* amount — The fixed phase fraction (between 0.0 and 1.0)

Returns This SingleEquilibriumCalculation object

set_phase_to_suspended (phase: str)

Sets the phase to the status SUSPENDED, i.e. it is ignored in the calculation.
Parameters phase — The phase name

Returns This SingleEquilibriumCalculation object

with_reference_state (component: str, phase: str = 'SER’, temperature: float = ’cur-

rent_temperature’, pressure: float = 100000.0)
The reference state for a component is important when calculating activities, chemical potentials and

enthalpies and is determined by the database being used. For each component the data must be referred to
a selected phase, temperature and pressure, i.e. the reference state.

All data in all phases where this component dissolves must use the same reference state. However, different
databases can use different reference states for the same element/component. It is important to be careful
when combining data obtained from different databases.

By default, activities, chemical potentials and so forth are computed relative to the reference state used by
the database. If the reference state in the database is not suitable for your purposes, use this command to
set the reference state for a component using SER, i.e. the Stable Element Reference (which is usually set
as default for a major component in alloys dominated by the component). In such cases, the temperature
and pressure for the reference state is not needed.

For a phase to be usable as a reference for a component, the component needs to have the same composition
as an end member of the phase. The reference state is an end member of a phase. The selection of the end
member associated with the reference state is only performed once this command is executed.

If a component has the same composition as several end members of the chosen reference phase, then the
end member that is selected at the specified temperature and pressure will have the lowest Gibbs energy.

Parameters
* component — The name of the element must be given.

* phase — Name of a phase used as the new reference state. Or SER for the Stable Element
Reference.

5.1.

Calculations 23

TC-Python Documentation, Release 2019a

* temperature — The Temperature (in K) for the reference state. = Or CUR-
RENT_TEMPERATURE which means that the current temperature is used at the time
of evaluation of the reference energy for the calculation.

¢ pressure — The Pressure (in Pa) for the reference state.
Returns This SingleEquilibriumCalculation object

class tc_python.single_equilibrium.SingleEquilibriumResult (result)
Bases: tc_python.abstract_base.AbstractResult

Result of a single equilibrium calculation, it can be evaluated using a Quantity or Console Mode syntax.

change_pressure (pressure: float)
Change the pressure and re-evaluate the results from the equilibrium without minimizing Gibbs en-
ergy, i.e. with higher performance. The properties are calculated at the new pressure using the
phase amount, temperature and composition of phases from the initial equilibrium. Use tc_python.
single_equilibrium.SingleEquilibriumResult.get_value_ of () to obtain them.

Parameters pressure — The pressure [Pa]
Returns This SingleEquilibriumCalculation object

change_temperature (temperature: float)
Change the temperature and re-evaluate the results from the equilibrium without minimizing Gibbs en-
ergy, i.e. with high performance. The properties are calculated at the new temperature using the
phase amount, pressure and composition of phases from the initial equilibrium. Use tc_python.
single_equilibrium.SingleEquilibriumResult.get_value_of () to obtain them.

Note: This is typically used when calculating room temperature properties (e.g. density) for a material
when it is assumed that the equilibrium phase amount and composition freeze-in at a higher temperature
during cooling.

Parameters temperature — The temperature [K]
Returns This SingleEquilibriumCalculation object
get_components () — List[str]

Returns the names of the components selected in the system (including any components auto-selected by
the database(s)).

Returns The names of the selected components

get_conditions () — List[str]
Returns the conditions.

Returns The selected conditions

get_phases () — List[str]
Returns the phases present in the system due to its configuration. It also contains all phases that
have been automatically added during the calculation, this is the difference to the method System.
get_phases_in_system().

Returns The names of the phases in the system including automatically added phases

get_stable_phases () — List[str]
Returns the stable phases (i.e. the phases present in the current equilibrium).

Returns The names of the stable phases

24 Chapter 5. API Reference

TC-Python Documentation, Release 2019a

get_value_of (quantity: Union[tc_python.quantity_factory. ThermodynamicQuantity, str]) — float
Returns a value from a single equilibrium calculation.

Parameters quantity — the ThermodynamicQuantity to get the value of, a console syntax
strings can be used as an alternative (for example “NPM(FCC_A1)")

Returns The requested value

save_to_disk (path: str)
Saves the result to disc. Note tha a result is a folder, containing potentially many files. The result can later
be loaded with 1oad_result_from disk ()

Parameters path — the path to the folder you want the result to be saved in. It can be relative
or absolute.

Returns this SingleEquilibriumResult object

class tc_python.single_equilibrium.SingleEquilibriumTempResult (result)
Bases: tc_python.abstract_base.AbstractResult

Result of a single equilibrium calculation that is only valid until something gets changed in the calculation state.
It can be evaluated using a Quantity or Console Mode syntax.

Warning: Note that it is undefined behaviour to use that object after something has been changed in the
state of the calculation, this will resultin an InvalidResultStateException exception being raised.

change_pressure (pressure: float)
Change the pressure and re-evaluate the results from the equilibrium without minimizing Gibbs en-
ergy, i.e. with higher performance. The properties are calculated at the new pressure using the
phase amount, temperature and composition of phases from the initial equilibrium. Use tc_python.
single_equilibrium.SingleEquilibriumResult.get_value_of () toobtain them.

Parameters pressure — The pressure [Pa]
Returns This SingleEquilibriumCalculation object

change_temperature (temperature: float)
Change the temperature and re-evaluate the results from the equilibrium without minimizing Gibbs en-
ergy, i.e. with high performance. The properties are calculated at the new temperature using the
phase amount, pressure and composition of phases from the initial equilibrium. Use tc_python.
single_equilibrium.SingleEquilibriumResult.get_value_of () to obtain them.

Note: This is typically used when calculating room temperature properties (e.g. density) for a material
when it is assumed that the equilibrium phase amount and composition freeze-in at a higher temperature
during cooling.

Parameters temperature — The temperature [K]
Returns This SingleEquilibriumCalculation object
get_components () — List[str]

Returns the names of the components selected in the system (including any components auto-selected by
the database(s)).

Returns The names of the selected components

Raises InvalidResultStateException —If something has been changed in the state of
the calculation since that result object has been created

5.1. Calculations 25

TC-Python Documentation, Release 2019a

get_conditions () — List[str]
Returns the conditions.

Returns List containing the selected conditions

Raises InvalidResultStateException — If something has been changed in the state of
the calculation since that result object has been created

get_phases () — List[str]
Returns the phases present in the system due to its configuration. It also contains all phases that
have been automatically added during the calculation, this is the difference to the method System.
get_phases_in_system().

Returns The names of the phases in the system including automatically added phases

Raises InvalidResultStateException — If something has been changed in the state of
the calculation since that result object has been created

get_stable_phases () — List[str]
Returns the stable phases (i.e. the phases present in the current equilibrium).

Returns The names of the stable phases

Raises InvalidResultStateException — If something has been changed in the state of
the calculation since that result object has been created

get_value_of (quantity: Union[tc_python.quantity_factory. ThermodynamicQuantity, str]) — float
Returns a value from a single equilibrium calculation.

Parameters quantity — the ThermodynamicQuantity to get the value of, a console syntax
strings can be used as an alternative (for example “NPM(FCC_A1)")

Returns The requested value

Raises InvalidResultStateException — If something has been changed in the state of
the calculation since that result object has been created

5.1.2 Module “precipitation”

class tc_python.precipitation.GrowthRateModel
Bases: enum.Enum

Choice of the used growth rate model for a precipitate.

ADVANCED = 3
The ADVANCED MODEL was been proposed by Chen, Jeppsson, and Agren (CJA) (2008) and calculates
the velocity of a moving phase interface in multicomponent systems by identifying the operating tie-
line from the solution of the flux-balance equations. This model can treat both high supersaturation and
cross diffusion rigorously. Spontaneous transitions between different modes (LE and NPLE) of phase
transformation can be captured without any ad-hoc treatment.

Note: Since it is not always possible to solve the flux-balance equations and it takes time, and where
possible, use a less rigorous but simple and efficient model is preferred.

GENERAL = 5
The GENERAL MODEL ...

SIMPLIFIED = 2
The SIMPLIFIED MODEL is based on the advanced model but avoids the difficulty to find the operating
tie-line and uses the tie-line across the bulk composition. This is the default growth rate model.

26 Chapter 5. API Reference

TC-Python Documentation, Release 2019a

class tc_python.precipitation.MatrixPhase (matrix_phase_name: str)
Bases: object

The matrix phase in a precipitation calculation

add_precipitate_phase (precipitate_phase: tc_python.precipitation. PrecipitatePhase)
Adds a precipitate phase.

Parameters precipitate_phase — The precipitate phase

set_dislocation_density (dislocation_density: float = 5000000000000.0)
Enter a numerical value. Default: 5.0E12 m"-2.

Parameters dislocation_density — The dislocation density [m”-2]

set_grain_aspect_ratio (grain_aspect_ratio: float = 1.0)
Enter a numerical value. Default: 1.0.

Parameters grain_aspect_ratio — The grain aspect ratio [-]

set_grain_radius (grain_radius: float = 0.0001)
Sets grain radius / size. Default: 1.0E-4 m

Parameters grain_radius — The grain radius / size [m]

set_mobility enhancement_activation_energy (mobility_enhancement_activation_energy:

float = 0.0)

A value that adds to the activation energy of mobility data from the database. Default: 0.0 J/mol

Parameters mobility_enhancement_activation_energy — The value that adds to

the activation energy of mobility data from the database [J/mol].

set_mobility_ enhancement_prefactor (mobility_enhancement_prefactor: float = 1.0)

A parameter that multiplies to the mobility data from database. Default: 1.0

Parameters mobility_ enhancement_prefactor — The mobility enhancement factor [-

]

set_molar_volume (volume: float)
Sets the molar volume of the phase.

Default: If not set, the molar volume is taken from the thermodynamic database (or set to 7.0e-6 m”3/mol

if the database contains no molar volume information).
Parameters volume — The molar volume [m”3/mol]

with_elastic_properties_cubic (cll: float, c12: float, c44: float)

Sets the elastic properties to “cubic” and specifies the elastic stiffness tensor components. Default: if not

chosen, the default is DISREGARD
Parameters
e c11 — The stiffness tensor component c11 [GPa]
¢ c12 - The stiffness tensor component c12 [GPa]
* c44 - The stiffness tensor component c44 [GPa]

with_elastic_properties_disregard ()
Set to disregard to ignore the elastic properties. Default: This is the default option

with_elastic_properties_isotropic (shear_modulus: float, poisson_ratio: float)
Sets elastic properties to isotropic. Default: if not chosen, the default is DISREGARD

Parameters

¢ shear_modulus — The shear modulus [GPa]

5.1. Calculations

27

TC-Python Documentation, Release 2019a

e poisson_ratio — The Poisson’s ratio [-]

class tc_python.precipitation.NumericalParameters

Bases: object
Numerical parameters

set_max_overall_ volume_change (max_overall_volume_change: float = 0.001)

This defines the maximum absolute (not ratio) change of the volume fraction allowed during one time step.
Default: 0.001

Parameters max_overall_volume_change — The maximum absolute (not ratio) change
of the volume fraction allowed during one time step [-]

set_max_radius_points_per_magnitude (max_radius_points_per_magnitude: float = 200.0)

Sets the maximum number of grid points over one order of magnitude in radius. Default: 200.0

Parameters max_radius_points_per magnitude — The maximum number of grid
points over one order of magnitude in radius [-]

set_max_rel_ change_critical_radius (max_rel_change_critical_radius: float = 0.1)

Used to place a constraint on how fast the critical radium can vary, and thus put a limit on time step.
Default: 0.1

Parameters max_rel_change_critical_radius — The maximum relative change of
the critical radius [-]

set_max_rel_ change_nucleation_rate_log (max_rel_change_nucleation_rate_log: float =

0.5)
This parameter ensures accuracy for the evolution of effective nucleation rate. Default: 0.5

Parameters max_rel_change_nucleation_rate_log — The maximum logarithmic
relative change of the nucleation rate [-]

set_max_rel_radius_change (max_rel_radius_change: float = 0.01)

The maximum value allowed for relative radius change in one time step. Default: 0.01

Parameters max_rel_ radius_change — The maximum relative radius change in one time
step [-]

set_max rel_ solute_ composition_change (max_rel_solute_composition_change: float =

0.01)
Set a limit on the time step by controlling solute depletion or saturation, especially at isothermal stage.

Default: 0.01

Parameters max_rel solute_ composition_change — The limit for the relative solute
composition change [-]

set_max_time_step (max_time_step: float = 0.1)

The maximum time step allowed for time integration as fraction of the simulation time. Default: 0.1

Parameters max_time_step — The maximum time step as fraction of the simulation time [-]

set_max time_ step_ during heating (max_time_step_during_heating: float = 1.0)

The upper limit of the time step that has been enforced in the heating stages. Default: 1.0 s

Parameters max_time_step_during_heating — The maximum time step during heat-
ing [s]

set_max_volume_fraction_dissolve_time_step (max_volume_fraction_dissolve_time_step:

float = 0.01)
Sets the maximum volume fraction of subcritical particles allowed to dissolve in one time step. Default:

0.01

28

Chapter 5. API Reference

TC-Python Documentation, Release 2019a

Parameters max_volume_fraction_dissolve_time_step — The maximum volume
fraction of subcritical particles allowed to dissolve in one time step [-]

set_min_radius_nucleus_as_particle (min_radius_nucleus_as_particle: float = 5e-10)
The cut-off lower limit of precipitate radius. Default: 5.0E-10 m

Parameters min_radius_nucleus_as_particle — The minimum radius of a nucleus
to be considered as a particle [m]

set_min_radius_points_per_magnitude (min_radius_points_per_magnitude: float = 100.0)
Sets the minimum number of grid points over one order of magnitude in radius. Default: 100.0

Parameters min_radius_points_per_magnitude — The minimum number of grid
points over one order of magnitude in radius [-]

set_radius_points_per_ magnitude (radius_points_per_magnitude: float = 150.0)
Sets the number of grid points over one order of magnitude in radius. Default: 150.0

Parameters radius_points_per_magnitude — The number of grid points over one or-
der of magnitude in radius [-]

set_rel_radius_change_class_collision (rel_radius_change_class_collision: float = 0.5)
Sets the relative radius change for avoiding class collision. Default: 0.5

Parameters rel_radius_change_class_collision — The relative radius change for
avoiding class collision [-]

class tc_python.precipitation.ParticleSizeDistribution
Bases: object

Represents the state of a microstructure evolution at a certain time including its particle size distribution, com-

position and overall phase fraction.

add_radius_and_number_density (radius: float, number_density: float)
Adds a radius and number density pair to the particle size distribution.

Parameters

¢ radius — The radius [m]

* number_density — The number of particles per unit volume per unit length [m"-4]
Returns This ParticleSizeDistribution object

set_initial_ composition (element_name: str, composition_value: float)
Sets the initial precipitate composition.

Parameters
¢ element_name — The name of the element

* composition_value — The composition value [composition unit defined for the cal-
culation]

Returns This ParticleSizeDistribution object

set_volume_fraction_of_phase_type (volume_fraction_of _phase_type_enum:

tc_python.precipitation.VolumeFractionOfPhaseType)
Sets the type of the phase fraction or percentage. Default: By default volume fraction is used.

Parameters volume_fraction_of_ phase_type_enum- Specifies if volume percent or
fraction is used

Returns This ParticleSizeDistribution object

5.1. Calculations

29

TC-Python Documentation, Release 2019a

set_volume_fraction_of_phase_value (value: float)
Sets the overall volume fraction of the phase (unit based on the setting of
set_volume_fraction_of_phase_type()).

Parameters value — The volume fraction 0.0 - 1.0 or percent value O - 100
Returns This ParticleSizeDistribution object

class tc_python.precipitation.PrecipitateElasticProperties
Bases: object

Represents the elastic transformation strain of a certain precipitate class.

Note: This class is only relevant if the option TransformationStrainCalculationOption.
USER_DEFINED has been chosenusing PrecipitatePhase.set_transformation_strain _calculation_opti
The elastic strain can only be considered for non-spherical precipitates.

set_ell (ell: float)
Sets the elastic strain tensor component el 1. Default: 0.0

Parameters ell — The elastic strain tensor component el 1
Returns This PrecipitateElasticProperties object

set_el2 (el2: float)
Sets the strain tensor component e12. Default: 0.0

Parameters el2 — The elastic strain tensor component e12
Returns This PrecipitateElasticProperties object

set_el3 (el3: float)
Sets the elastic strain tensor component e13. Default: 0.0

Parameters el3 — The elastic strain tensor component e13
Returns This PrecipitateElasticProperties object

set_e22 (e22: float)
Sets the elastic strain tensor component e22. Default: 0.0

Parameters e22 — The elastic strain tensor component €22
Returns This PrecipitateElasticProperties object

set_e23 (e23: float)
Sets the elastic strain tensor component ¢23. Default: 0.0

Parameters e23 — The elastic strain tensor component €23
Returns This PrecipitateElasticProperties object

set_e33 (e33: float)
Sets the elastic strain tensor component e33. Default: 0.0

Parameters e33 — The elastic strain tensor component €33
Returns This PrecipitateElasticProperties object

class tc_python.precipitation.PrecipitateMorphology
Bases: enum.Enum

Available precipitate morphologies.

30 Chapter 5. API Reference

TC-Python Documentation, Release 2019a

CUBOID = 3
Cuboidal precipitates, only available for bulk nucleation.

NEEDILE =1
Needle-like precipitates, only available for bulk nucleation.

PLATE = 2
Plate-like precipitates, only available for bulk nucleation.

SPHERE = 0
Spherical precipitates, this is the default morphology.

class tc_python.precipitation.PrecipitatePhase (precipitate_phase_name: str)
Bases: object

Represents a certain precipitate class (i.e. a group of precipitates with the same phase and settings).

disable_ calculate_aspect_ratio_ from_ elastic_energy ()
Disables the automatic calculation of the aspect ratio from the elastic energy of the phase.

Returns This PrecipitatePhase object

Note: If you use this method, you are required to set the aspect ratio explicitly using the method
set_aspect_ratio value/().

Default: This is the default setting (with an aspect ratio of 1.0).

disable_driving_ force_approximation ()
Will disable driving force approximation for this precipitate class. Default: Driving force approximation
is disabled.

Returns This PrecipitatePhase object

enable_calculate_aspect_ratio_ from elastic_energy ()
Enables the automatic calculation of the aspect ratio from the elastic energy of the phase. Default: The
aspect ratio is set to a value of 1.0.

Returns This PrecipitatePhase object

enable_driving_ force_ approximation ()
Will enable driving force approximation for this precipitate class. This approximation is often required
when simulating precipitation of multiple particles that use the same phase description. E.g. simultaneous
precipitation of a Metal-Carbide(MC) and Metal-Nitride(MN) if configured as different composition sets
of the same phase FCC_A1. Default: Driving force approximation is disabled.

Returns This PrecipitatePhase object

Tip: Use this if simulations with several compositions sets of the same phase cause problems.

set_alias (alias: str)
Sets an alias string that can later be used to get values from a calculated result. Typically used when having
the same phase for several precipitates, but with different nucleation sites. For example two precipitates of
the phase M7C3 with nucleation sites in ‘Bulk’ and at ‘Dislocations’. The alias can be used instead of the
phase name when retrieving simulated results.

Parameters alias — The alias string for this class of precipitates

Returns This PrecipitatePhase object

5.1. Calculations 31

TC-Python Documentation, Release 2019a

Note: Typically used when having using the same precipitate phase, but with different settings in the
same calculation.

set_aspect_ratio_value (aspect_ratio_value: float)

Sets the aspect ratio of the phase. Default: An aspect ratio of 1.0.
Parameters aspect_ratio_wvalue — The aspect ratio value

Returns This PrecipitatePhase object

Note: Only relevant if disable calculate aspect_ratio_from elastic _energy () is
used (which is the default).

set_gibbs_energy addition (gibbs_energy_addition: float)

Sets a Gibbs energy addition to the Gibbs energy of the phase. Default: 0,0 J/mol
Parameters gibbs_energy_ addition — The Gibbs energy addition [J/mol]

Returns This PrecipitatePhase object

set_interfacial_energy (interfacial_energy: float)

Sets the interfacial energy. Default: If the interfacial energy is not set, it gets automatically calculated
using a broken-bond model.

Parameters interfacial_ energy - The interfacial energy [J/m”2]

Returns This PrecipitatePhase object

Note: The calculation of the interfacial energy using a broken-bond model is based on the assumption of
an interface between a bcc- and a fcc-crystal structure with (110) and (111) lattice planes regardless of the
actual phases.

set_interfacial_ energy_estimation_prefactor (interfacial_energy_estimation_prefactor:

float)
Sets the interfacial energy prefactor. Default: Prefactor of 1.0 (only relevant if the interfacial energy is

automatically calculated).

Parameters interfacial_energy_ estimation_prefactor — The prefactor for the
calculated interfacial energy

Returns This PrecipitatePhase object

Note: The interfacial energy prefactor is an amplification factor for the automatically calculated interfacial
energy. Example: interfacial_energy_estimation_prefactor = 2.5 => 2.5 * calculated interfacial energy

set_molar_volume (volume: float)

Sets the molar volume of the precipitate phase. Default: The molar volume obtained from the database. If
no molar volume information is present in the database, a value of 7.0e-6 m”3/mol is used.

Parameters volume — The molar volume [m”3/mol]

Returns This PrecipitatePhase object

set_nucleation_at_dislocations (number_density=-1)

Activates nucleation at dislocations for this class of precipitates. Calling the method overrides any other
nucleation setting for this class of precipitates. Default: If not set, by default bulk nucleation is chosen.

32

Chapter 5. API Reference

TC-Python Documentation, Release 2019a

Parameters number_density — Number density of nucleation sites. If not set, the value is
calculated based on the matrix settings (grain size, dislocation density) [m”"-3].

Returns This PrecipitatePhase object
set_nucleation_at_grain_boundaries (wetting_angle: float = 90.0, number_density: float =

-1)
Activates nucleation at grain boundaries for this class of precipitates. Calling the method overrides any
other nucleation setting for this class of precipitates. Default: If not set, by default bulk nucleation is

chosen.

Parameters
* wetting_angle - If not set, a default value of 90 degrees is used [degrees]
* number_density — Number density of nucleation sites. If not set, the value is calcu-
lated based on the matrix settings (grain size) [m”-3].

Returns This PrecipitatePhase object

set_nucleation_at_grain_corners (wetting_angle: float = 90, number_density: float = -1)
Activates nucleation at grain corners for this class of precipitates. Calling the method overrides any other
nucleation setting for this class of precipitates. Default: If not set, by default bulk nucleation is chosen.

Parameters
* wetting_angle - If not set, a default value of 90 degrees is used [degrees]
* number_density — Number density of nucleation sites. If not set, the value is calcu-
lated based on the matrix settings (grain size) [m”-3].

Returns This PrecipitatePhase object

set_nucleation_at_grain_edges (wetting_angle=90, number_density=-1)
Activates nucleation at the grain edges for this class of precipitates. Calling the method overrides any other

nucleation setting for this class of precipitates. Default: If not set, by default bulk nucleation is chosen.

Parameters
* wetting_angle - If not set, a default value of 90 degrees is used [degrees]
* number_density — Number density of nucleation sites. If not set, the value is calcu-
lated based on the matrix settings (grain size) [m”-3].

Returns This PrecipitatePhase object

set_nucleation_in_bulk (number_density: float = -1)
Activates nucleation in the bulk for this class of precipitates. Calling the method overrides any other

nucleation setting for this class of precipitates. Default: This is the default setting (with an automatically

calculated number density).
Parameters number_density — Number density of nucleation sites. If not set, the value is
calculated based on the matrix settings (molar volume) [m”-3]

Returns This PrecipitatePhase object

set_phase_boundary_mobility (phase_boundary_mobility: float)
Sets the phase boundary mobility. Default: 10.0 m”4/(Js).

Parameters phase_boundary_mobility — The phase boundary mobility [m”"4/(Js)]

Returns This PrecipitatePhase object
set_precipitate_morphology (precipitate_morphology_enum: tc_python.precipitation. PrecipitateMorphology)
Sets the precipitate morphology. Default: PrecipitateMorphology . SPHERE

33

5.1. Calculations

TC-Python Documentation, Release 2019a

Parameters precipitate_morphology_enum— The precipitate morphology
Returns This PrecipitatePhase object

set_transformation_strain calculation_option (transformation_strain_calculation_option_enum:

tc_python.precipitation. TransformationStrainCalculationOpti
Sets the transformation strain calculation option. Default: TransformationStrainCalculationOption.

DISREGARD.

Parameters transformation_strain_calculation_option_enum — The chosen
option

Returns This PrecipitatePhase object

with_elastic_properties (elastic_properties: tc_python.precipitation. PrecipitateElasticProperties)
Sets the elastic properties. Default: The elastic transformation strain is disregarded by default.

Parameters elastic_properties — The elastic properties object

Returns This PrecipitatePhase object

Note: This method has only an effect if the option TransformationStrainCalculationOption.
USER_DEFINED has been chosen using the method set_transformation_strain_calculation_option ().

with_growth_rate_model (growth_rate_model_enum: tc_python.precipitation.GrowthRateModel)
Sets the growth rate model for the class of precipitates. Default: Growt hRateModel.SIMPLIFIED

Parameters growth_rate_model_enum - The growth rate model
Returns This PrecipitatePhase object

with_particle_size_distribution (particle_size_distribution:

tc_python.precipitation. ParticleSizeDistribution)
Sets the initial particle size distribution for this class of precipitates. Default: If the initial particle size

distribution is not explicitly provided, the simulation will start from a supersaturated matrix.
Parameters particle_size_distribution - The initial particle size distribution object

Returns This PrecipitatePhase object

Tip: Use this option if you want to study the further evolution of an existing microstructure.

class tc_python.precipitation.PrecipitationCCTCalculation (calculation)
Bases: tc_python.abstract_base.AbstractCalculation

Configuration for a Continuous-Cooling-Time (CCT) precipitation calculation.

calculate () — tc_python.precipitation.PrecipitationCalculationTTTorCCTResult
Runs the CCT-diagram calculation.

Returns A PrecipitationCalculationTTTorCCTResult which later can be used to get specific val-
ues from the calculated result

set_composition (element_name: str, value: float)
Sets the composition of the elements. The unit for the composition can be changed using
set_composition_unit (). Default: Mole percent (CompositionUnit .MOLE_PERCENT)

Parameters
¢ element_name — The element

* value — The composition (fraction or percent depending on the composition unit)

34 Chapter 5. API Reference

TC-Python Documentation, Release 2019a

Returns This PrecipitationCalculation object

set_composition_unit (unit_enum: tc_python.utils. CompositionUnit)
Sets the composition unit. Default: Mole percent (CompositionUnit .MOLE_PERCENT).

Parameters unit_enum — The new composition unit
Returns This PrecipitationCalculation object

set_cooling_rates (cooling_rates: List[float])
Sets all cooling rates for which the CCT-diagram should be calculated.

Parameters cooling_rates — A list of cooling rates [K/s]
Returns This PrecipitationCCTCalculation object

set_max_temperature (max_temperature: float)
Sets maximum temperature of the CCT-diagram.

Parameters max_temperature — the maximum temperature [K]
Returns This PrecipitationCCTCalculation object

set_min_temperature (min_temperature: float)
Sets the minimum temperature of the CCT-diagram.

Parameters min_temperature — the minimum temperature [K]
Returns This PrecipitationCCTCalculation object

stop_at_volume_fraction_of_phase (stop_criterion_value: float)
Sets the stop criterion as a volume fraction of the phase. This setting is applied to all phases.

Parameters stop_criterion_value — the volume fraction of the phase (a value between
Oand 1)

Returns This PrecipitationCCTCalculation object

with_matrix_phase (matrix_phase: tc_python.precipitation.MatrixPhase)
Sets the matrix phase.

Parameters matrix_phase — The matrix phase
Returns This PrecipitationCalculation object

with_numerical_parameters (numerical_parameters: tc_python.precipitation.NumericalParameters)
Sets the numerical parameters. If not specified, reasonable defaults will be used.

Parameters numerical_parameters — The parameters
Returns This PrecipitationCalculation object

class tc_python.precipitation.PrecipitationCalculationResult (result)
Bases: tc_python.abstract_base.AbstractResult

Result of a precipitation calculation. This can be used to query for specific values.

save_to_disk (path: str)
Saves the result to disc. Note tha a result is a folder, containing potentially many files. The result can later
be loaded with 1oad_result_ from disk ()

Parameters path — the path to the folder you want the result to be saved in. It can be relative
or absolute.

Returns this PrecipitationCalculationResult object

5.1. Calculations 35

TC-Python Documentation, Release 2019a

class tc_python.precipitation.PrecipitationCalculationSingleResult (result)
Bases: tc_python.precipitation.PrecipitationCalculationResult

Result of a isothermal or non-isothermal precipitation calculation. This can be used to query for specific values.
A detailed definition of the axis variables can be found in the Help.

get_aspect_ratio_distribution_for_ particle_length_of (precipitate_id: str,
time: float) — [typ-
ing.List[float], typ-
ing.List[float]]

Returns the aspect ratio distribution of a precipitate in dependency of its mean particle length at a certain
time. Only available if the morphology is set to PrecipitateMorphology.NEEDLE or PrecipitateMorphol-
ogy.PLATE.

Parameters

¢ time — The time [s]

* precipitate_id - The id of a precipitate can either be the phase name or an alias
Returns A tuple of two lists of floats (mean particle length [m], aspect ratio)

get_aspect_ratio_distribution_for_radius_of (precipitate_id: str, time: float) — [typ-
ing.List[float], typing.List[float]]
Returns the aspect ratio distribution of a precipitate in dependency of its mean radius at a certain time. Only
available if the morphology is set to PrecipitateMorphology. NEEDLE or PrecipitateMorphology. PLATE.

Parameters

¢ time — The time [s]

* precipitate_id - The id of a precipitate can either be the phase name or an alias
Returns A tuple of two lists of floats (mean radius [m], aspect ratio)

get_critical_radius_of (precipitate_id: str) — [typing.List[float], typing.List[float]]
Returns the critical radius of a precipitate in dependency of the time.

Parameters precipitate_id - The id of a precipitate can either be phase name or alias

Returns A tuple of two lists of floats (time [s], critical radius [m])

get_cubic_factor_ distribution_for_particle_ length_of (precipitate_id: Str,
time: float) — [typ-
ing.List[float], typ-
ing.List[float]]

Returns the cubic factor distribution of a precipitate in dependency of its mean particle length at a certain
time. Only available if the morphology is set to PrecipitateMorphology. CUBOID.

Parameters

* time — The time in seconds

* precipitate_id - The id of a precipitate can either be the phase name or an alias
Returns A tuple of two lists of floats (particle length [m], cubic factor)

get_cubic_factor_distribution_for_radius_of (precipitate_id: str, time: float) — [typ-
ing.List[float], typing.List[float]]
Returns the cubic factor distribution of a precipitate in dependency of its mean radius at a certain time.
Only available if the morphology is set to PrecipitateMorphology. CUBOID.

Parameters

¢ time — The time [s]

36 Chapter 5. API Reference

TC-Python Documentation, Release 2019a

* precipitate_id - The id of a precipitate can either be the phase name or an alias
Returns A tuple of two lists of floats (radius [m], cubic factor)

get_driving force_of (precipitate_id: str) — [typing.List[float], typing.List[float]]
Returns the (by R * T) normalized driving force of a precipitate in dependency of the time.

Parameters precipitate_id — The id of a precipitate can either be the phase name or an
alias

Returns A tuple of two lists of floats (time [s], normalized driving force)

get_matrix composition_in _mole_fraction_of (element_name: Str) — [typ-
ing.List[float], typing.List[float]]
Returns the matrix composition (as mole fractions) of a certain element in dependency of the time.

Parameters element_name — The element
Returns A tuple of two lists of floats (time [s], mole fraction)

get_matrix_composition_in_weight_fraction_of (element_name: str)y — [typ-
ing.List[float], typing.List[float]]
Returns the matrix composition (as weight fraction) of a certain element in dependency of the time.

Parameters element_name — The element
Returns A tuple of two lists of floats (time [s], weight fraction)

get_mean_aspect_ratio_of (precipitate_id: str) — [typing.List[float], typing.List[float]]
Returns the mean aspect ratio of a precipitate in dependency of the time. Only available if the morphology
is set to PrecipitateMorphology. NEEDLE or PrecipitateMorphology. PLATE.

Parameters precipitate_id — The id of a precipitate can either be the phase name or an
alias

Returns A tuple of two lists of floats (time [s], mean aspect ratio)

get_mean_cubic_factor_of (precipitate_id: str) — [typing.List[float], typing.List[float]]
Returns the mean cubic factor of a precipitate in dependency of the time. Only available if the morphology
is set to PrecipitateMorphology. CUBOID.

Parameters precipitate_id — The id of a precipitate can either be the phase name or an
alias

Returns A tuple of two lists of floats (time [s], mean cubic factor)

get_mean_particle_length_of (precipitate_id: str) — [typing.List[float], typing.List[float]]
Returns the mean particle length of a precipitate in dependency of the time. Only available if the morphol-
ogy is set to PrecipitateMorphology.NEEDLE or PrecipitateMorphology.PLATE.

Parameters precipitate_id - The id of a precipitate can either be the phase name or an
alias

Returns A tuple of two lists of floats (time [s], mean particle length [m])

get_mean_ radius_of (precipitate_id: str) — [typing.List[float], typing.List[float]]
Returns the mean radius of a precipitate in dependency of the time.

Parameters precipitate_id - The id of a precipitate can either be phase name or alias
Returns A tuple of two lists of floats (time [s], mean radius [m])

get_nucleation_rate_of (precipitate_id: str) — [typing.List[float], typing.List[float]]
Returns the nucleation rate of a precipitate in dependency of the time.

5.1. Calculations 37

TC-Python Documentation, Release 2019a

Parameters precipitate_id — The id of a precipitate can either be the phase name or an
alias

Returns A tuple of two lists of floats (time [s], nucleation rate [m”-3 s”-1)

get_number_density distribution_for_particle_length_of (precipitate_id: str,
time: float) —
[typing.List[float],
typing.List[float]]
Returns the number density distribution of a precipitate in dependency of its mean particle length at a
certain time.

Parameters
¢ time — The time [s]
* precipitate_id - The id of a precipitate can either be the phase name or an alias

Returns A tuple of two lists of floats (particle length[m], number of particles per unit volume
per unit length [m”-4])

get_number_density distribution_for_radius_of (precipitate_id: str, time: float)
— [typing.List[float], typ-
ing.List[float]]
Returns the number density distribution of a precipitate in dependency of its mean radius at a certain time.

Parameters
¢ time — The time [s]
* precipitate_id - The id of a precipitate can either be the phase name or an alias

Returns A tuple of two lists of floats (radius [m], number of particles per unit volume per unit
length [m”-4])

get_number_ density_ of (precipitate_id: str) — [typing.List[float], typing.List[float]]
Returns the particle number density of a precipitate in dependency of the time.

Parameters precipitate_id - The id of a precipitate can either be phase name or alias
Returns A tuple of two lists of floats (time [s], particle number density [m”-3])

get_precipitate_composition_in_mole_fraction_of (precipitate_id: Str, ele-
ment_name: str) — [typ-
ing.List[float], typing.List[float]]
Returns the precipitate composition (as mole fractions) of a certain element in dependency of the time.

Parameters
* precipitate_id - The id of a precipitate can either be phase name or alias
* element_name — The element

Returns A tuple of two lists of floats (time [s], mole fraction)

get_precipitate_composition_in_weight_fraction_of (precipitate_id: str, el-
ement_name. Str) —
[typing.List[float], typ-
ing.List[float]]

Returns the precipitate composition (as weight fraction) of a certain element in dependency of the time.
Parameters
* precipitate_id - The id of a precipitate can either be phase name or alias

¢ element_name — The element

38 Chapter 5. API Reference

TC-Python Documentation, Release 2019a

Returns A tuple of two lists of floats (time [s], weight fraction)

get_size_distribution_for_ particle_length_of (precipitate_id: str, time: float) —
[typing.List[float], typing.List[float]]
Returns the size distribution of a precipitate in dependency of its mean particle length at a certain time.

Parameters
¢ time — The time [s]
* precipitate_id - The id of a precipitate can either be the phase name or an alias

Returns A tuple of two lists of floats (particle length[m], number of particles per unit volume
per unit length [m”-4])

get_size_ distribution_for radius_of (precipitate_id: str, time: float) — [typ-
ing.List[float], typing.List[float]]
Returns the size distribution of a precipitate in dependency of its mean radius at a certain time.

Parameters
¢ time — The time [s]
* precipitate_id - The id of a precipitate can either be the phase name or an alias

Returns A tuple of two lists of floats (radius [m], number of particles per unit volume per unit
length [m”-4])

get_volume_fraction_of (precipitate_id: str) — [typing.List[float], typing.List[float]]
Returns the volume fraction of a precipitate in dependency of the time.

Parameters precipitate_id — The id of a precipitate can either be the phase name or an
alias

Returns A tuple of two lists of floats (time [s], volume fraction)

class tc_python.precipitation.PrecipitationCalculationTTTorCCTResult (result)
Bases: tc_python.precipitation.PrecipitationCalculationResult

Result of a TTT or CCT precipitation calculation.

get_result_for precipitate (precipitate_id: str) — [typing.List[float], typing.List[float]]
Returns the calculated data of a TTT or CCT diagram for a certain precipitate.

Parameters precipitate_id — The id of a precipitate can either be the phase name or an
alias

Returns A tuple of two lists of floats (time [s], temp [K])

class tc_python.precipitation.PrecipitationIsoThermalCalculation (calculation)
Bases: tc_python.abstract_base.AbstractCalculation

Configuration for an isothermal precipitation calculation.

calculate () — tc_python.precipitation.PrecipitationCalculationSingleResult
Runs the isothermal precipitation calculation.

Returns A PrecipitationCalculationSingleResult which later can be used to get specific values
from the calculated result

set_composition (element_name: str, value: float)
Sets the composition of the elements. The unit for the composition can be changed using
set_composition_unit (). Default: Mole percent (CompositionUnit .MOLE_PERCENT)

Parameters

¢ element_name — The element

5.1. Calculations 39

TC-Python Documentation, Release 2019a

* value — The composition (fraction or percent depending on the composition unit)
Returns This PrecipitationCalculation object

set_composition_unit (unit_enum: tc_python.utils. CompositionUnit)
Sets the composition unit. Default: Mole percent (CompositionUnit .MOLE_PERCENT).

Parameters unit_enum — The new composition unit
Returns This PrecipitationCalculation object

set_simulation_time (simulation_time: float)
Sets the simulation time.

Parameters simulation_time — The simulation time [s]
Returns This PrecipitationIsoThermalCalculation object

set_temperature (femperature: float)
Sets the temperature for the isothermal simulation.

Parameters temperature — the temperature [K]
Returns This PrecipitationIsoThermalCalculation object

with_matrix_phase (matrix_phase: tc_python.precipitation.MatrixPhase)
Sets the matrix phase.

Parameters matrix_ phase — The matrix phase
Returns This PrecipitationCalculation object

with_numerical_parameters (numerical_parameters: tc_python.precipitation.NumericalParameters)
Sets the numerical parameters. If not specified, reasonable defaults will be used.

Parameters numerical_parameters — The parameters
Returns This PrecipitationCalculation object

class tc_python.precipitation.PrecipitationNonIsoThermalCalculation (calculation)
Bases: tc_python.abstract_base.AbstractCalculation

Configuration for a non-isothermal precipitation calculation.

calculate () — tc_python.precipitation.PrecipitationCalculationSingleResult
Runs the non-isothermal precipitation calculation.

Returns A PrecipitationCalculationSingleResult which later can be used to get specific values
from the calculated result

set_composition (element_name: str, value: float)
Sets the composition of the elements. The unit for the composition can be changed using
set_composition_unit (). Default: Mole percent (CompositionUnit .MOLE_PERCENT)

Parameters

* element_name — The element

* value - The composition (fraction or percent depending on the composition unit)
Returns This PrecipitationCalculation object

set_composition_unit (unit_enum: tc_python.utils. CompositionUnit)
Sets the composition unit. Default: Mole percent (CompositionUnit .MOLE_PERCENT).

Parameters unit_enum — The new composition unit

Returns This PrecipitationCalculation object

40 Chapter 5. API Reference

TC-Python Documentation, Release 2019a

set_simulation_time (simulation_time: float)
Sets the simulation time.

Parameters simulation_time — The simulation time [s]
Returns This PrecipitationNonThermalCalculation object

with_matrix_phase (matrix_phase: tc_python.precipitation.MatrixPhase)
Sets the matrix phase.

Parameters matrix phase — The matrix phase
Returns This PrecipitationCalculation object

with_numerical_parameters (numerical_parameters: tc_python.precipitation.NumericalParameters)
Sets the numerical parameters. If not specified, reasonable defaults will be used.

Parameters numerical_ parameters — The parameters
Returns This PrecipitationCalculation object

with_temperature_profile (temperature_profile: tc_python.utils. TemperatureProfile)
Sets the temperature profile to use with this calculation.

Parameters temperature_profile —the temperature profile object (specifying time / tem-
perature points)

Returns This PrecipitationNonThermalCalculation object

class tc_python.precipitation.PrecipitationTTTCalculation (calculation)
Bases: tc_python.abstract_base.AbstractCalculation

Configuration for a TTT (Time-Temperature-Transformation) precipitation calculation.

calculate () — tc_python.precipitation.PrecipitationCalculationTTTorCCTResult
Runs the TTT-diagram calculation.

Returns A PrecipitationCalculationTTTorCCTResult which later can be used to get specific val-
ues from the calculated result.

set_composition (element_name: str, value: float)
Sets the composition of the elements. The unit for the composition can be changed using
set_composition_unit (). Default: Mole percent (CompositionUnit .MOLE_PERCENT)

Parameters

¢ element_ name — The element

* value — The composition (fraction or percent depending on the composition unit)
Returns This PrecipitationCalculation object

set_composition_unit (unit_enum: tc_python.utils. CompositionUnit)
Sets the composition unit. Default: Mole percent (CompositionUnit .MOLE_PERCENT).

Parameters unit_enum — The new composition unit
Returns This PrecipitationCalculation object

set_max annealing_time (max_annealing_time: float)
Sets the maximum annealing time, i.e. the maximum time of the simulation if the stopping criterion is not
reached.

Parameters max_annealing_time — the maximum annealing time [s]

Returns This PrecipitationTTTCalculation object

5.1. Calculations 41

TC-Python Documentation, Release 2019a

set_max_temperature (max_temperature: float)
Sets the maximum temperature for the TTT-diagram.

Parameters max_temperature — the maximum temperature [K]
Returns This PrecipitationTTTCalculation object

set_min_temperature (min_temperature: float)
Sets the minimum temperature for the TTT-diagram.

Parameters min_temperature — the minimum temperature [K]
Returns This PrecipitationTTTCalculation object

set_temperature_step (temperature_step: float)
Sets the temperature step for the TTT-diagram, if unset the default value is 10 K.

Parameters temperature_step - the temperature step [K]
Returns This PrecipitationTTTCalculation object

stop_at_percent_of_ equilibrium_fraction (percentage: float)
Sets the stop criterion to a percentage of the overall equilibrium phase fraction, alternatively a required
volume fraction can be specified (using stop_at_volume_fraction of_phase()).

Parameters percentage — the percentage to stop at (value between 0 and 100)
Returns This PrecipitationTTTCalculation object

stop_at_volume_fraction_of_phase (volume_fraction: float)
Sets the stop criterion as a volume fraction of the phase, alternatively a required percentage of the equilib-
rium phase fraction can be specified (using stop_at_percent_of_equilibria_fraction()).
Stopping at a specified volume fraction is the default setting.

This setting is applied to all phases.
Parameters volume_fraction — the volume fraction to stop at (a value between 0 and 1)
Returns This PrecipitationTTTCalculation object

with_matrix_phase (matrix_phase: tc_python.precipitation.MatrixPhase)
Sets the matrix phase.

Parameters matrix phase — The matrix phase
Returns This PrecipitationCalculation object

with_numerical_parameters (numerical_parameters: tc_python.precipitation.NumericalParameters)
Sets the numerical parameters. If not specified, reasonable defaults will be used.

Parameters numerical_parameters — The parameters
Returns This PrecipitationCalculation object

class tc_python.precipitation.TransformationStrainCalculationOption
Bases: enum.Enum

Options for calculating the transformation strain.

CALCULATE_FROM_MOLAR VOLUME = 2
Calculates the transformation strain from the molar volume, obtains a purely dilatational strain.

DISREGARD = 1
Ignores the transformation strain, this is the default setting.

USER _DEFINED = 3
Transformation strain to be specified by the user.

42 Chapter 5. API Reference

TC-Python Documentation, Release 2019a

class tc_python.precipitation.VolumeFractionOfPhaseType
Bases: enum.Enum

Unit of the volume fraction of a phase.

VOLUME_FRACTION = 6
Volume fraction (0 - 1), this is the default.

VOLUME_PERCENT = 5
Volume percent (0% - 100%).

5.1.3 Module “scheil”

class tc_python.scheil.ScheilCalculation (calculator)
Bases: tc_python.abstract_base.AbstractCalculation

Configuration for a Scheil solidification calculation.

Note: Specify the settings, the calculation is performed with calculate ().

calculate () — tc_python.scheil.ScheilCalculationResult
Runs the Scheil calculation.

Warning: Scheil calculations do not support the GAS phase being selected, this means the GAS phase
must always be deselected in the system if it is present in the database

Returns A ScheilCalculationResult which later can be used to get specific values from
the simulation.

disable_approximate_driving force_for_metastable_ phases()
Disables the approximation of the driving force for metastable phases.

Default: Enabled

Note: When enabled, the metastable phases are included in all iterations. However, these may not have
reached their most favourable composition and thus their driving forces may be only approximate.

It it is important that these driving forces are correct, use
disable_approximate driving force for._metastable_phases() to force the
calculation to converge for the metastable phases.

Returns This ScheilCalculation object

disable_global_minimization ()
Disables global minimization.

Default: Disabled

Note: When enabled, a global minimization test is performed when an equilibrium is reached. This costs
more computer time but the calculations are more robust.

5.1. Calculations 43

TC-Python Documentation, Release 2019a

Returns This ScheilCalculation object

enable_approximate_driving force_for_ metastable_phases ()
Enables the approximation of the driving force for metastable phases.

Default: Enabled

Note: When enabled, the metastable phases are included in all iterations. However, these may not have
reached their most favourable composition and thus their driving forces may be only approximate.

It it is important that these driving forces are correct, use
disable_approximate driving force for_metastable_phases() to force the
calculation to converge for the metastable phases.

Returns This ScheilCalculation object

enable_global_minimization ()
Enables global minimization.

Default: Disabled

Note: When enabled, a global minimization test is performed when an equilibrium is reached. This costs
more computer time but the calculations are more robust.

Returns This ScheilCalculation object

set_composition (component_name: str, value: float)
Sets the composition of a component. The unit for the composition can be changed using
set_composition_unit ().

Default: Mole percent (CompositionUnit .MOLE_PERCENT)
Parameters
* component_name — The component
* value — The composition value [composition unit defined for the calculation]
Returns This ScheilCalculation object

set_composition_unit (unit_enum: tc_python.utils. CompositionUnit = <Compositio-

nUnit MOLE_PERCENT: 1>)
Sets the composition unit.

Default: Mole percent (CompositionUnit .MOLE_PERCENT).
Parameters unit_enum — The new composition unit
Returns This ScheilCalculation object

set_fast_diffusing elements (element_names: List[str])
Sets elements as fast diffusing. This allows redistribution of these elements in both the solid and liquid
parts of the alloy.

Default: No fast-diffusing elements.
Parameters element names — The elements

Returns This ScheilCalculation object

44 Chapter 5. API Reference

TC-Python Documentation, Release 2019a

set_liquid_phase (phase_name: str = 'LIQUID’)
Sets the phase used as the liquid phase.

Default: The phase “LIQUID”.
Parameters phase_name — The phase name
Returns This ScheilCalculation object

set_max_no_of_iterations (max_no_of_iterations: int = 500)
Set the maximum number of iterations.

Default: max. 500 iterations

Note: As some models give computation times of more than 1 CPU second/iteration, this number is also
used to check the CPU time and the calculation stops if 500 CPU seconds/iterations are used.

Parameters max no_of iterations — The max. number of iterations
Returns This ScheilCalculation object
set_required_accuracy (accuracy: float = le-06)
Sets the required relative accuracy.

Default: 1.0E-6

Note: This is a relative accuracy, and the program requires that the relative difference in each variable
must be lower than this value before it has converged. A larger value normally means fewer iterations
but less accurate solutions. The value should be at least one order of magnitude larger than the machine
precision.

Parameters accuracy — The required relative accuracy
Returns This ScheilCalculation object
set_smallest_fraction (smallest_fraction: float = le-12)
Sets the smallest fraction for constituents that are unstable.
It is normally only in the gas phase that you can find such low fractions.

The default value for the smallest site-fractions is 1E-12 for all phases except for IDEAL phase with one
sublattice site (such as the GAS mixture phase in many databases) for which the default value is always as
1E-30.

Parameters smallest fraction — The smallest fraction for constituents that are unstable
Returns This ScheilCalculation object

set_start_temperature (femperature_in_kelvin: float = 2500.0)
Sets the start temperature.

Warning: The start temperature needs to be higher than the liquidus temperature of the alloy.

Default: 2500.0 K

Parameters temperature_in_kelvin — The temperature [K]

. Calculations 45

TC-Python Documentation, Release 2019a

Returns This ScheilCalculation object

set_temperature_step (temperature_step_in_kelvin: float = 1.0)
Sets the temperature step. Decreasing the temperature step increases the accuracy, but the default value is

usually adequate.

Default step: 1.0 K
Parameters temperature_step_in_kelvin — The temperature step [K]
Returns This ScheilCalculation object

terminate_on_fraction_of_ liquid_phase (fraction_to_terminate_at: float = 0.01)
Sets the termination condition to a specified remaining fraction of liquid phase.

Default: Terminates at 0.01 fraction of liquid phase.

Note: Either the termination criterion is set to a temperature or fraction of liquid limit, both together are
not possible.

Parameters fraction to_terminate_at - the termination fraction of liquid phase
(value between 0 and 1)

Returns This ScheilCalculation object
terminate_on_temperature (temperature_in_kelvin: float)
Sets the termination condition to a specified temperature.

Default: Terminates at 0.01 fraction of liquid phase, i.e. not at a specified temperature.

Note: Either the termination criterion is set to a temperature or fraction of liquid limit, both together are
not possible.

Parameters temperature_in_kelvin — the termination temperature [K]

Returns This ScheilCalculation object

class tc_python.scheil.ScheilCalculationResult (result)
Bases: tc_python.abstract_base.AbstractResult

Result of a Scheil calculation.

get_values_grouped_by_quantity_of (x_quantity: Union[tc_python.quantity_factory.ScheilQuantity,
str], y_quantity: Union[tc_python.quantity_factory.ScheilQuantity,
str], sort_and_merge: bool = True) — Dict[str,
tc_python.utils.ResultValueGroup]
Returns x-y-line data grouped by the multiple datasets of the specified quantities (for example in de-
pendency of phases or components). Use get_values_of () instead if you need no separation. The
available quantities can be found in the documentation of the factory class ScheilQuantity.

Note: The different datasets might contain NaN-values between different subsections and might not be
sorted even if the flag ‘sort_and_merge‘ has been set (because they might be unsortable due to their

nature).

Parameters

46 Chapter 5. API Reference

TC-Python Documentation, Release 2019a

* x_quantity — The first Scheil quantity (“x-axis”), console syntax strings can be used
as an alternative (for example “T”)

* y_quantity - The second Scheil quantity (“y-axis”), console syntax strings can be used
as an alternative (for example “NV”’)

* sort_and_merge — If True, the data will be sorted and merged into as few subsections
as possible (divided by NaN)

Returns Dict containing the ResultValueGroup dataset objects with their quantity labels
as keys

get_values_grouped_by_stable_phases_of (x_quantity: Union[tc_python.quantity_factory.ScheilQuantity,

str], y_quantity:
Union[tc_python.quantity_factory.ScheilQuantity,
str], sort_and_merge: bool = True) —

Dict[str, tc_python.utils.ResultValueGroup]
Returns x-y-line data grouped by the sets of “stable phases” (for example “LIQUID” or “LIQUID +
FCC_A1"). Use get_values_of () instead if you need no separation. The available quantities can
be found in the documentation of the factory class ScheilQuantity.

Note: The different datasets might contain NaN-values between different subsections and might not be
sorted even if the flag ‘sort_and_merge‘ has been set (because they might be unsortable due to their
nature).

Parameters

* x_quantity — The first Scheil quantity (‘“x-axis”), console syntax strings can be used
as an alternative (for example “T”)

e y_quantity - The second Scheil quantity (“y-axis”), console syntax strings can be used
as an alternative (for example “NV”)

* sort_and_merge — If True, the data will be sorted and merged into as few subsections
as possible (divided by NaN)

Returns Dict containing the ResultValueGroup dataset objects with their “stable phases”
labels as keys

get_values_of (x_quantity: Union[tc_python.quantity_factory.ScheilQuantity, str], y_quantity:
Union[tc_python.quantity_factory.ScheilQuantity, str]) — [typing.List[float], typ-
ing.List[float]]
Returns sorted x-y-line data without any separation. Use get_values grouped by quantity of ()
or get_values_grouped_by_stable_phases_of () instead if you need such a separation. The
available quantities can be found in the documentation of the factory class ScheilQuantity.

Note: This method will always return sorted data without any NaN-values. In case of ambiguous quan-
tities (for example: CompositionOfPhaseAsWeightFraction(“FCC_A1”, “All”)) that can give data that is
hard to interpret. In such a case you need to choose the quantity in another way or use one of the other
methods.

Parameters

* x_quantity — The first Scheil quantity (“x-axis”), console syntax strings can be used
as an alternative (for example “T”)

5.1.

Calculations 47

TC-Python Documentation, Release 2019a

e y_quantity - The second Scheil quantity (“y-axis”), console syntax strings can be used
as an alternative (for example “NV”)

Returns A tuple containing the x- and y-data in lists
save_to_disk (path: str)

Saves the result to disc. Note tha a result is a folder, containing potentially many files. The result can later
be loaded with 1oad_result_from_disk ()

Parameters path — the path to the folder you want the result to be saved in.

Returns this ScheilCalculationResult object

5.1.4 Module “step_or_map_diagrams”

class tc_python.step_or_map_diagrams.AbstractAxisType
Bases: object
The abstract base class for all axis types.

get_type () — str
Convenience method for getting the axis type.

Returns The type

class tc_python.step_or_map_diagrams.AxisType
Bases: tc_python.step_or_map_diagrams.AbstractAxisType

Factory class providing objects for configuring a logarithmic or linear axis by using AxisType. linear ()
or AxisType.logarithmic ().

classmethod linear ()
Creates an object for configuring a linear calculation axis.

Default: A minimum number of 40 steps.

Note: The returned object can be configured regarding the maximum step size or the minimum number
of steps on the axis.

Returns A new Linear object

classmethod logarithmic ()
Creates an object for configuring a logarithmic calculation axis.

Default: A scale factor of 1.1

Note: The returned object can be configured regarding the scale factor.

Returns A new Logarithmic object

class tc_python.step_or_map_diagrams.CalculationAxis (quantity:

Union[tc_python.quantity_factory. ThermodynamicQuar

str])
Bases: object

A calculation axis used for property and phase diagram calculations.

48 Chapter 5. API Reference

TC-Python Documentation, Release 2019a

Note: A calculation axis is defining the varied condition and the range of variation. It is the same concept as in
Thermo-Calc Graphical Mode or Console Mode.

Default: A 7.inear axis with a minimum number of 40 steps

set_max (max: float)
Sets the maximum quantity value of the calculation axis.

There is no default value set, it always needs to be defined.
Parameters max — The maximum quantity value of the axis [unit according to the axis quantity]
Returns This CalculationAxis object

set_min (min: float)
Sets the minimum quantity value of the calculation axis.

There is no default value set, it always needs to be defined.
Parameters min — The minimum quantity value of the axis [unit according to the axis quantity]
Returns This CalculationAxis object

set_start_at (at: float)
Sets the starting point of the calculation on the axis.

Default: The default starting point is the center between the minimum and maximum quantity value
Parameters at — The starting point on the axis [unit according to the axis quantity]
Returns This CalculationAxis object

with_axis_type (axis_type: tc_python.step_or_map_diagrams.AxisType)
Sets the type of the axis.

Default: A I.inear axis with a minimum number of 40 steps
Parameters axis_type — The axis type (linear or logarithmic)
Returns This CalculationAxis object

class tc_python.step_or_map_diagrams.Direction
Bases: enum.Enum

DECREASE_FIRST_AXIS = 3
DECREASE_SECOND_AXIS = 4
INCREASE _FIRST AXIS = 0
INCREASE_SECOND_AXIS =1

class tc_python.step_or_map_diagrams.InitialEquilibrium (first_axis: float, sec-
ond_axis: float)
Bases: object

add_equilibria_at_all_ phase_changes ()
This generates one start point for each set of phase change in the chosen direction of the specified axis
This ensures finding all possible phase boundary lines (not just the first one) along such an axis direction.

Default behavior is to only generate one start point at the first phase change.

Returns This TnitialEquilibriumobject

5.1. Calculations 49

TC-Python Documentation, Release 2019a

add_equilibria_at_first_phase_change ()
This generates one start point at the first phase change.

This is the default behavior.
Returns This TnitialEquilibriumobject

set_direction (direction_enum: tc_python.step_or_map_diagrams.Direction)
Specifies along which axes the initial equilibria should be added.

The default direction is INCREASE_FIRST_AXIS.
Parameters direction enum-—
Returns This TnitialEquilibriumobject

class tc_python.step_or_map_diagrams.Linear
Bases: tc_python.step_or_map_diagrams.AbstractAxisType

Represents a linear axis.

get_type () — str
Convenience method for getting axis type.

Returns The type

set_max_step_size (max_step_size: float)
Sets the axis to use the maximum step size configuration.

Default: This is not the default which is minimum number of steps

Note: Either maximum step size or minimum number of steps can be used but not both at the same time.

Parameters max_step_size — The maximum step size [unit according to the axis quantity]

Returns This Linear object

set_min_nr of_steps (min_nr_of_steps: float = 40)
Sets the axis to use the minimum number of steps configuration.

Default: This is the default option (with a minimum number of steps of 40)

Note: Either maximum step size or minimum number of steps can be used but not both at the same time.

Parameters min_nr of_steps — The minimum number of steps

Returns This Linear object

class tc_python.step_or_map_diagrams.Logarithmic (scale_factor: float = 1.1)
Bases: tc_python.step_or_map_diagrams.AbstractAxisType

Represents a logarithmic axis.

Note: A logarithmic axis is useful for low fractions like in a gas phase where 1E-7 to 1E-2 might be an
interesting range. For the pressure a logarithmic axis is often also useful.

get_type () — str
Convenience method for getting axis type.

50 Chapter 5. API Reference

TC-Python Documentation, Release 2019a

Returns The type

set_scale_factor (scale_factor: float = 1.1)
Sets the scale factor.

Default: 1.1

Parameters scale_factor — The scale factor setting the maximum factor between two cal-
culated values, must be larger than 1.0

Returns This Logarithmic object

class tc_python.step_or_map_diagrams.PhaseDiagramCalculation (calculator)
Bases: tc_python.abstract_base.AbstractCalculation

Configuration for a phase diagram calculation.

Note: Specify the conditions, the calculation is performed with calculate ().

add_initial_equilibrium (initial_equilibrium: tc_python.step_or_map_diagrams.Initial Equilibrium)
Add initial equilibrium start points from which a phase diagram is calculated.

Scans along the axis variables and generates start points when the scan procedure crosses a phase boundary.

It may take a little longer to execute than using the minimum number of start points, as some lines may
be calculated more than once. But the POLY module remembers all node points and subsequently stops
calculations along a line when it finds a known node point.

It is also possible to create a sequence of start points from one initial equilibria.
Parameters initial_equilibrium — The initial equilibrium
Returns This PhaseDiagramCalculation object

calculate (keep_previous_results: bool = False) — tc_python.step_or_map_diagrams.PhaseDiagramResult
Performs the phase diagram calculation.

Warning: If you use keep_previous_results=True, you must not use another calculator or even get
results in between the calculations using calculate(). Then the previous results will actually be lost.

Parameters keep_previous_results — If True, results from any previous call to this
method are appended. This can be used to combine calculations with multiple start points if
the mapping fails at a certain condition.

Returns A new PhaseDiagramResult object which later can be used to get specific values
from the calculated result.

disable_global_minimization ()
Disables global minimization.

Default: Enabled

Returns This ThermodynamicCalculation object

dont_keep_default_equilibria()
Dont keep the initial equilibria added by default.

This is only relevant in combination with add_initial_equilibrium

This is the default behavior.

5.1. Calculations 51

TC-Python Documentation, Release 2019a

Returns This PhaseDiagramCalculation object

enable_global_minimization ()
Enables global minimization.

Default: Enabled
Returns This ThermodynamicCalculation object

get_components () — List[str]
Returns the names of the components in the system (including all components auto-selected by the
database(s)).

Returns The component names

keep_default_equilibria ()
Keep the initial equilibria added by default. This is only relevant in combination with
add_initial_equilibrium

Default behaviour is to not keep default equilibria.
Returns This PhaseDiagramCalculation object

remove_all conditions ()
Removes all set conditions.

Returns This ThermodynamicCalculation object

remove_all_initial_equilibria/()
Removes all previously added initial equilibria

Returns This PhaseDiagramCalculation object

remove_condition (quantity: Union[tc_python.quantity_factory. ThermodynamicQuantity, str])
Removes the specified condition.

Parameters quantity — The ThermodynamicQuantity to set as condition, a console
syntax strings can be used as an alternative (for example X(Cr))

Returns This ThermodynamicCalculation object

run_poly command (command: str)
Runs a Thermo-Calc command from the console POLY-module immediately in the engine.

Parameters command — The Thermo-Calc console command

Returns This ThermodynamicCalculation object

Note: It should not be necessary for most users to use this method, try to use the corresponding method
implemented in the API instead.

Warning: As this method runs raw Thermo-Calc commands directly in the engine, it may hang the
program in case of spelling mistakes (e.g. forgotten equals sign).

set_component_to_entered (component: str)
Sets the specified component to the status ENTERED, that is the default state.

Parameters component — The component name

Returns This ThermodynamicCalculation object

52 Chapter 5. API Reference

TC-Python Documentation, Release 2019a

set_component_to_suspended (component: str)
Sets the specified component to the status SUSPENDED, i.e. it is ignored in the calculation.

Parameters component — The component name
Returns This ThermodynamicCalculation object

set_condition (quantity: Union[tc_python.quantity_factory. ThermodynamicQuantity, str], value:

float)
Sets the specified condition.

Parameters

e quantity — The ThermodynamicQuantity to set as condition, a console syntax string
can be used as an alternative (for example X(Cr))

* value - The value of the condition
Returns This ThermodynamicCalculation object

set_phase_to_dormant (phase: str)
Sets the phase to the status DORMANT, necessary for calculating the driving force to form the specified
phase.

Parameters phase — The phase name
Returns This ThermodynamicCalculation object

set_phase_to_entered (phase: str, amount: float)
Sets the phase to the status ENTERED, that is the default state.

Parameters

* phase — The phase name

* amount — The phase fraction (between 0.0 and 1.0)
Returns This ThermodynamicCalculation object

set_phase_to_fixed (phase: str, amount: float)
Sets the phase to the status FIXED, i.e. it is guaranteed to have the specified phase fraction after the
calculation.

Parameters

* phase — The phase name

* amount — The fixed phase fraction (between 0.0 and 1.0)
Returns This ThermodynamicCalculation object

set_phase_to_suspended (phase: str)
Sets the phase to the status SUSPENDED, i.e. it is ignored in the calculation.

Parameters phase — The phase name
Returns This ThermodynamicCalculation object

with_first_axis (axis: tc_python.step_or_map_diagrams.CalculationAxis)
Sets the first calculation axis.

Parameters axis — The axis

Returns This PhaseDiagramCalculation object

5.1.

Calculations 53

TC-Python Documentation, Release 2019a

with_reference_state (component: str, phase: str = 'SER’, temperature: float = ’cur-

rent_temperature’, pressure: float = 100000.0)
The reference state for a component is important when calculating activities, chemical potentials and

enthalpies and is determined by the database being used. For each component the data must be referred to
a selected phase, temperature and pressure, i.e. the reference state.

All data in all phases where this component dissolves must use the same reference state. However, different
databases can use different reference states for the same element/component. It is important to be careful
when combining data obtained from different databases.

By default, activities, chemical potentials and so forth are computed relative to the reference state used by
the database. If the reference state in the database is not suitable for your purposes, use this command to
set the reference state for a component using SER, i.e. the Stable Element Reference (which is usually set
as default for a major component in alloys dominated by the component). In such cases, the temperature
and pressure for the reference state is not needed.

For a phase to be usable as a reference for a component, the component needs to have the same composition
as an end member of the phase. The reference state is an end member of a phase. The selection of the end
member associated with the reference state is only performed once this command is executed.

If a component has the same composition as several end members of the chosen reference phase, then the
end member that is selected at the specified temperature and pressure will have the lowest Gibbs energy.

Parameters
* component — The name of the element must be given.

* phase — Name of a phase used as the new reference state. Or SER for the Stable Element
Reference.

* temperature — The Temperature (in K) for the reference state. = Or CUR-
RENT_TEMPERATURE which means that the current temperature is used at the time
of evaluation of the reference energy for the calculation.

* pressure — The Pressure (in Pa) for the reference state.
Returns This PhaseDiagramCalculation object

with_second_axis (axis: tc_python.step_or_map_diagrams.CalculationAxis)
Sets the second calculation axis.

Parameters axis — The axis
Returns This PhaseDiagramCalculation object

class tc_python.step_or_map_diagrams.PhaseDiagramResult (result)
Bases: tc_python.abstract_base.AbstractResult

Result of a phase diagram calculation, it can be evaluated using quantities or Console Mode syntax.

add_coordinate_for_phase_ label (x: float, y: float)
Sets a coordinate in the result plot for which the stable phases will be evaluated and provided in the
result data object. This can be used to plot the phases of a region into the phase diagram or just to
programmatically evaluate the phases in certain regions.

Warning: This method takes coordinates of the plot axes and not of the calculation axis.

Parameters
* x — The coordinate of the first plot axis (“x-axis”) [unit of the plot axis]

* y — The coordinate of the second plot axis (“y-axis”) [unit of the plot axis]

54 Chapter 5. API Reference

TC-Python Documentation, Release 2019a

Returns This PhaseDiagramResult object

get_values_grouped_by_quantity_of (x_quantity: Union[tc_python.quantity_factory.ThermodynamicQuantity,
str], y_quantity: Union[tc_python.quantity_factory.ThermodynamicQuantity,
str]) — tc_python.step_or_map_diagrams.PhaseDiagramResultValues
Returns x-y-line data grouped by the multiple datasets of the specified quantities (for example in depen-
dency of components). The available quantities can be found in the documentation of the factory class

ThermodynamicQuantity. Usually the result data represents the phase diagram.

Note: The different datasets will contain Na/N-values between different subsections and will not be sorted
(because they are unsortable due to their nature).

Parameters

* x_quantity — The first quantity (‘“x-axis”), console syntax strings can be used as an
alternative (for example “T”)

e y_quantity — The second quantity (“y-axis”), console syntax strings can be used as an
alternative (for example “NV”)

Returns The phase diagram data

get_values_grouped_by_stable_phases_of (x_quantity: Union[tc_python.quantity_factory. ThermodynamicQuantit
str], y_quantity:
Union[tc_python.quantity_factory. ThermodynamicQuantity,
str]) — tc_python.step_or_map_diagrams.PhaseDiagramResultValues
Returns x-y-line data grouped by the sets of “stable phases” (for example “LIQUID” or “LIQUID
+ FCC_A1”). The available quantities can be found in the documentation of the factory class
ThermodynamicQuantity. Usually the result data represents the phase diagram.

Note: The different datasets will contain Na/N-values between different subsections and will not be sorted
(because they are unsortable due to their nature).

Parameters

* x_quantity — The first quantity (“x-axis”), console syntax strings can be used as an
alternative (for example “T”)

* y_quantity - The second quantity (“y-axis”), console syntax strings can be used as an
alternative (for example “NV”)

Returns The phase diagram data
remove_phase_labels ()
Erases all added coordinates for phase labels.
Returns This PhaseDiagramResult object

save_to_disk (path: str)
Saves the result to disc. Note tha a result is a folder, containing potentially many files. The result can later

be loaded with 1oad_result_from_disk ()

Parameters path — the path to the folder you want the result to be saved in. It can be relative
or absolute.

Returns this PhaseDiagramResult object

5.1.

Calculations 55

TC-Python Documentation, Release 2019a

set_phase_name_style (phase_name_style_enum: tc_python.step_or_map_diagrams.PhaseNameStyle

= <PhaseNameStyle. NONE: 0>)
Sets the style of the phase name labels that will be used in the result data object (constitution description,

ordering description, ...).

Default: PhaseNameStyle. NONE
Parameters phase_name_style_enum — The phase name style
Returns This PhaseDiagramResult object

class tc_python.step_or_map_diagrams.PhaseDiagramResultValues (phase_diagram_values_java)
Bases: object

Represents the data of a phase diagram.

get_invariants () — tc_python.utils.ResultValueGroup
Returns the x- and y-datasets of all invariants in the phase diagram.

Note: The datasets will normally contain different sections separated by NaN-values.

Returns The invariants dataset object

get_lines () — Dict[str, tc_python.utils.ResultValueGroup]
Returns the x- and y-datasets of all phase boundaries in the phase diagram.

Note: The datasets will normally contain different sections separated by NaN-values.

Returns Dict containing the phase boundary datasets with the quantities or stable phases as keys
(depending on the used method to get the values)

get_phase_labels () — List[tc_python.step_or_map_diagrams.PhaseLabel]
Returns the phase labels added for «certain coordinates using PhaseDiagramRe-
sult.add_coordinate_for_phase_label().

Returns The list with the phase label data (that contains plot coordinates and stable phases)

get_tie_lines () — tc_python.utils.ResultValueGroup
Returns the x- and y-datasets of all tie-lines in the phase diagram.

Note: The datasets will normally contain different sections separated by NaN-values.

Returns The tie-line dataset object
class tc_python.step_or_map_diagrams.PhaseLabel (x: float, y: float, text: str)
Bases: object
Represents a phase label at a plot coordinate, i.e. the stable phases that are present at that plot coordinate.
Variables
* x — The coordinate of the first plot axis (“x-axis”) [unit of the plot axis]

* y — The coordinate of the second plot axis (“y-axis”) [unit of the plot axis]

56 Chapter 5. API Reference

TC-Python Documentation, Release 2019a

* text — The label (i.e. the stable phases at that point in the phase diagram, for example
“LIQUID + FCC_A1")

class tc_python.step_or_map_diagrams.PhaseNameStyle
Bases: enum.Enum

The style of the phase names used in the labels.

ALL =1
Adding ordering and constitution description.

CONSTITUTION_DESCRIPTION = 3
Adding only constitution description.

NONE = 0
Only the phase names.

ORDERING_DESCRIPTION = 4
Adding only ordering description.

class tc_python.step_or_map_diagrams.PropertyDiagramCalculation (calculator)
Bases: tc_python.abstract_base.AbstractCalculation

Configuration for a property diagram calculation.

Note: Specify the conditions, the calculation is performed with calculate ().

calculate (keep_previous_results: bool = False) — tc_python.step_or_map_diagrams.PropertyDiagramResult
Performs the property diagram calculation.

Warning: If you use keep_previous_results=True, you must not use another calculator or even get
results in between the calculations using calculate(). Then the previous results will actually be lost.

Parameters keep_previous_results — If True, results from any previous call to this
method are appended. This can be used to combine calculations with multiple start points if
the stepping fails at a certain condition.

Returns A new PropertyDiagramResult object which later can be used to get specific
values from the calculated result
disable_global_minimization ()
Disables global minimization.
Default: Enabled
Returns This ThermodynamicCalculation object

disable_step_separate_phases ()
Disables step separate phases. This is the default setting.

Returns This PropertyDiagramCalculation object

enable_global_minimization ()
Enables global minimization.

Default: Enabled

Returns This ThermodynamicCalculation object

5.1. Calculations 57

TC-Python Documentation, Release 2019a

enable_step_separate_phases ()
Enables step separate phases.

Default: By default separate phase stepping is disabled

Note: This is an advanced option, it is used mostly to calculate how the Gibbs energy for a number
of phases varies for different compositions. This is particularly useful to calculate Gibbs energies for
complex phases with miscibility gaps and for an ordered phase that is never disordered (e.g. SIGMA-
phase, G-phase, MU-phase, etc.).

Returns This PropertyDiagramCalculation object

get_components () — List[str]
Returns the names of the components in the system (including all components auto-selected by the
database(s)).

Returns The component names

remove_all conditions ()
Removes all set conditions.

Returns This ThermodynamicCalculation object

remove_condition (quantity: Union[tc_python.quantity_factory. ThermodynamicQuantity, str])
Removes the specified condition.

Parameters quantity — The ThermodynamicQuantity to set as condition, a console
syntax strings can be used as an alternative (for example X(Cr))

Returns This ThermodynamicCalculation object

run_poly_command (command: str)
Runs a Thermo-Calc command from the console POLY-module immediately in the engine.

Parameters command — The Thermo-Calc console command

Returns This ThermodynamicCalculation object

Note: It should not be necessary for most users to use this method, try to use the corresponding method
implemented in the API instead.

Warning: As this method runs raw Thermo-Calc commands directly in the engine, it may hang the
program in case of spelling mistakes (e.g. forgotten equals sign).

set_component_to_entered (component: str)
Sets the specified component to the status ENTERED, that is the default state.

Parameters component — The component name
Returns This ThermodynamicCalculation object

set_component_to_suspended (component: str)
Sets the specified component to the status SUSPENDED, i.e. it is ignored in the calculation.

Parameters component — The component name

Returns This ThermodynamicCalculation object

58 Chapter 5. API Reference

TC-Python Documentation, Release 2019a

set_condition (quantity: Union[tc_python.quantity_factory. ThermodynamicQuantity, str], value:

float)
Sets the specified condition.

Parameters

e quantity — The ThermodynamicQuantity to set as condition, a console syntax string
can be used as an alternative (for example X(Cr))

* value — The value of the condition
Returns This ThermodynamicCalculation object

set_phase_to_dormant (phase: str)
Sets the phase to the status DORMANT, necessary for calculating the driving force to form the specified
phase.

Parameters phase — The phase name
Returns This ThermodynamicCalculation object

set_phase_to_entered (phase: str, amount: float)
Sets the phase to the status ENTERED, that is the default state.

Parameters

* phase — The phase name

* amount — The phase fraction (between 0.0 and 1.0)
Returns This ThermodynamicCalculation object

set_phase_to_fixed (phase: str, amount: float)
Sets the phase to the status FIXED, i.e. it is guaranteed to have the specified phase fraction after the
calculation.

Parameters

* phase — The phase name

* amount — The fixed phase fraction (between 0.0 and 1.0)
Returns This ThermodynamicCalculation object

set_phase_to_suspended (phase: str)
Sets the phase to the status SUSPENDED, i.e. it is ignored in the calculation.

Parameters phase — The phase name
Returns This ThermodynamicCalculation object

with_axis (axis: tc_python.step_or_map_diagrams.CalculationAxis)
Sets the calculation axis.

Parameters axis — The axis
Returns This PropertyDiagramCalculation object

with_reference_state (component: str, phase: str = 'SER’, temperature: float = ’cur-

rent_temperature’, pressure: float = 100000.0)
The reference state for a component is important when calculating activities, chemical potentials and

enthalpies and is determined by the database being used. For each component the data must be referred to
a selected phase, temperature and pressure, i.e. the reference state.

All data in all phases where this component dissolves must use the same reference state. However, different
databases can use different reference states for the same element/component. It is important to be careful
when combining data obtained from different databases.

5.1. Calculations 59

TC-Python Documentation, Release 2019a

By default, activities, chemical potentials and so forth are computed relative to the reference state used by
the database. If the reference state in the database is not suitable for your purposes, use this command to
set the reference state for a component using SER, i.e. the Stable Element Reference (which is usually set
as default for a major component in alloys dominated by the component). In such cases, the temperature
and pressure for the reference state is not needed.

For a phase to be usable as a reference for a component, the component needs to have the same composition
as an end member of the phase. The reference state is an end member of a phase. The selection of the end
member associated with the reference state is only performed once this command is executed.

If a component has the same composition as several end members of the chosen reference phase, then the
end member that is selected at the specified temperature and pressure will have the lowest Gibbs energy.

Parameters
* component — The name of the element must be given.

* phase — Name of a phase used as the new reference state. Or SER for the Stable Element
Reference.

* temperature — The Temperature (in K) for the reference state. = Or CUR-
RENT_TEMPERATURE which means that the current temperature is used at the time
of evaluation of the reference energy for the calculation.

¢ pressure — The Pressure (in Pa) for the reference state.
Returns This PropertyDiagramCalculation object

class tc_python.step_or_map_diagrams.PropertyDiagramResult (result)
Bases: tc_python.abstract_base.AbstractResult

Result of a property diagram. This can be used to query for specific values.

get_values_grouped_by_quantity_of (x_quantity: Union[tc_python.quantity_factory.ThermodynamicQuantity,
str], y_quantity: Union[tc_python.quantity_factory. ThermodynamicQuantity,
str], sort_and_merge: bool = True) — Dict[str,

tc_python.utils.ResultValueGroup]
Returns x-y-line data grouped by the multiple datasets of the specified quantities (typically the phases). The

available quantities can be found in the documentation of the factory class ThermodynamicQuantity.

Note: The different datasets might contain NaN-values between different subsections and might not be
sorted even if the flag ‘sort_and_merge‘ has been set (because they might be unsortable due to their
nature).

Parameters

* x_quantity — The first quantity (“x-axis”), console syntax strings can be used as an
alternative (for example “T”)

e y_quantity — The second quantity (“y-axis”), console syntax strings can be used as an
alternative (for example “NV”)

* sort_and_merge — If True, the data will be sorted and merged into as few subsections
as possible (divided by NaN)

Returns Dict containing the datasets with the quantities as their keys

60 Chapter 5. API Reference

TC-Python Documentation, Release 2019a

get_values_grouped_by_stable_phases_of (x_quantity: Union[tc_python.quantity_factory. ThermodynamicQuantit

str], y_quantity:
Union[tc_python.quantity_factory. ThermodynamicQuantity,
str], sort_and_merge: bool = True) —

Dict[str, tc_python.utils.ResultValueGroup]
Returns x-y-line data grouped by the sets of “stable phases” (for example “LIQUID” or “LIQUID

+ FCC_A1”). The available quantities can be found in the documentation of the factory class
ThermodynamicQuantity.

Note: The different datasets might contain NaN-values between different subsections and different lines
of an ambiguous dataset. They might not be sorted even if the flag ‘sort_and_merge‘ has been set
(because they might be unsortable due to their nature).

Parameters

* x_quantity — The first quantity (“x-axis”), console syntax strings can be used as an
alternative (for example “T”)

e y_quantity — The second quantity (“y-axis”), console syntax strings can be used as an
alternative (for example “NV”)

* sort_and_merge — If True, the data will be sorted and merged into as few subsections
as possible (divided by NaN)

Returns Dict containing the datasets with the quantities as their keys

get_values_of (x_quantity: Union[tc_python.quantity_factory. ThermodynamicQuantity, str],
y_quantity: Union[tc_python.quantity_factory. ThermodynamicQuantity, str]) —
[typing.List[float], typing.List[float]]
Returns sorted x-y-line data without any separation. Use get_values_grouped by _quantity of ()
or get_values_grouped_by_ stable phases_of () instead if you need such a separation. The
available quantities can be found in the documentation of the factory class ThermodynamicQuantity.

Note: This method will always return sorted data without any NaN-values. If it is unsortable that might
give data that is hard to interpret. In such a case you need to choose the quantity in another way or
use one of the other methods. One example of this is to use quantities with All-markers, for example

MassFractionOfAComponent(“All”).

Parameters

* x_quantity — The first Thermodynamic quantity (“x-axis”), console syntax strings can
be used as an alternative (for example “T”)

e y_quantity — The second Thermodynamic quantity (“y-axis”), console syntax strings
can be used as an alternative (for example “NV”’)

Returns A tuple containing the x- and y-data in lists

save_to_disk (path: str)
Saves the result to disc. Note tha a result is a folder, containing potentially many files. The result can later

be loaded with 1oad_result_from_disk ()

Parameters path — the path to the folder you want the result to be saved in. It can be relative
or absolute.

Returns this PropertyDiagramResult object

5.1. Calculations 61

TC-Python Documentation, Release 2019a

set_phase_name_style (phase_name_style_enum: tc_python.step_or_map_diagrams.PhaseNameStyle

= <PhaseNameStyle. NONE: 0>)

Sets the style of the phase name labels that will be used in the result data object (constitution description,

ordering description, ...).
Default: PhaseNameStyle. NONE
Parameters phase_name_style_enum — The phase name style

Returns This PropertyDiagramResult object

5.1.5 Module “diffusion”

class tc_python.diffusion.AbstractBoundaryCondition
Bases: object

The abstract base class for all boundary conditions.

get_type () — str
Convenience method for getting the boundary condition type.

Returns The type

class tc_python.diffusion.AbstractCalculatedGrid
Bases: tc_python.diffusion.AbstractGrid

get_type () — str
Convenience method for getting the grid type.

Returns The type

class tc_python.diffusion.AbstractElementProfile
Bases: object

The abstract base class for all initial composition profile types.

get_type () — str
Convenience method for getting the initial concentration profile type.

Returns The type

class tc_python.diffusion.AbstractGrid
Bases: object

The abstract base class for all grids.

get_type () — str
Convenience method for getting the grid type.

Returns The type

class tc_python.diffusion.AbstractSolver
Bases: object

Abstract base class for the solvers (Classic, Homogenization and Automatic).

get_type () — str
Convenience method for getting the boundary condition type.

Returns The type

class tc_python.diffusion.AutomaticSolver
Bases: tc_python.diffusion.AbstractSolver

62

Chapter 5. API Reference

TC-Python Documentation, Release 2019a

Solver using the homogenization model if any region has more than one phase, otherwise using the classic
model.

Note: This is the default solver and recommended for most applications.

get_type () — str
The type of the solver.

Returns The type

set_flux_balance_equation_accuracy (accuracy: float = le-16)
Only valid if the classic solver is actually used (i.e. not more than one phase in each region).

Sets the required accuracy during the solution of the flux balance equations. Default: 1.0e-16
Parameters accuracy — The required accuracy
Returns A new AutomaticSolver object

set_tieline_search_variable_to_activity()
Only valid if the classic solver is actually used (i.e. not more than one phase in each region).

Configures the solver to use the activity of a component to find the correct tie-line at the phase interface.
Either activity or chemical potential are applied to reduce the degrees of freedom at the local equilibrium.
Default: This is the default setting

Returns A new AutomaticSolver object

set_tieline_ search_variable_ to_potential ()
Only valid if the classic solver is actually used (i.e. not more than one phase in each region).

Configures the solver to use the chemical potential of a component to find the correct tie-line at the phase
interface. Either activity or chemical potential are applied to reduce the degrees of freedom at the local
equilibrium. Default: To use the activity

Returns A new AutomaticSolver object

class tc_python.diffusion.BoundaryCondition
Bases: tc_python.diffusion.AbstractBoundaryCondition

Contains factory methods for the the different boundary conditions available.

classmethod closed_ system()
Returns a closed-system boundary condition.

Returns A new ClosedSystem object

classmethod fixed compositions (unit_enum: tc_python.diffusion. Unit =
<Unit. MASS_PERCENT: 3>)
Returns a fixed-composition boundary condition.

Parameters unit_enum — The composition unit
Returns A new FixedCompositions object

classmethod mixed_zero_flux and_activity ()
Returns a mixed zero-flux and activity boundary condition, i.e. for the defined species different conditions

are used.
Returns A new MixedZeroFluxAndActivity object

class tc_python.diffusion.CalculatedGrid
Bases: tc_python.diffusion.AbstractCalculatedGrid

5.1. Calculations 63

TC-Python Documentation, Release 2019a

Factory class for grids generated by a mathematical series (linear, geometric, ...). Use tc_python.
diffusion.PointByPointGrid instead if you want to use an existing grid from experimental data or
a previous calculation.

Note: A region must contain a number of grid points. The composition is only known at these grid points and
the software assumes that the composition varies linearly between them. The amount and composition of all the
phases present at a single grid point in a certain region are those given by thermodynamic equilibrium keeping
the over-all composition at the grid point fixed.

classmethod double_geometric (no_of points: int = 50, lower_geometrical_factor: float = 1.1,

upper_geometrical_factor: float = 0.9)
Creates a double geomtric grid.

Note: Double geometric grids have a high number of grid points in the middle or at both ends of a region.
One geometrical factor for the lower (left) and upper (right) half of the region need to specified. In both
cases a geometrical factor of larger than one yields a higher density of grid points at the lower end of the
half and vice versa for a factor smaller than one.

Parameters
* no_of_points — The number of points
* lower_geometrical_factor — The geometrical factor for the left half
* upper_geometrical_factor — The geometrical factor for the right half
Returns A new DoubleGeometricGrid object

classmethod geometric (no_of points: int = 50, geometrical_factor: float = 1.1)
Creates a geometric grid.

Note: A grid that yields a varying density of grid points in the region. A geometrical factor larger than
one yields a higher density of grid points at the lower end of the region and a factor smaller than one yields
a higher density of grid points at the upper end of the region.

Parameters
* no_of_points — The number of points
* geometrical_ factor — The geometrical factor
Returns A new GeometricGrid object
classmethod linear (no_of points: int = 50)
Creates an equally spaced grid.
Parameters no_of_points — The number of points
Returns A new LinearGrid object

class tc_python.diffusion.ClassicSolver
Bases: tc_python.diffusion.AbstractSolver

Solver using the Classic model.

64 Chapter 5. API Reference

TC-Python Documentation, Release 2019a

Note: This solver never switches to the homogenization model even if it fails to converge. Use the
tc_python.diffusion.AutomaticSolver if necessary instead.

get_type () — str
Convenience method for getting the type of the solver.

Returns The type of the solver

set_flux balance_equation_accuracy (accuracy: float = le-16)
Sets the required accuracy during the solution of the flux balance equations. Default: 1.0e-16

Parameters accuracy - The required accuracy
Returns A new ClassicSolver object

set_tieline_search_variable_to_activity ()
Configures the solver to use the activity of a component to find the correct tie-line at the phase interface.
Either activity or chemical potential are applied to reduce the degrees of freedom at the local equilibrium.
Default: This is the default setting

set_tieline_search variable_to_potential ()
Configures the solver to use the chemical potential of a component to find the correct tie-line at the phase
interface. Either activity or chemical potential are applied to reduce the degrees of freedom at the local
equilibrium. Default: To use the activity

Returns A new ClassicSolver object

class tc_python.diffusion.ClosedSystem
Bases: tc_python.diffusion.AbstractBoundaryCondition

Represents a boundary for a closed system.

get_type () — str
Convenience method for getting the type of the boundary condition.

Returns The type of the boundary condition

class tc_python.diffusion.CompositionProfile (unit_enum: tc_python.diffusion.Unit =
<Unit. MASS_PERCENT: 3>)
Bases: object

Contains initial concentration profiles for the elements.

add (element_name: str, profile: tc_python.diffusion. ElementProfile)
Adds a concentration profile for the specified element.

Parameters
¢ element_name — The name of the element
* profile - The initial concentration profile
Returns A CompositionProfile object

class tc_python.diffusion.DiffusionCalculationResult (result)
Bases: tc_python.abstract_base.AbstractResult

Result of a diffusion calculation. This can be used to query for specific values. A detailed definition of the axis
variables can be found in the Help.

5.1. Calculations 65

TC-Python Documentation, Release 2019a

get_mass_fraction_at_lower_interface (region: str, component: str) — [typ-

ing.List[float], typing.List[float]]
Returns the mass fraction of the specified component at the lower boundary of the specified region, in

dependency of time.
Parameters
* region — The name of the region
* component — The name of the component
Returns A tuple of two lists of floats (time [s], mass fraction of the specified component)
get_mass_fraction_at_upper_interface (region: str, component: str) — [typ-

ing.List[float], typing.List[float]]
Returns the mass fraction of the specified component at the upper boundary of the specified region, in

dependency of time.
Parameters
* region — The name of the region
* component — The name of the component

Returns A tuple of two lists of floats (time [s], mass fraction of the specified component)

get_mass_fraction_of_component_at_time (component: St time:
Union[tc_python.diffusion.SimulationTime,

float]) — [typing.List[float], typ-
ing.List[float]]
Returns the mass fraction of the specified component at the specified time.

Note: Use the enum tc_python.diffusion.SimulationTime to choose the first or the last
timepoint of the simulation. A timepoint close to the last one should never be specified manually because

the actual end of the simulation can slightly deviate.

Parameters

* component — The name of the component
e time — The time [s]

Returns A tuple of two lists of floats (distance [m], mass fraction of component at the specified
time)

get_mass_fraction_of_ phase_at_time (phase: St time:
Union[tc_python.diffusion.SimulationTime, float])

— [typing.List[float], typing.List[float]]
Returns the mass fraction of the specified phase.

Note: Use the enum tc _python.diffusion.SimulationTime to choose the first or the last
timepoint of the simulation. A timepoint close to the last one should never be specified manually because

the actual end of the simulation can slightly deviate.

Parameters

* phase — The name of the phase

¢ time — The time [s]

66 Chapter 5. API Reference

TC-Python Documentation, Release 2019a

Returns A tuple of two lists of floats (distance [m], mass fraction of hte phase at the specified
time)
get_mole_fraction_at_lower_interface (region: str, component: str) — [typ-

ing.List[float], typing.List[float]]
Returns the mole fraction of the specified component at the lower boundary of the specified region, in

dependency of time.
Parameters
* region — The name of the region
* component — The name of the component

Returns A tuple of two lists of floats (time [s], mole fraction of the specified component)

get_mole_fraction_at_upper_interface (region: str, component: str) — [typ-
ing.List[float], typing.List[float]]

Returns the mole fraction of the specified component at the upper boundary of the specified region, in

dependency of time.
Parameters
* region — The name of the region
* component — The name of the component

Returns A tuple of two lists of floats (time [s], mole fraction of the specified component)

get_mole_fraction of component_at_time (component: st time:

Union[tc_python.diffusion.SimulationTime,
float]) — [typing.List[float], typ-
ing.List[float]]

Returns the mole fraction of the specified component at the specified time.

Note: Use the enum tc python.diffusion.SimulationTime to choose the first or the last
timepoint of the simulation. A timepoint close to the last one should never be specified manually because

the actual end of the simulation can slightly deviate.

Parameters

* component — The name of the component

¢ time — The time [s]
Returns A tuple of two lists of floats (distance [m], mole fraction of component at the specified
time)

get_mole_fraction_of phase_at_time (phase: str, time:
Union[tc_python.diffusion.SimulationTime, float])
— [typing.List[float], typing.List[float]]

Returns the mole fraction of the specified phase.

Note: Use the enum tc python.diffusion.SimulationTime to choose the first or the last
timepoint of the simulation. A timepoint close to the last one should never be specified manually because

the actual end of the simulation can slightly deviate.

Parameters

5.1.

Calculations 67

TC-Python Documentation, Release 2019a

* phase — The name of the phase
¢ time — The time [s]
Returns A tuple of two lists of floats (distance [m], mole fraction of the phase at the specified

time)

get_position_of_lower_boundary_of_ region (region: str) — [typing.List[float], typ-

ing.List[float]]
Returns the position of the lower boundary of the specified region in dependency of time.

Parameters region — The name of the region
Returns A tuple of two lists of floats (time [s], position of lower boundary of region [m])

get_position_of_upper_boundary_ of_region (region: str) — [typing.List[float], typ-

ing.List[float]]
Returns the position of the upper boundary of the specified region in dependency of time.

Parameters region — The name of the region

Returns A tuple of two lists of floats (time [s], position of upper boundary of region [m])

get_regions () — List[str]
Returns the regions of the diffusion simulation.

Note: Automatically generated regions (R_###) will be included in the list.

Returns The region names
get_time_steps () — List[float]
Returns the timesteps of the diffusion simulation.

Returns The timesteps [s]

get_total_mass_fraction_of_ component (component: str) — [typing.List[float], typ-

ing.List[float]]
Returns the total mass fraction of the specified component in dependency of time.

Parameters component — The name of the component
Returns A tuple of two lists of floats (time [s], total mass fraction of the component)

get_total_mass_fraction_of_ component_in_phase (component: str, phase: str) — [typ-

ing.List[float], typing.List[float]]
Returns the total mass fraction of the specified component in the specified phase in dependency of time.

Parameters
* component — The name of the component
* phase — The name of the phase
Returns A tuple of two lists of floats (time [s], total mass fraction of the component in the phase)

get_total_mass_fraction_of_phase (phase: str) — [typing.List[float], typing.List[float]]
Returns the total mass fraction of the specified phase in dependency of the time.

Parameters phase — The name of the phase

Returns A tuple of two lists of floats (time [s], total mass fraction of the phase)

68 Chapter 5. API Reference

TC-Python Documentation, Release 2019a

get_total_mole_fraction_of_ component (component: str) — [typing.List[float], typ-
ing.List[float]]
Returns the total mole fraction of the specified component in dependency of time.

Parameters component — The name of the component
Returns A tuple of two lists of floats (time [s], total mole fraction of the component)

get_total_mole_fraction_of_ component_in_phase (component: str, phase: str) — [typ-
ing.List[float], typing.List[float]]
Returns the total mole fraction of the specified component in the specified phase in dependency of time.

Parameters
* component — The name of the component
* phase — The name of the phase
Returns A tuple of two lists of floats (time [s], total mole fraction of the component in the phase)

get_total_mole_fraction_of_ phase (phase: str) — [typing.List[float], typing.List[float]]
Returns the total mole fraction of the specified phase in dependency of time.

Parameters phase — The name of the phase
Returns A tuple of two lists of floats (time [s], total mole fraction of the phase)

get_total_volume_fraction_of_ phase (phase: str) — [typing.List[float], typing.List[float]]
Returns the total volume fraction of the specified phase in dependency of the time.

Parameters phase — The name of the phase
Returns A tuple of two lists of floats (time [s], total volume fraction of the phase)

get_values_of (x_axis: Union[tc_python.quantity_factory.DiffusionQuantity, str], y_axis:
Union[tc_python.quantity_factory.DiffusionQuantity, str], plot_condition:
Union[tc_python.quantity_factory.PlotCondition, str] = 7, independent_variable:
Union[tc_python.quantity_factory.IndependentVariable, str] = ") — [typ-

ing.List[float], typing.List[float]]
Returns the specified result from the simulation, allows all possible settings.

Note: As an alternative, DICTRA-console syntax can be used as well for each quantity and condition

Warning: This is an advanced mode that is equivalent to the possibilities in the DICTRA-console.
Not every combination of settings will return a result.

Parameters
* x_axis — The first result quantity
e y_axis — The second result quantity
* plot_condition — The plot conditions
* independent_variable — The independent variable

Returns A tuple of two lists of floats (the x_axis quantity result, the y_axis quantity result) [units
according to the quantities]

5.1.

Calculations 69

TC-Python Documentation, Release 2019a

get_velocity_ of_lower_boundary_ of_region (region: str) — [typing.List[float], typ-
ing.List[float]]
Returns the velocity of the lower boundary of the specified region in dependency of time.

Parameters region — The name of the region
Returns A tuple of two lists of floats (time [s], velocity of lower boundary of region [m/s])

get_velocity of_upper_boundary_ of_region (region: str) — [typing.List[float], typ-
ing.List[float]]
Returns the velocity of the upper boundary of the specified region in dependency of time.

Parameters region — The name of the region
Returns A tuple of two lists of floats (time [s], velocity of upper boundary of region [m/s])

get_width_of_ region (region: str) — [typing.List[float], typing.List[float]]
Returns the width of region, in dependency of time.

Parameters region — The name of the region
Returns A tuple of two lists of floats (time [s], width of the specified region [m])

save_to_disk (path: str)
Saves the result to disk. The result can later be loaded into a new TC-Python session using t¢_python.
server.SetUp.load result_from disk().

Note: The result data is represented by a whole folder containing multiple files.

Parameters path — The path to the result folder, can be relative or absolute.
Returns This Di ffusionCalculationResult object
class tc_python.diffusion.DiffusionIsoThermalCalculation (calculation)
Bases: tc_python.abstract_base.AbstractCalculation
Configuration for an isothermal diffusion calculation.

add_console_command (console_command: str)
Registers a DICTRA-console command for execution. These commands are executed after all other
configuration directly before the calculation starts to run. All commands will be stored and used
until explicitly deleted using tc_python.diffusion.DiffusionIsoThermoCalculation.
remove_all_console_commands ().

Parameters console_command — The DICTRA console command

Returns This DiffusionCalculation object

Note: It should not be necessary for most users to use this method, try to use the corresponding method
implemented in the API instead.

Warning: As this method runs raw DICTRA-commands directly in the engine, it may hang the
program in case of spelling mistakes (e.g. forgotten parenthesis, ...).

add_region (region: tc_python.diffusion.Region)
Adds a region to the calculation. Regions are always added in the simulation domain from left to right.

70 Chapter 5. API Reference

TC-Python Documentation, Release 2019a

Parameters region — The region to be added
Returns This DiffusionCalculation object

calculate () — tc_python.diffusion.DiffusionCalculationResult
Runs the diffusion calculation.

Returns A DiffusionCalculationResult which later can be used to get specific values
from the calculated result

remove_all console_commands ()
Removes all previously added console commands.

Returns This DiffusionCalculation object

set_simulation_time (simulation_time: float)
Sets the simulation time.

Parameters simulation_time — The simulation time [s]
Returns This DiffusionCalculation object

set_temperature (femperature: float)
Sets the temperature for the isothermal simulation.

Parameters temperature — The temperature [K]
Returns This Di ffusionIsoThermalCalculation object

with_cylindrical_geometry (first_interface_position: float = 0.0)
Sets geometry to cylindrical, corresponds to an infinitely long cylinder of a certain radius.

Default: A planar geometry

Note: With a cylindrical or spherical geometry, the system’s zero coordinate (left boundary) is at the
centre of the cylinder or sphere by default. By specifying the first_interface_position, a different left-
most coordinate can be defined. This allows to model a tube or a hollow sphere geometry. The highest
coordinate (right boundary) is defined by the cylinder or sphere radius (i.e. by the width of all regions).

Parameters first_interface_position — The position of the left-most coordinate
along the axis, only necessary for modelling a tube geometry [m]

Returns This DiffusionCalculation object
with_left_boundary_condition (boundary_condition: tc_python.diffusion.BoundaryCondition)
Defines the boundary condition on the left edge of the system.
Default: A closed-system boundary condition
Parameters boundary_condition — The boundary condition
Returns This DiffusionCalculation object

with_options (options: tc_python.diffusion.Options)
Sets the general simulation conditions.

Parameters options — The general simulation conditions
Returns This DiffusionCalculation object

with planar_ geometry ()
Sets geometry to planar.

5.1.

Calculations 4

TC-Python Documentation, Release 2019a

This is default.
Returns This DiffusionCalculation object

with_reference_state (element: str, phase: str = ’'SER’, temperature: float = ’cur-

rent_temperature’, pressure: float = 100000.0)
The reference state for a component is important when calculating activities, chemical potentials and

enthalpies and is determined by the database being used. For each component the data must be referred to
a selected phase, temperature and pressure, i.e. the reference state.

All data in all phases where this component dissolves must use the same reference state. However, different
databases can use different reference states for the same element/component. It is important to be careful
when combining data obtained from different databases.

By default, activities, chemical potentials and so forth are computed relative to the reference state used by
the database. If the reference state in the database is not suitable for your purposes, use this command to
set the reference state for a component using SER, i.e. the Stable Element Reference (which is usually set
as default for a major component in alloys dominated by the component). In such cases, the temperature
and pressure for the reference state is not needed.

For a phase to be usable as a reference for a component, the component needs to have the same composition
as an end member of the phase. The reference state is an end member of a phase. The selection of the end
member associated with the reference state is only performed once this command is executed.

If a component has the same composition as several end members of the chosen reference phase, then the
end member that is selected at the specified temperature and pressure will have the lowest Gibbs energy.

Parameters
¢ element — The name of the element

* phase — Name of a phase used as the new reference state. Or SER for the Stable Element
Reference.

* temperature — The Temperature (in K) for the reference state. = Or CUR-
RENT_TEMPERATURE which means that the current temperature is used at the time
of evaluation of the reference energy for the calculation.

* pressure — The pressure (in Pa) for the reference state
Returns This Di ffusionIsoThermalCalculation object

with_right_boundary_condition (boundary_condition: tc_python.diffusion.BoundaryCondition)
Defines the boundary condition on the right edge of the system.

Default: A closed-system boundary condition
Parameters boundary condition — The boundary condition
Returns This DiffusionCalculation object

with_solver (solver: tc_python.diffusion.Solver)
Sets the solver to use (Classic, Homogenization or Automatic). Default is Automatic.

Parameters solver — The solver to use
Returns This DiffusionCalculation object

with_spherical_geometry (first_interface_position: float = 0.0)
Sets geometry to spherical, corresponds to a sphere with a certain radius.

Default: A spherical geometry

72 Chapter 5. API Reference

TC-Python Documentation, Release 2019a

Note: With a cylindrical or spherical geometry, the system’s zero coordinate (left boundary) is at the
centre of the cylinder or sphere by default. By specifying the first_interface_position, a different left-
most coordinate can be defined. This allows to model a tube or a hollow sphere geometry. The highest
coordinate (right boundary) is defined by the cylinder or sphere radius (i.e. by the width of all regions).

Parameters first_interface_position — The position of the left-most coordinate
along the axis, only necessary for modelling a hollow sphere geometry [m]

Returns This DiffusionCalculation object
with_timestep_control (timestep_control: tc_python.diffusion.TimestepControl)
Sets the timestep control options.
Parameters timestep_control — The new timestep control options
Returns This DiffusionCalculation object

class tc_python.diffusion.DiffusionNonIsoThermalCalculation (calculation)
Bases: tc_python.abstract_base.AbstractCalculation

Configuration for a non-isothermal diffusion calculation.

add_console_ command (console_command.: str)
Registers a DICTRA-console command for execution. These commands are executed after all other
configuration directly before the calculation starts to run. All commands will be stored and used until
explicitly deleted using tc_python.diffusion.DiffusionNonIsoThermalCalculation.
remove_all console commands ().

Parameters console_command — The DICTRA console command

Returns This DiffusionCalculation object

Note: It should not be necessary for most users to use this method, try to use the corresponding method
implemented in the API instead.

Warning: As this method runs raw DICTRA-commands directly in the engine, it may hang the
program in case of spelling mistakes (e.g. forgotten parenthesis, ...).

add_region (region: tc_python.diffusion.Region)
Adds a region to the calculation. Regions are always added in the simulation domain from left to right.

Parameters region — The region to be added
Returns This DiffusionCalculation object

calculate () — tc_python.diffusion.DiffusionCalculationResult
Runs the diffusion calculation.

Returns A DiffusionCalculationResult which later can be used to get specific values
from the calculated result

remove_all console_commands ()
Removes all previously added console commands.

Returns This DiffusionCalculation object

5.1. Calculations 73

TC-Python Documentation, Release 2019a

set_simulation_time (simulation_time: float)
Sets the simulation time.

Parameters simulation_time — The simulation time [s]
Returns This DiffusionCalculation object

with_cylindrical_geometry (first_interface_position: float = 0.0)
Sets geometry to cylindrical, corresponds to an infinitely long cylinder of a certain radius.

Default: A planar geometry

Note: With a cylindrical or spherical geometry, the system’s zero coordinate (left boundary) is at the
centre of the cylinder or sphere by default. By specifying the first_interface_position, a different left-
most coordinate can be defined. This allows to model a tube or a hollow sphere geometry. The highest
coordinate (right boundary) is defined by the cylinder or sphere radius (i.e. by the width of all regions).

Parameters first_interface_position — The position of the left-most coordinate
along the axis, only necessary for modelling a tube geometry [m]

Returns This DiffusionCalculation object
with_left_boundary_condition (boundary_condition: tc_python.diffusion.BoundaryCondition)
Defines the boundary condition on the left edge of the system.
Default: A closed-system boundary condition
Parameters boundary_condition — The boundary condition
Returns This DiffusionCalculation object

with_options (options: tc_python.diffusion.Options)
Sets the general simulation conditions.

Parameters options — The general simulation conditions
Returns This DiffusionCalculation object

with_planar_geometry ()
Sets geometry to planar.

This is default.
Returns This DiffusionCalculation object

with_reference_state (element: str, phase: str = 'SER’, temperature: float = ’cur-

rent_temperature’, pressure: float = 100000.0)
The reference state for a component is important when calculating activities, chemical potentials and

enthalpies and is determined by the database being used. For each component the data must be referred to
a selected phase, temperature and pressure, i.e. the reference state.

All data in all phases where this component dissolves must use the same reference state. However, different
databases can use different reference states for the same element/component. It is important to be careful
when combining data obtained from different databases.

By default, activities, chemical potentials and so forth are computed relative to the reference state used by
the database. If the reference state in the database is not suitable for your purposes, use this command to
set the reference state for a component using SER, i.e. the Stable Element Reference (which is usually set
as default for a major component in alloys dominated by the component). In such cases, the temperature
and pressure for the reference state is not needed.

74

Chapter 5. API Reference

TC-Python Documentation, Release 2019a

For a phase to be usable as a reference for a component, the component needs to have the same composition
as an end member of the phase. The reference state is an end member of a phase. The selection of the end
member associated with the reference state is only performed once this command is executed.

If a component has the same composition as several end members of the chosen reference phase, then the
end member that is selected at the specified temperature and pressure will have the lowest Gibbs energy.

Parameters
¢ element — The name of the element

* phase — Name of a phase used as the new reference state. Or SER for the Stable Element
Reference.

* temperature — The Temperature (in K) for the reference state. = Or CUR-
RENT_TEMPERATURE which means that the current temperature is used at the time
of evaluation of the reference energy for the calculation.

* pressure — The pressure (in Pa) for the reference state
Returns This Di ffusionNonIsoThermalCalculation object

with_right_boundary_condition (boundary_condition: tc_python.diffusion.BoundaryCondition)
Defines the boundary condition on the right edge of the system.

Default: A closed-system boundary condition
Parameters boundary_condition — The boundary condition
Returns This DiffusionCalculation object

with_solver (solver: tc_python.diffusion.Solver)
Sets the solver to use (Classic, Homogenization or Automatic). Default is Automatic.

Parameters solver — The solver to use
Returns This DiffusionCalculation object

with_spherical_geometry (first_interface_position: float = 0.0)
Sets geometry to spherical, corresponds to a sphere with a certain radius.

Default: A spherical geometry

Note: With a cylindrical or spherical geometry, the system’s zero coordinate (left boundary) is at the
centre of the cylinder or sphere by default. By specifying the first_interface_position, a different left-
most coordinate can be defined. This allows to model a tube or a hollow sphere geometry. The highest
coordinate (right boundary) is defined by the cylinder or sphere radius (i.e. by the width of all regions).

Parameters first_interface_position — The position of the left-most coordinate
along the axis, only necessary for modelling a hollow sphere geometry [m]

Returns This DiffusionCalculation object
with_temperature_profile (temperature_profile: tc_python.utils. TemperatureProfile)
Sets the temperature profile to use with this calculation.

Parameters temperature_profile — The temperature profile object (specifying time /
temperature points)

Returns This DiffusionNonIsoThermalCalculation object

5.1.

Calculations 75

TC-Python Documentation, Release 2019a

with_timestep_control (timestep_control: tc_python.diffusion.TimestepControl)
Sets the timestep control options.

Parameters timestep_control — The new timestep control options

Returns This DiffusionCalculation object

class tc_python.diffusion.DoubleGeometricGrid (no_of points: int = 50,
lower_geometrical_factor: float =
1.1, upper_geometrical_factor: float =
0.9)

Bases: tc_python.diffusion.AbstractCalculatedGrid
Represents a double geometric grid.

get_lower_ geometrical_factor () — float
Returns the lower geometrical factor (for the left half).

Returns The lower geometrical factor

get_no_of_ points () — int
Returns number of grid points.

Returns The number of grid points

get_type () — str
Type of the grid.

Returns The type of the grid

get_upper_ geometrical_factor ()
Returns the upper geometrical factor (for the right half).

Returns The upper geometrical factor

set_lower_geometrical_factor (geometrical_factor: float = 1.1)
Sets the lower (left half) geometrical factor.

Note: A geometrical factor of larger than one yields a higher density of grid points at the lower end of the
half and vice versa for a factor smaller than one.

Parameters geometrical_factor — The geometrical factor for the left half
Returns This DoubleGeometricGrid object
set_no_of_ points (no_of points: int = 50)
Sets the number of grid points.
Parameters no_of_points — The number of points
Returns This DoubleGeometricGrid object

set_upper_geometrical_factor (geometrical_factor: float = 0.9)
Sets the upper (right half) geometrical factor.

Note: A geometrical factor of larger than one yields a higher density of grid points at the lower end of the
half and vice versa for a factor smaller than one.

Parameters geometrical_factor — The geometrical factor for the right half

76 Chapter 5. API Reference

TC-Python Documentation, Release 2019a

Returns This DoubleGeomet ricGrid object
class tc_python.diffusion.ElementProfile
Bases: tc_python.diffusion.AbstractElementProfile
Factory class providing objects for configuring a step, function or linear initial concentration profile.

classmethod function (dictra_console_mode_function: str)
Creates a initial concentration profile defined by a function in DICTRA-console syntax.

Parameters dictra console _mode_function — The function, expressed in DICTRA-
console mode syntax.

Returns A new StepProfile object

Note: This is an advanced feature, preferably a complex concentration profile should be generated using
Python-libraries and added to the simulation using t c_python.diffusion.PointByPointGrid.

classmethod linear (start: float, end: float)
Creates a linear initial concentration profile.

Parameters

e start — Composition at the left side of the region [unit as defined in
CompositionProfilel.

* end - Composition at the right side of the region [unit as defined in
CompositionProfilel.

Returns A new LinearProfile object

classmethod step (lower_boundary: float, upper_boundary: float, step_at: float)
Creates an initial concentration profile with a step at the specified distance, otherwise the composition is
constant at the specified values.

Parameters

* lower_boundary - Composition before the step [unit as defined in
CompositionProfilel.

* upper_boundary - Composition after the step [unit as defined in
CompositionProfilel.

* step_at — The distance where the step should be [m].
Returns A new StepProfile object

class tc_python.diffusion.FixedCompositions (unit_enum: tc_python.diffusion.Unit =

<Unit. MASS_PERCENT: 3>)
Bases: tc_python.diffusion.AbstractBoundaryCondition

Represents a boundary having fixed composition values.

get_type () — str
The type of the boundary condition.

Returns The type

set_composition (element_name: str, value: float)
Sets the composition for the specified element.

5.1. Calculations 77

TC-Python Documentation, Release 2019a

Note: The boundary composition needs to be specified for each element.

Parameters
¢ element_name — The name of the element
* value — The composition value [unit according to the constructor parameter]
class tc_python.diffusion.FunctionProfile (dictra_console_mode_function: str)
Bases: tc_python.diffusion.AbstractElementProfile

Creates an initial concentration profile defined by a function in DICTRA-console syntax.

Note: This is an advanced feature, preferably a complex concentration profile should be generated using
Python-libraries and added to the simulation using tc_python.diffusion.PointByPointGrid.

get_type () — str
The type of the element profile.

Returns The type

class tc_python.diffusion.GeometricGrid (no_of points: int = 50, geometrical_factor: float =

1.1)
Bases: tc_python.diffusion.AbstractCalculatedGrid

Represents a geometric grid.

get_geometrical_factor () — float
Returns the geometrical factor.

Returns The geometrical factor

get_no_of points () — int
Returns the number of grid points.

Returns The number of grid points

get_type () — str
Returns the type of grid.

Returns The type

set_geometrical_factor (geometrical_factor: float = 1.1)
Sets the geometrical factor.

Note: A geometrical factor larger than one yields a higher density of grid points at the lower end of the
region and a factor smaller than one yields a higher density of grid points at the upper end of the region.

Parameters geometrical_factor — The geometrical factor
Returns This Geomet ricGrid object
set_no_of_points (no_of _points: int = 50)
Sets the number of grid points.
Parameters no_of_points — The number of points

Returns This Geomet ricGrid object

78 Chapter 5. API Reference

TC-Python Documentation, Release 2019a

class tc_python.diffusion.GridPoint (distance: float)

Bases: object

Represents a grid point, this is used in combination with grids of the type tc python.diffusion.
PointByPointGrid.

add_composition (element: str, value: float)
Adds a composition for the specified element to the grid point.

Parameters
* element — The element
* value — The composition value [unit as defined for the grid]

Returns This GridPoint object

class tc_python.diffusion.HomogenizationFunction

Bases: enum.Enum

Homogenization function used for the homogenization solver. Many homogenization functions are based on a
variant of the Hashin-Shtrikman bounds, their geometrical interpretation are concentric spherical shells of each
phase. Default: RULE_OF_MIXTURES (i.e. upper Wiener bounds)

GENERAL_LOWER_HASHIN_ SHTRIKMAN = 0
General lower Hashin-Shtrikman bounds: the outermost shell consists of the phase with the most sluggish
kinetics.

GENERAL_UPPER_HASHIN_ SHTRIKMAN = 1
General upper Hashin-Shtrikman bounds: the innermost shell consists of the phase with the most sluggish
kinetics.

HASHIN_ SHTRIKMAN_BOUND_MAJORITY = 2
Hashin-Shtrikman bounds with majority phase as matrix phase: the outermost shell consists of the phase
with the highest local volume fraction.

INVERSE_RULE_OF_MIXTURES = 4
Lower Wiener bounds: the geometrical interpretation are continuous layers of each phase orthogonal to
the direction of diffusion

RULE_OF_MIXTURES = 3
Upper Wiener bounds: the geometrical interpretation are continuous layers of each phase parallel with the
direction of diffusion

class tc_python.diffusion.HomogenizationSolver

Bases: tc_python.diffusion.AbstractSolver

Solver using the Homogenization model.

Note: This solver always uses the homogenization model, even if all regions have only one phase. The solver
is significantly slower than the Classic model. Use the tc_python.diffusion.AutomaticSolver
instead if you do not need that behaviour.

disable_global minimization ()
Disables global minimization to be used in equilibrium calculations. Default: Disabled

Note: In general, using global minimization significantly increases the simulation time, but there is
also a significantly reduced risk for non-converged equilibrium calculations.

5.1. Calculations 79

TC-Python Documentation, Release 2019a

Returns A new HomogenizationSolver object

disable_interpolation_scheme ()
Configures the simulation not use any interpolation scheme. Default: To use the logarithmic interpolation
scheme with 10000 discretization steps

Note: The homogenization scheme can be switched on by using with_linear_interpolation_scheme() or
with_logarithmic_interpolation_scheme().

enable_global minimization ()
Enables global minimization to be used in equilibrium calculations. Default: Disabled

Note: In general, using global minimization significantly increases the simulation time, but there is
also a significantly reduced risk for non-converged equilibrium calculations.

Returns A new HomogenizationSolver object
get_type () — str
The type of solver.
Returns The type

set_fraction_of_ free_memory_ to_use (fraction: float)
Sets the maximum fraction of free physical memory to be used by the interpolation scheme. Default: 1 /
10 of the free physical memory

Parameters fraction — The maximum free physical memory fraction to be used
Returns A new HomogenizationSolver object

set_homogenization_function (homogenization_function_enum:
tc_python.diffusion.HomogenizationFunction = <Homoge-

nizationFunction. RULE_OF _MIXTURES: 3>)
Sets the homogenization function used by the homogenization model.

Default is RULE_OF_MIXTURES.

Parameters homogenization_function_enum — The homogenization function used by
the homogenization model

Returns A new HomogenizationSolver object

set_memory_to_use (memory_in_megabytes: float)
Sets the maximum physical memory in megabytes to be used by the interpolation scheme. Default: 1000
MBytes of the free physical memory

Parameters memory_in_megabytes — The maximum physical memory to be used
Returns A new HomogenizationSolver object

with_linear interpolation_scheme (steps: int = 10000)
Configures the simulation to use the linear interpolation scheme. Default: To use the logarithmic interpo-
lation scheme with 10000 discretization steps

Parameters steps — The number of discretization steps in each dimension

Returns A new HomogenizationSolver object

80 Chapter 5. API Reference

TC-Python Documentation, Release 2019a

with_logarithmic_interpolation_scheme (steps: int = 10000)
Configures the simulation to use the linear interpolation scheme. Default: To use the logarithmic interpo-
lation scheme with 10000 discretization steps

Parameters steps — The number of discretization steps in each dimension
Returns A new HomogenizationSolver object

class tc_python.diffusion.LinearGrid (no_of points: int = 50)
Bases: tc_python.diffusion.AbstractCalculatedGrid

Represents an equally spaced grid.

get_no_of_ points () — int
Returns the number of grid points.

Returns The number of grid points

get_type () — str
Type of the grid.

Returns The type

set_no_of_points (no_of _points: int = 50)
Sets the number of grid points.

Parameters no_of_points — The number of points
Returns This L.inearGrid object

class tc_python.diffusion.LinearProfile (start: float, end: float)
Bases: tc_python.diffusion.AbstractElementProfile

Represents a linear initial concentration profile.

get_type () — str
The type of the element profile.

Returns The type

class tc_python.diffusion.MixedZeroFluxAndActivity
Bases: tc_python.diffusion.AbstractBoundaryCondition

Represents a boundary having zero-flux as well as fixed-activity conditions.

Default: On that boundary for every element without an explicitly defined condition, a zero-flux boundary
condition is used.

get_type () — str
The type of the boundary condition.

Returns The type

set_activity_ for_element (element_name: str, activity: float)
Sets a fixed activity for an element at the boundary.

Parameters
¢ element_name — The name of the element
* activity — The activity

set_zero_flux for_ element (element_name: str)
Sets a zero-flux condition for an element at the boundary. Default for all elements at the boundary
without an explicitly defined condition

Parameters element_ name — The name of the element

5.1. Calculations 81

TC-Python Documentation, Release 2019a

class tc_python.diffusion.Options
Bases: object

General simulation conditions for the diffusion calculations.

disable_forced_starting values_in_equilibrium_ calculations ()
Disables forced starting values for the equilibrium calculations. This is the default setting.

Returns This Opt ions object

disable_save_results_to_file()
Disables the saving of results to file during the simulation. Default: Saving of the results at every timestep

Returns This Opt ions object

enable_forced_starting values_in_equilibrium calculations ()
Enables forced start values for the equilibrium calculations. The default is disabled forcing of start
values.

Returns This Opt ions object

enable_save_results_to_file (every_nth_step: Optional[int] = None)
Enables and configures saving of results to file during the simulation. They can be saved for every n-th or
optionally for every timestep (None). Default: Saving of the results at every timestep

Parameters every_nth_step — None or a value ranging from 0 to 99
Returns This Opt ions object

enable_time_integration method_ euler_backwards ()
Enables Euler backwards integration. The default method is trapezoidal integration.

Note: This method is more stable but less accurate and may be necessary if large fluctuations occur in the
profiles.

Returns This Opt ions object

enable_time_integration_method_ trapezoidal ()
Enables trapezoidal integration. This is the default method.

Note: If large fluctuations occur in the profiles, it may be necessary to use the more stable but less accurate
Euler backwards method.

Returns This Opt ions object

set_default_driving force_for phases_allowed_to_form_at_interfaces (driving_force:
float

le-
05)
Sets the default required driving force for phases allowed to form at the interfaces. Default: 1.0e-5

Note: The required driving force (evaluated as DGM(ph)) is used for determining whether an inactive
phase is stable, i.e. actually formed. DGM represents the driving force normalized by RT and is dimen-
sionless.

82 Chapter 5. API Reference

TC-Python Documentation, Release 2019a

Parameters driving_force — The driving force (DGM(ph)) [-]
Returns This Opt ions object

class tc_python.diffusion.PointByPointGrid (unit_enum: tc_python.diffusion.Unit =

<Unit. MASS_PERCENT: 3>)
Bases: tc_python.diffusion.AbstractGrid

Represents a point-by-point grid. This is setting the grid and the compositions at once, it is typically used to
enter a measured composition profile or the result from a previous calculation.

Note: If a point-by-point grid is used, it is not necessary to specify the grid and composition profile separately.

add_point (grid_point: tc_python.diffusion.GridPoint)
Adds a grid point to the grid.

Parameters grid_point — The grid point
Returns This PointByPointGrid object

get_type () — str
Type of the grid.

Returns The type

class tc_python.diffusion.Region (name: str)
Bases: object

Represents a region of the simulation domain that can contain more that one phase.

Note: The first added phase represents the matrix phase, while all later added phases are spheriod phases, i.e.
precipitate phases.

add_phase (phase_name: str)
Adds a phase to the region, each region must contain at least one phase.

Note: The first added phase represents the matrix phase, while all later added phases are spheriod phases,
i.e. precipitate phases.

Note: If multiple phases are added to a region, the homogenization model is applied. That means that
average properties of the local phase mixture are used.

Parameters phase_name — The phase name
Returns This Region object

add_phase_allowed_to_form at_left_interface (phase_name: str, driving_force: float =

le-05)
Adds a phase allowed to form at the left boundary of the region (an inactive phase). The phase will only

appear at the interface as a new automatic region if the driving force to form it is sufficiently high.
Parameters

* phase_name — The phase name

5.1. Calculations 83

TC-Python Documentation, Release 2019a

e driving_force - The driving force for the phase to form (DGM(ph))
Returns This Region object

add_phase_allowed_to_form_at_right_interface (phase_name: str, driving_force: float

= le-05)
Adds a phase allowed to form at the right boundary of the region (an inactive phase). The phase will only

appear at the interface as a new automatic region if the driving force to form it is sufficiently high.

Parameters

* phase_name — The phase name

* driving_force - The driving force for the phase to form (DGM(ph))
Returns This Region object

remove_all_ phases ()
Removes all previously added phases from the region.

Returns This Region object

set_width (width: float)
Defined the width of the region.

Note: This method needs only to be used if a calculated grid has been defined (using with_grid()).

Parameters width — The width [m]

Returns This Region object

with_composition_profile (initial_compositions: tc_python.diffusion. CompositionProfile)
Defines the initial composition profiles for all elements in the region.

Note: This method needs only to be used if a calculated grid has been defined (using with_grid()).

Parameters initial_compositions — The initial composition profiles for all elements

Returns This Region object

with_grid (grid: tc_python.diffusion.CalculatedGrid)
Defines a calculated grid in the region. If measured composition profiles or the result from a previous calcu-

lation should be used, instead with point_by point_grid containing compositions ()
needs to be applied.

Note: The composition profiles need to be defined separately using

with composition_profile (), additionally the region width needs to be specified using
set_width ().

Parameters grid — The grid

Returns This Region object

84 Chapter 5. API Reference

TC-Python Documentation, Release 2019a

with_point_by_ point_grid_containing compositions (grid:
tc_python.diffusion. PointByPointGrid)
Defines a point-by-point grid in the region. This is setting the grid and the compositions at once, it is
typically used to enter a measured composition profile or the result from a previous calculation. If the
composition profile should be calculated (linear, geometric, ...) with _grid () should be used instead.

Note: If a point-by-point grid is used, with _grid(), with_composition_profile () and
set_width () are unnecessary and must not be used.

Parameters grid — The point-by-point grid
Returns This Region object
class tc_python.diffusion.SimulationTime
Bases: enum.Enum

Specifying special time steps for the evaluation of diffusion results.

Note: These placeholders should be used because especially the actual last timestep will slightly differ from
the specified end time of the simulation.

FIRST = 0
Represents the first timestep of the simulation

LAST = 1
Represents the last timestep of the simulation

class tc_python.diffusion.Solver
Bases: tc_python.diffusion.AbstractSolver

Factory class providing objects representing a solver.

classmethod automatic ()
Returns an automatic solver. This is the default solver and recommended for most applications.

Note: This solver uses the homogenization model if any region has more than one phase, otherwise it
uses the classic model.

Returns A new AutomaticSolver object

classmethod classic()
Returns a classic solver.

Note: This solver never switches to the homogenization model even if the solver fails to converge. Use
the tc_python.diffusion.AutomaticSolver if necessary instead.

Returns A new ClassicSolver object

classmethod homogenization ()
Returns a homogenization solver.

5.1. Calculations 85

TC-Python Documentation, Release 2019a

Note: This solver always uses the homogenization model, even if all regions have only one phase.
The solver is significantly slower than the Classic model. Use the tc python.diffusion.
AutomaticSolver instead if you do not need that behaviour.

Returns A new HomogenizationSolver object

class tc_python.diffusion.StepProfile (lower_boundary: float, upper_boundary: float,

step_at: float)
Bases: tc_python.diffusion.AbstractElementProfile

Represents an initial constant concentration profile with a step at the specified position.

get_type () — str
The type of the element profile.

Returns The type

class tc_python.diffusion.TimestepControl
Bases: object

Settings that control the time steps in the simulation.

disable_check_interface_position()
Disables checking of the interface position, i.e. the timesteps are not controlled by the phase interface
displacement during the simulation. This is the default setting.

Returns This TimestepControl object

enable_check_interface_position()
Enables checking of the interface position, i.e. the timesteps are controlled by the phase interface displace-
ment during the simulation. Not enabled by default.

Returns This TimestepControl object

set_initial_time_step (initial_time_step: float = le-07)
Sets the initial timestep. Default: 1.0e-7 s

Parameters initial_time_step — The initial timestep [s]
Returns This TimestepControl object

set_max_absolute_error (absolute_error: float = le-05)
Sets the maximum absolute error. Default: 1.0e-5

Parameters absolute_error — The maximum absolute error
Returns This TimestepControl object

set_max_relative_error (relative_error: float = 0.05)
Sets the maximum relative error. Default: 0.05

Parameters relative_error — The maximum relative error
Returns This TimestepControl object

set_max_timestep_allowed_as_percent_of_ simulation_time (max_timestep_allowed_as_percent_of _simulat

float = 10.0)
The maximum timestep allowed during the simulation, specified in percent of the simulation time. Default:

10.0%

Parameters max_timestep_allowed_as_percent_of_simulation_time - The
maximum timestep allowed [%]

86 Chapter 5. API Reference

TC-Python Documentation, Release 2019a

Returns This TimestepControl object

set_max_timestep_increase_factor (max_timestep_increase_factor: float = 2.0)
Sets the maximum timestep increase factor. Default: 2

Note: For example, if 2 is entered the maximum time step is twice as long as the previous time step taken.

Parameters max_timestep_increase_factor - The maximum timestep increase factor

Returns This TimestepControl object

set_smallest_time_step_allowed (smallest_time_step_allowed: float = le-07)
Sets the smallest time step allowed during the simulation. This is required when using the automatic
procedure to determine the time step. Default: 1.0e-7 s

Parameters smallest_time_step_allowed — The smalles timestep allowed [s]
Returns This TimestepControl object

class tc_python.diffusion.Unit
Bases: enum.Enum

Represents a composition unit.

MASS FRACTION = 2
Mass fraction.

MASS_PERCENT = 3
Mass percent.

MOLE_FRACTION = 0
Mole fraction.

MOLE_PERCENT = 1
Mole percent.

U_FRACTION = 4
U fraction

5.1.6 Module “propertymodel”

class tc_python.propertymodel .PropertyModelCalculation (calculator)
Bases: tc_python.abstract_base.AbstractCalculation

Configuration for a property model calculation.

Note: Specify the settings, the calculation is performed with calculate ().

add_poly_command (poly_command: str)
Registers a POLY console command for execution. These commands are executed after all other config-

uration directly before the calculation starts to run. All commands will be stored and used until explicitly
deleted using remove_all_ poly_commands ().

Parameters poly command — The POLY console command

Returns This PropertyModelCalculation object

5.1. Calculations 87

TC-Python Documentation, Release 2019a

Note: It should not be necessary for most users to use this method, try to use the corresponding method
implemented in the API instead.

Warning: As this method runs raw POLY-commands directly in the engine, it may hang the program
in case of spelling mistakes (e.g. forgotten parenthesis, ...).

calculate () — tc_python.propertymodel.PropertyModelResult
Runs the property model calculation.

Returns A PropertyModelResult which later can be used to get specific values from the
simulation.

get_argument_default (argument_id) — object
Returns the default value for the specified argument. The argument id can be obtained with
get_arguments ().

Parameters argument_id — The argument id
Returns The default value (the type depends on the argument)

get_argument_description (argument_id) — str
Returns the detailed description of the argument. The id can be obtained with get_arguments ().

Parameters argument_id — The argument id
Returns The detailed description

get_arguments () — Set[str]
Returns a list of the arguments of the property model.

Note: The arguments are the ‘Ul-panel components’ defined in the property model interface method
provide_ui_panel_components (). They have the same id as specified in the property model.
The naming is different because there is no Ul present in the context of TC-Python.

Returns The ids of the available arguments
get_model_description () — str
Returns the description text of the current model.
Returns the description

get_model_parameter_value (model_parameter_id) — float
Returns the current value of an optimizable model parameter. The id can be obtained with
get_model_parameters ().

Parameters model parameter_id - The model parameter id
Returns The current value [unit according to the parameter meaning]

get_model_parameters () — Set[str]
Returns a list of the optimizable model parameters.

Note: The model parameters are an optional set of variables that can be used within the property
model. Typically they are used to provide the possibility to inject parameter values during an optimiza-
tion into the model. This allows the dynamic development of property models that need to be fitted to

88 Chapter 5. API Reference

TC-Python Documentation, Release 2019a

experimental data. The model parameters are controlled with the property model interface methods pro-
vide_model_parameters() and set_model_parameter ().

Returns The ids of the optimizable model parameters

remove_all conditions ()
Removes all set classic POLY conditions.

Note: This does not affect the compositions set by set_composition().

Returns This PropertyModelCalculation object
remove_all poly commands ()
Removes all previously added POLY console commands.
Returns This PropertyModelCalculation object

remove_dependent_element ()
Removes a manually set dependent element. This method does not affect the automatic choice of the

dependent element if set_composition () is used.
Returns This PropertyModelCalculation object

set_argument (argument: str, value: str)
Sets the specified model argument to the specified value. The id can be obtained with

get_arguments ().
Parameters
* argument — The argument id
* value - The value [unit according to the argument meaning]
Returns This PropertyModelCalculation object

set_composition (element_name: str, value: float)
Sets the composition of a element. The unit for the composition can be changed using

set_composition_unit ().
Default: Mole percent (CompositionUnit .MOLE_PERCENT)
Parameters
* element_name — The element
* value — The composition value [composition unit defined for the calculation]
Returns This PropertyModelCalculation object

set_composition_unit (unit_enum: tc_python.utils. CompositionUnit = <Compositio-
nUnit MOLE_PERCENT: 1>)
Sets the composition unit.

Default: Mole percent (CompositionUnit .MOLE_PERCENT).
Parameters unit_enum - The new composition unit

Returns This PropertyModelCalculation object

5.1.

Calculations 89

TC-Python Documentation, Release 2019a

set_condition (classic_condition: str, value: float)
Adds a classic POLY condition. If that method is used, all conditions need to be specified in
such a way. If this method is used, it is necessary to set the dependent element manually using
set__dependent_element ().

Default if not specified: pressure P = 1e5 Pa, system size N = 1, Temperature T = 1000 K

Warning: It is not possible to mix POLY-commands and compositions using
set_composition ().

Note: It should not be necessary for most users to use this method, try to use set_composition ()
instead.

Warning: As this method runs raw POLY-commands directly in the engine, it may hang the program
in case of spelling mistakes (e.g. forgotten parenthesis, ...).

Parameters
* classic_condition — The classic POLY condition (for example: X(CR))
* value - The value of the condition

Returns This PropertyModelCalculation object

set_dependent_element (dependent_element_name: str)
Sets the dependent element manually.

Note: It should not be necessary for most users to use this method. Setting the dependent element
manually is only necessary and allowed if set_condition () is used.

Parameters dependent_element_name — The name of the dependent element
Returns This PropertyModelCalculation object
set_model_parameter (model_parameter_id, value)
Resets an optimizable model parameter. The id can be obtained with get_model_parameters ().
Parameters
* model_parameter_id — The model parameter id
* value - The new value of the parameter
Returns This PropertyModelCalculation object

set_temperature (temperature: float = 1000)
Sets the temperature.

Default: 1000 K
Parameters temperature — The temperature [K]

Returns This PropertyModelCalculation object

920 Chapter 5. API Reference

TC-Python Documentation, Release 2019a

class tc_python.propertymodel .PropertyModelResult (result)
Bases: tc_python.abstract_base.AbstractResult

The result of a property model calculation.

get_result_quantities () — Set[str]
Returns a list of the available result quantities defined in the property model.

Returns The ids of the defined result quantities

get_result_quantity_description (result_quantity_id) — str
Returns the detailed description of the result quantity. The id can be obtained by
get_result_quantities().

Parameters result_quantity_id — The result quantity id
Returns The detailed description

get_value_of (result_quantity_id: str) — float
Returns a result quantity value. The available result quantities can be obtained by
get_result_quantities().

Parameters result_quantity_id - The id of the result quantity
Returns The requested value [unit depending on the quantity]

save_to_disk (path: str)
Saves the result to disk. The result can later be loaded into a new TC-Python session using tc¢_python.
server.SetUp.load _result_from disk().

Note: The result data is represented by a whole folder possibly containing multiple files.

Parameters path — The path to the result folder, can be relative or absolute.

Returns This PropertyModelResult object

5.2 Module “system”

class tc_python.system.MultiDatabaseSystemBuilder (multi_database_system_builder)
Bases: object

Used to select databases, elements, phases etc. and create a System object. The difference to the class System-
Builder is that the operations are performed on all the previously selected databases. The system is then used to
create calculations.

deselect_phase (phase_name_to_deselect: str)
Deselects a phase for both the thermodynamic and the kinetic database.

Parameters phase_name_to_deselect — The phase name
Returns This MultiDatabaseSystemBuilder object

get_system() — tc_python.system.System
Creates a new System object that is the basis for all calculation types. Several calculation types can be
defined later from the object, they will be independent.

Returns A new Sy stem object

select_phase (phase_name_to_select: str)
Selects a phase for both the thermodynamic and the kinetic database.

5.2. Module “system” 91

TC-Python Documentation, Release 2019a

Parameters phase_name_to_select — The phase name
Returns This MultiDatabaseSystemBuilder object

without_default_phases ()
Removes all the default phases from both the thermodynamic and the kinetic database, any phase now

needs to be selected manually for the databases.
Returns This MultiDatabaseSystemBuilder object

class tc_python.system.System (system_instance)
Bases: object

A system containing selections for databases, elements, phases etc.

Note: For the defined system, different calculations can be configured and run. Instances of this class should
always be created from a SystemBuilder.

Note: The system object is immutable, i.e. it cannot be changed after is has been created. If you want to
change the system, you must instead create a new one.

get_all elements_in_databases () — List[str]
Returns the names of all elements present in the selected databases, regardless of the actual selection of

elements.
Returns A list of element names

get_all_ phases_in_databases () — List[str]
Returns all phase names present in the selected databases, regardless of selected elements, phases etc.

Returns A list of phase names

get_all species_in_databases () — List[str]
Returns all species names present in the selected databases, regardless of the actual selection of elements,

phases,
Returns A list of species names

get_element_object (element_name: str) — tc_python.entities.Element
Returns the Element object of an element. This can be used to obtain detailed information about the

element.
Parameters element_name — The element name
Returns A Element: object

get_elements_in_system () — List[str]
Returns the names of all elements present in the selected system.

Note: The list does not contain any elements or components that have been auto-selected by the
database(s) in a calculator. Use the get_components () of the calculator object instead to get the
complete information.

Returns A list of element names

92 Chapter 5. API Reference

TC-Python Documentation, Release 2019a

get_ges_parameter (parameter: str) — str
Returns a GES-database parameter expression from the database. Example: sys-
tem.get_ges_parameter(“G(LIQUID,FE;0)”) might return the expression “+[.2*GFELIQ".

Note: Parameters can only be read from unencrypted (i.e. user) databases loaded as a . t db-file.

Note: Please consult the Thermo-Calc GES-system documentation for details about the syntax.

Parameters parameter — The GES-parameter (for example: “G(LIQUID,FE;0)”)
Returns The GES-expression (for example: “+1.2*GFELIQ”)
get_phase_object (phase_name: str) — tc_python.entities.Phase
Returns the Phase object of a phase. This can be used to obtain detailed information about the phase.
Parameters phase_name — The phase name
Returns A Phase: object

get_phases_in_system () — List[str]
Returns all phase names present in the system due to its configuration (selected elements, phases, etc.).

Returns A list of phase names

get_species_object (species_name: str) — tc_python.entities.Species
Returns the Species object of an species. This can be used to obtain detailed information about the
species.

Parameters species_name — The species name
Returns A Species: object

run_ges_command (command.: str)
Sends a command to the GES monitor. Example: run_ges_command(“AM-PH-DE FCC_AI C_S2 Fe:C”)
for adding a second composition set to the FCC_A1 phase with Fe as major constituent on first sublattice
and C as major constituent on second sublattice.

Note: The current System is copied and the GES-command is executed on the new system, i.e. the
returned Sy stem object is independent from the current one.

Note: Please consult the Thermo-Calc GES-system documentation for details about the syntax.

Parameters command — The GES-command (for example: “AM-PH-DE FCC_AI C_S 2
Fe:C”)

Returns A new Sy stem object
set_ges_parameter (parameter: str, expression: str)

Resets a GES-database parameter expression. Example: system.set_ges_parameter(“G(LIQUID,FE;0)”,
“+1.2*GFELIQ”).

5.2.

Module “system” 93

TC-Python Documentation, Release 2019a

Note: The current System is copied and the GES-parameter is changed in the new system, i.e. the
returned System object is independent from the current one.

Note: Please consult the Thermo-Calc GES-system documentation for details about the syntax.

Parameters parameter — The GES-parameter (for example: “G(LIQUID,FE;0)”)
Returns The GES-expression (for example: “+1.2*GFELIQ”)
Returns A new System object
with_cct_precipitation_calculation () — tc_python.precipitation.PrecipitationCCTCalculation
Creates a CCT-diagram calculation.
Returns A new PrecipitationCCTCalculation object

with_isothermal_ diffusion_calculation () — tc_python.diffusion.DiffusionlsoThermalCalculation
Creates an isothermal diffusion calculation.

Returns A new DiffusionIsoThermalCalculation object

with_isothermal_ precipitation_calculation () — tc_python.precipitation.PrecipitationlsoThermalCalculation
Creates an isothermal precipitation calculation.

Returns A new PrecipitationIsoThermalCalculation object

with_non_isothermal_diffusion_calculation () — tc_python.diffusion.DiffusionNonlsoThermalCalculation
Creates a non-isothermal precipitation calculation.

Returns A new PrecipitationNonIsoThermalCalculation object

with _non_isothermal precipitation_calculation () —

tc_python.precipitation.PrecipitationNonIsoThermalCalcula
Creates a non-isothermal precipitation calculation.

Returns A new PrecipitationNonIsoThermalCalculation object

with_phase_diagram calculation (default_conditions: bool = True,
components: List[str] = [n —

tc_python.step_or_map_diagrams.PhaseDiagramCalculation
Creates a phase diagram (map) calculation.

Parameters

* default_conditions - If True, automatically sets the conditions N=/ and
P=100000

* components — Specify here the components of the system (for example: [AL203, ...]),
only necessary if they differ from the elements. If this option is used, all elements of the
system need to be replaced by a component.

Returns A new PhaseDiagramCalculation object

with_property diagram_calculation (default_conditions: bool = True,
components: List[str] = [n —

tc_python.step_or_map_diagrams.PropertyDiagramCalculation
Creates a property diagram (step) calculation.

Parameters

94 Chapter 5. API Reference

TC-Python Documentation, Release 2019a

* default_conditions - If True, automatically sets the conditions N=/ and
P=100000

* components — Specify here the components of the system (for example: [AL203, ...]),
only necessary if they differ from the elements. If this option is used, all elements of the
system need to be replaced by a component.

Returns A new PropertyDiagramCalculation object

with_property _model_calculation (model: str, path_to_models: str = 7)) —

tc_python.propertymodel.PropertyModelCalculation
Creates a property model calculation.

Parameters
* model — The property model to be calculated.

* path_to_models — The path where the property models are installed. If no value is
entered, the property model folder used by the normal Thermo-Calc application is used.

Returns A new PropertyModelCalculation object

with_scheil_calculation () — tc_python.scheil.ScheilCalculation
Creates a Scheil solidification calculation.

Warning: Scheil calculations do not support the GAS phase being selected, this means the ‘GAS¢
phase must always be deselected in the system if it is present in the database

Returns A new ScheilCalculation object

with_single_equilibrium calculation (default_conditions: bool = True,
components: List[str] = [nH —

tc_python.single_equilibrium.SingleEquilibriumCalculation
Creates a single equilibrium calculation.

Parameters

* default_conditions - If True, automatically sets the conditions N=/ and
P=100000

* components — Specify here the components of the system (for example: [AL203, ...]),
only necessary if they differ from the elements. If this option is used, all elements of the
system need to be replaced by a component.

Returns A new SingleEquilibriumCalculation object

with_ttt_precipitation_calculation () — tc_python.precipitation.PrecipitationTTTCalculation
Creates a TTT-diagram calculation.

Returns A new PrecipitationTTTCalculation object

class tc_python.system.SystemBuilder (system_builder)
Bases: object

Used to select databases, elements, phases etc. and create a System object. The system is then used to create
calculations.

deselect_phase (phase_name_to_deselect: str)
Deselects a phase in the last specified database only.

Parameters phase_name_to_deselect — The name of the phase

5.2. Module “system” 95

TC-Python Documentation, Release 2019a

Returns This SystemBuilder object

get_system () — tc_python.system.System

Creates a new System object that is the basis for all calculation types. Several calculation types can be
defined later from the object, they will be independent.

Returns A new System object

get_system_for_ scheil_calculations () — tc_python.system.System

Creates a new System object without gas phases being selected, that is the basis for all calculation types,
but its particularly useful for Scheil solidification calculations, where the model does not allow that a gas

phase is selected in the system. Several calculation types can be defined later from the object, they will be
independent.

Returns A new System object

select_database_and elements (database_name: str, list_of element_strings: List[str])

Selects thermodynamic or kinetic database and its selected elements (that will be appended). After that,
phases can be selected or unselected.

Parameters
* database_name — The database name, for example “FEDEMO”

* list_of_element_strings — A list of one or more elements as strings, for example
[6‘Fe7” ‘6C77]

Returns This SystemBuilder object

select_phase (phase_name_to_select: str)
Selects a phase in the last specified database only.

Parameters phase_name_to_select — The name of the phase

Returns This SystemBuilder object

select_user_database_and_elements (path_to_user_database: str, list_of element_strings:

List[str])
Selects a thermodynamic database which is a user-defined database and select its elements (that will be
appended).
Parameters

* path_to_user_database — The path to the database file (*.TDB), defaults to the

current working directory. Only the filename is required if the database is located in the
same folder as the Python script.

* list_of_ element_strings — A list of one or more elements as strings, for example
[GLFe9” ‘4C79]

Returns This SystemBuilder object

without_default_phases ()

Deselects all default phases in the last specified database only, any phase needs now to be selected manually
for that database.

Returns This SystemBuilder object

5.3 Module “entities”

class tc_python.entities.Element (element)
Bases: object

96 Chapter 5. API Reference

TC-Python Documentation, Release 2019a

Represents an element, making detailed information about the element accessible.

get_name () — str
Returns the name of the element.

Returns The element name

is_interstitial () — bool
Returns if the element is interstitial.

Note: In the diffusion simulations (DICTRA), the assumption that the volume is carried by the substitu-
tional elements only is applied. The interstitial elements are assumed to have zero molar volumes.

Returns If the element is interstitial

is_special () — bool
Returns if the element is special (i.e. vacancies (VA) and electrons (denoted either as /- in gaseous, liquid
or solid phases, or ZE in an aqueous solution phase)).

Returns If the element is special

is_wvalid () — bool
Returns if the element is valid. Non-valid elements are represented by an empty name.

Returns If the element is valid

class tc_python.entities.Phase (phase)
Bases: object

Represents a phase, making detailed information about the phase accessible.

get_name () — str
Returns the name of the phase.

Returns The phase name

get_species () — Set[tc_python.entities.Species]
Returns the species of the phase.

Returns A set containing the species

get_species_for_composition_profile () — Set[tc_python.entities.Species]
Returns all species that need to be defined in a composition profile of the phase for diffusion simulations -
except for one species that needs to be the dependent species.

Note: In a composition profile of a phase for diffusion simulations it is necessary to specify all non-
stoichiometric and non-special species. In case of a DILUTE diffusion model, the database enforces the
choice of a certain dependent species.

Returns Set with the species
get_sublattices () — List[tc_python.entities.Sublattice]
Returns the sublattices of the phase in a well-defined contiguous order.
Returns A list containing the Sublattice objects

get_type () — tc_python.entities.PhaseType
Returns the type of the phase (liquid, ionic liquid, solid, gas).

5.3. Module “entities” 97

TC-Python Documentation, Release 2019a

Returns The type of a phase

has_diffusion_data () — bool
Returns if diffusion data exists for the phase.

Returns If diffusion data exists for the phase

has molar volume_data () — bool
Returns if molar volume data exists for the phase.

Returns If molar volume data exists for the phase

is dilute diffusion model () — bool

Returns if diffusion is described using the DILUTE model for the phase. This will always return False if

no diffusion data is available.
Returns If the DILUTE model is used

is_gas () — bool
Returns if the phase is a gas phase.

Returns If the phase is a gas phase

is_liquid () — bool
Returns if the phase is a liquid or ionic liquid phase.

Returns If the phase is a liquid phase

class tc_python.entities.PhaseType

Bases: enum.Enum
The type of a phase.

GAS = 0
Gas phase.

IONIC_LIQUID = 2
Ionic liquid phase.

LIQUID = 1
Liquid phase.

SOLID = 3
Solid phase.

class tc_python.entities.Species (species)

Bases: object

Represents an species, making detailed information about the species accessible.

get_all_elements () — List[Tuple[tc_python.entities.Element, float]]
Returns all the elements, that the species is composed of.

Returns List of all elements of the species and their stoichiometry

get_charge () — int
Returns the charge of the species.

Returns The charge of the species

get_name () — str
Returns the name of the species.

Returns The species name

98

Chapter 5. API Reference

TC-Python Documentation, Release 2019a

is_element () — bool
Returns if the species actually represents an element.

Returns If the species represents an element

is_interstitial () — bool
Returns if the species is interstitial.

Note: In the diffusion simulations (DICTRA), the assumption that the volume is carried by the substitu-
tional elements only is applied. The interstitial elements are assumed to have zero molar volumes.

Returns If the species is interstitial

is_special () — bool
Returns if the species is special (i.e. vacancies (VA) and electrons (denoted either as /- in gaseous, liquid
or solid phases, or ZE in an aqueous solution phase)).

Returns If the species is special

is_wvalid () — bool
Returns if the species is valid. Non-valid species are represented by an empty name.

Returns If the species is valid

to_element () — tc_python.entities.Element
Returns the Element representation of the species - if the species actually represents an element.

Returns The Element object

class tc_python.entities.Sublattice (sublattice)
Bases: object

Represents a sublattice of a phase.

get_constituents () — Set[tc_python.entities.Species]
Returns the constituents of the sublattice.

Returns A set containing the constituents

get_nr_ of_ sites () — float
Returns the number of sites in the sublattice.

Returns A float number

5.4 Module “server”

class tc_python.server.ResultLoader (result_loader)
Bases: object

Contains methods for loading results from previously done calculations.

diffusion (path: str) — tc_python.diffusion.DiffusionCalculationResult
LoadsaDiffusionCalculationResult from disc.

Parameters path — path to the folder where result was previously saved.

Returns A new DiffusionCalculationResult object which later can be used to get
specific values from the calculated result

5.4. Module “server” 99

TC-Python Documentation, Release 2019a

phase_diagram (path: str) — tc_python.step_or_map_diagrams.PhaseDiagramResult
Loads a PhaseDiagramResult from disc.

Parameters path — path to the folder where result was previously saved.

Returns A new PhaseDiagramResult object which later can be used to get specific values
from the calculated result

precipitation_TTT_or_CCT (path: str) — tc_python.precipitation.PrecipitationCalculationTTTorCCTResult
LoadsaPrecipitationCalculationTTTorCCTResult from disc.

Parameters path — path to the folder where result was previously saved.

Returns A new PrecipitationCalculationTTTorCCTResult object which later can
be used to get specific values from the calculated result

precipitation_single (path: str) — tc_python.precipitation.PrecipitationCalculationSingleResult
Loads aPrecipitationCalculationSingleResult from disc.

Parameters path — path to the folder where result was previously saved.

Returns A new PrecipitationCalculationSingleResult object which later can be
used to get specific values from the calculated result

property_diagram (path: str) — tc_python.step_or_map_diagrams.PropertyDiagramResult
Loads a PropertyDiagramResult from disc.

Parameters path — path to the folder where result was previously saved.

Returns A new PropertyDiagramResult object which later can be used to get specific
values from the calculated result

property_model (path: str) — tc_python.propertymodel.PropertyModelResult
Loads a PropertyModelResult from disc.

Parameters path — path to the folder where result was previously saved.

Returns A new PropertyModelResult object which later can be used to get specific values
from the calculated result

scheil (path: str) — tc_python.scheil.ScheilCalculationResult
Loads a ScheilCalculationResult from disc.

Parameters path — path to the folder where result was previously saved.

Returns A new ScheilCalculationResult object which later can be used to get specific
values from the calculated result

single_equilibrium (path: str) — tc_python.single_equilibrium.SingleEquilibriumResult
Loads a SingleEquilibriumResult from disc.

Parameters path — path to the folder where result was previously saved.

Returns A new SingleEquilibriumResult object which later can be used to get specific
values from the calculated result

class tc_python.server.SetUp (debug_logging=False)
Bases: object

Starting point for all calculations.

Note: This class exposes methods that have no precondition, it is used for choosing databases and elements.

100 Chapter 5. API Reference

TC-Python Documentation, Release 2019a

disable_caching ()
A previously set cache folder is no longer used.

Note: Within one TC-Python session, i.e. within one with-clause, caching will be anyway activated and
used through the default temporary directory.

Returns This SetUp object

get_database_info (database_short_name: str) — str
Obtains the short information available for the specified database.

Parameters database_short_name — The name of the database (i.e. “FEDEMO”, ...)
Returns The short information about the database

get_database_path_on_disk (database_short_name: str) — str

Obtains the path to the database file on disk. TCPATH is a placeholder for the root path of the used
Thermo-Calc installation.

Note: Encrypted databases (*.7DC) cannot be edited.

Parameters database_short_name — The name of the database (i.e. “FEDEMO”, ...)

Returns The path to the database on disk

get_databases () — List[str]
Obtains the short names of all databases available in the used Thermo-Calc installation.

Note: Only databases with a valid license will be listed.

Returns List of the available databases

get_property models (path_to_models: str =) — Set[str]
Lists the names of all property modes in the specified directory.

If the directory is not specified, the property model folder used by the normal Thermo-Calc application is
used.

Parameters path_to_models — The path where the property models are installed. If no

value is entered, the property model folder used by the normal Thermo-Calc application is
used.

Returns

load_result_from disk ()
Loads a previously calculated result from disk.

Note: This only works for results created by calling one of the save_result () methods on a Result
class created from a calculation with TC-Python.

Returns A new ResultLoader object

. Module “server”

101

TC-Python Documentation, Release 2019a

select_database and_elements (database_name: str, list_of _elements: List[str]) —
tc_python.system.SystemBuilder
Selects a first thermodynamic or kinetic database and selects the elements in it.

Parameters
* database_name — The name of the database, for example “FEDEMO”

* list_of_elements — The list of the selected elements in that database, for example
[6‘Fe7” ‘6C77]

Returns A new SystemBuilder object

select_thermodynamic_and_kinetic_databases_with_elements (thermodynamic_db_name:
Str, ki-
netic_db_name: str,
list_of _elements:
List[str]) —

tc_python.system.MultiDatabaseSystemBui
Selects the thermodynamic and kinetic database at once, guarantees that the databases are added in the

correct order. Further rejection or selection of phases applies to both databases.

Parameters

* thermodynamic_db_name - The thermodynamic database name, for example
“FEDEMO”

* kinetic_db_name — The kinetic database name, for example “MFEDEMO”

* list_of_elements — The list of the selected elements in that database, for example
[“Fe”, “C”]

Returns A new MultiDatabaseSystemBuilder object

select_user_database_and_elements (path_to_user_database: str, list_of _elements:

List[str]) — tc_python.system.SystemBuilder
Selects a user defined database and selects the elements in it.

Parameters

* path_to_user_database - The path to the database file (*.TDB), defaults to the

current working directory. Only filename is required if the database is located in the same
folder as the Python script.

* list_of_elements — The list of the selected elements in that database, for example
[‘6Fe9” “C??]

Returns A new SystemBuilder object
set_cache_folder (path: str = 7, precision_for_floats: int = 12)

Sets a folder where results from calculations, and state of systems will be saved. If at any time a calculation

is run which has the exact same setting as a previous, the calculation is not re-run. The result is instead
loaded from this folder.

Note: The same folder can be used in several python scripts, and it can even be shared between different
users. It can be a network folder.

Parameters

* path — path to the folder where results should be stored. It can be relative or absolute.

102 Chapter 5. API Reference

TC-Python Documentation, Release 2019a

* precision_for_floats — The number of significant figures used when comparing
if the calculation has the same setting as a previous.

Returns This SetUp object
set_log_level_to_debug/()
Sets log level to DEBUG
Returns This SetUp object

set_log_level_to_info ()
Sets log level to INFO

Returns This SetUp object

class tc_python.server.TCPython (screen_log_handler=True, debug_mode=False, de-
bug_logging=False)
Bases: object

Starting point of the API. Typical syntax:

with TCPython () as session:
session.select_database_and elements(...)

Note: Each usage of with TCPython() causes significant overhead (starting a new process, stopping the old one,
cleaning up the temporary disk space). Usually it is recommendable to call with TCPython() only once for each
process, even if working in a loop. Instead you should pass the session or calculator object into the loop and use
them there.

If necessary, beginning from version 2019a it is however possible to call with TCPython() safely multiple times.
Due to the overhead that only makes sense if the calculation time per loop iteration is longer than a minute.

tc_python.server.start_api_server (screen_log_handler=True, debug_mode=False,

is_unittest=False))
Starts a process of the API server and sets up the socket communication with it.

Parameters

* screen_log_handler - If True adds a Python log-handler for printing all messages
from the calculation to the screen. Default: True. Note that the handlers can also be adapted
through the tc_python. LOGGER object at any time.

* debug_mode - If True it is tried to open a connection to an already running API-server.
This is only used for debugging the API itself.

* is_unittest — Should be True if called by a unit test, only to be used internally for
development.

Warning: Most users should use TCPython using a with-statement for automatic management of the
resources (network sockets and temporary files). If you anyway need to use that method, make sure to call
stop_api_server () in any case using the try-finally-pattern.

tc_python.server.stop_api_server ()
Clears all resources used by the session (i.e. shuts down the API server and deletes all temporary files). The
disk usage of temporary files might be significant.

5.4. Module “server” 103

TC-Python Documentation, Release 2019a

Warning: Call this method only if youused start_api_ server () initially. It should never be called
when the API has been initialized in a with-statement using TCPython.

5.5 Module “quantity_factory”

class tc_python.quantity_factory.DiffusionQuantity
Bases: tc_python.quantity.AbstractQuantity

Factory class providing quantities used for defining diffusion simulations and their results.

Note: In this factory class only the most common quantities are defined, you can always use the Console Mode
syntax strings in the respective methods as an alternative (for example: “NPM(*)”).

classmethod activity_ of_component (component: str = 'All’, use_ser: bool = False)
Creates a quantity representing the activity of a component.

Parameters
* component — The name of the component, use “All” to choose all components

¢ use_ser — Use Stable-Element-Reference(SER). The user defined reference state will
be used when this setting is set to False.

Returns A new ActivityOfComponent object.

classmethod chemical_diffusion_coefficient (phase: str, diffusing_element: str, gra-
dient_element: str, reference_element:

Creates a quantity representing the chemical diffusion coefggzznt of a phase [m”2/s].
Parameters
* phase — The name of the phase
* diffusing_element — The diffusing element
* gradient_element — The gradient element
* reference_element — The reference element (for example “Fe” in a steel)
Returns A new ChemicalDiffusionCoefficient object.

classmethod chemical_potential_of_ component (component: str = All’, use_ser: bool =

False)
Creates a quantity representing the chemical potential of a component [J].

Parameters
* component — The name of the component, use “All” to choose all components

¢ use_ser — Use Stable-Element-Reference(SER). The user defined reference state will
be used when this setting is set to False.

Param use_ser: Use Stable-Element-Reference(SER). The user defined reference state will be
used when this setting is set to False.

Returns A new ChemicalPotentialOfComponent object.

classmethod distance (region: str = 'All’)
Creates a quantity representing the distance [m].

104 Chapter 5. API Reference

TC-Python Documentation, Release 2019a

Parameters region — The name of the region or All to choose global.

classmethod intrinsic_diffusion_coefficient (phase: str, diffusing_element: str, gra-

dient_element: str, reference_element:

tr)

Creates a quantity representing the intrinsic diffusion coefficient of a phase [m”2/s].
Parameters
* phase — The name of the phase
¢ diffusing_element — The diffusing element
* gradient_element — The gradient element
* reference_element — The reference element (for example “Fe” in a steel)
Returns A new IntrinsicDiffusionCoefficient object.

classmethod 1_bis (phase: str, diffusing_element: str, gradient_element: str, reference_element:
Str)
Creates a quantity representing L of a phase [m”2/s].

Parameters

* phase — The name of the phase

* diffusing_element — The diffusing element

* gradient_element — The gradient element

* reference_element — The reference element (for example “Fe” in a steel)
Returns A new Lbis object.

classmethod mass_fraction_of_a_component (component: str = 'All’)
Creates a quantity representing the mass fraction of a component.

Parameters component — The name of the component or A/l to choose all components
Returns A new MassFractionOfAComponent object.

classmethod mass_fraction_of_a_phase (phase: str = "All’)
Creates a quantity representing the mass fraction of a phase.

Parameters phase — The name of the phase or All to choose all phases.
Returns A new MassFractionOfAPhase object.

classmethod mobility of_ component_in_phase (phase: str, component: str)
Creates a quantity representing the mobility of a component in a phase [m”2/Js].

Parameters
* phase — The name of the phase
* component — The name of the component
Returns A new MobilityOfComponentInPhase object.

classmethod mole_fraction_of_a_ component (component: str = 'All’)
Creates a quantity representing the mole fraction of a component.

Parameters component — The name of the component or All to choose all components
Returns A new MoleFractionOfAComponent object.

classmethod mole_fraction_of_a_phase (phase: str = 'All’)
Creates a quantity representing the mole fraction of a phase.

5.5.

Module “quantity_factory” 105

TC-Python Documentation, Release 2019a

Parameters phase — The name of the phase or All to choose all phases
Returns A new MoleFractionOfAPhase object.

classmethod position_of_ lower_boundary of region (region: str)
Creates a quantity representing the position of lower boundary of a region [m].

Parameters region — The name of the region
Returns A new PositionOfLowerBoundaryOfRegion object.

classmethod position_of upper boundary of_ region (region: str)
Creates a quantity representing the position of upper boundary of a region [m].

Parameters region — The name of the region
Returns A new PositionOfUpperBoundaryOfRegion object.

classmethod temperature ()
Creates a quantity representing the temperature [K].

Returns A new Temperature object.

classmethod thermodynamic_factor (phase: str, diffusing_element: str, gradient_element:

Str, reference_element: str)
Creates a quantity representing thermodynamic factor of a phase.

Parameters

* phase — The name of the phase

* diffusing_element — The diffusing element

e gradient_element — The gradient element

* reference_element — The reference element (for example “Fe” in a steel)
Returns A new ThermoDynamicFactor object.

classmethod time ()
Creates a quantity representing the time [s].

classmethod total_mass_fraction_of_ component (component: str)
Creates a quantity representing the total mass fraction of a component.

Parameters component — The name of the component
Returns A new TotalMassFractionOfComponent object.

classmethod total_mass_fraction_of_component_in_phase (phase: str, component:

Str)
Creates a quantity representing the total mass fraction of a component in a phase.

Parameters
* phase — The name of the phase
* component — The name of the component
Returns A new TotalMassFractionOfComponentInPhase object.

classmethod total_mass_fraction_of_phase (phase: str)
Creates a quantity representing the total mass fraction of a phase.

Param phase: The name of the phase.

Returns A new TotalMassFractionOfPhase object.

106 Chapter 5. API Reference

TC-Python Documentation, Release 2019a

classmethod total_mole_fraction_of_component (component: str)
Creates a quantity representing the total mole fraction of a component.

Parameters component — The name of the component
Returns A new TotalMoleFractionOfComponent object.

classmethod total_mole_fraction_of_component_in_phase (phase: str, component:

Str)
Creates a quantity representing the total mole fraction of a component in a phase.

Parameters
* phase — The name of the phase
e component — The name of the component
Returns A new TotalMoleFractionOfComponentInPhase object.

classmethod total_volume_fraction_of_phase (phase: str)
Creates a quantity representing the total volume fraction of a phase.

Param phase: The name of the phase.
Returns A new TotalVolumeFractionOfPhase object.

classmethod tracer_diffusion_coefficient (phase: str, diffusing_element: str)
Creates a quantity representing tracer diffusion coefficient of a phase [m”2/s].

Parameters

* phase — The name of the phase

* diffusing_element — The diffusing element
Returns A new TracerDiffusionCoefficient object.

classmethod u_fraction_of_a_component (component: str)
Creates a quantity representing the u-fraction of a component.

Parameters component — The name of the component
Returns A new UFractionOfAComponent object.

classmethod user_defined_ function (expression: str)
Creates a quantity representing a user defined function.

Parameters expression — The function expression
Returns A new Function object

classmethod velocity of lower boundary of_ region (region: str)
Creates a quantity representing the velocity of lower boundary of a region [m/s].

Parameters region — The name of the region
Returns A new VelocityOfLowerBoundaryOfRegion object.

classmethod velocity of upper boundary of_ region (region: str)
Creates a quantity representing the velocity of upper boundary of a region [m/s].

Parameters region — The name of the region
Returns A new VelocityOfUpperBoundaryOfRegion object.

classmethod width_of_region (region: str)
Creates a quantity representing the width of a region [m].

Parameters region — The name of the region

5.5.

Module “quantity_factory” 107

TC-Python Documentation, Release 2019a

Returns A new WidthOfRegion object.

class tc_python.quantity_factory.IndependentVariable
Bases: tc_python.quantity.AbstractQuantity

Factory class providing quantities used for defining the independent variable in general diffusion result querying.

classmethod distance (region: str = "All’)
Creates an independent variable representing the distance [m].

Returns A new Distance object

classmethod time ()
Creates an independent variable representing the time [s].

Returns A new Time object

class tc_python.quantity_factory.PlotCondition
Bases: tc_python.quantity.AbstractQuantity

Factory class providing quantities used for defining the plot condition in general diffusion result querying.

Note: In this factory class only the most common quantities are defined, you can always use the Console Mode
syntax strings in the respective methods as an alternative (for example: “time last”).

classmethod distance (region: str = "All’)
Creates a plot condition representing the distance [m].

Parameters region — The name of the region or A/l to choose global.
Returns A new DistanceCondition object

classmethod integral ()
Creates an integral plot condition.

Returns A new IntegralCondition object

classmethod interface (region: str, interface_position: tc_python.utils.InterfacePosition)
Creates a plot condition representing an interface between two regions.

Parameters
* region — The name of the region used for defining the interface

* interface_position — The position of the interface relative to that region (lower or
upper)

Returns A new InterfaceCondition object

classmethod time (timepoints: Union[List[Union[float, str]], float, str] = 'Last’)
Creates a plot condition representing the time [s].

Parameters timepoints — The timepoints, can be a single value or a list of values. Optionally
“Last” can be used for the end of the simulation

Returns A new TimeCondition object

class tc_python.quantity_factory.ScheilQuantity
Bases: tc_python.quantity.AbstractQuantity

Factory class providing quantities used for defining a Scheil calculation result (tc_python.scheil.
ScheilCalculationResult).

108 Chapter 5. API Reference

TC-Python Documentation, Release 2019a

classmethod apparent_heat_capacity per_gram()
Creates a quantity representing the apparent heat capacity [J/g/K].

Returns A new ApparentHeatCapacityPerGram object.

classmethod apparent_heat_capacity per_mole ()
Creates a quantity representing the apparent heat capacity [J/mol/K].

Returns A new ApparentHeatCapacityPerMole object.

classmethod apparent_volumetric_thermal_ expansion_coefficient ()
Creates a quantity representing the apparent volumetric thermal expansion coefficient of the system [1/K].

Returns A new ApparentVolumetricThermalExpansionCoefficient object.

classmethod composition_of_phase_as_mole_fraction (phase: str = 'All’, component:

str="All’)
Creates a quantity representing the composition of a phase [mole-fraction].

Parameters

* phase — The name of the phase, use All to choose all stable phases

* component — The name of the component, use All to choose all components
Returns A new CompositionOfPhaseAsMoleFraction object.

classmethod composition_of_phase_as_weight_fraction (phase: str = 'All’, compo-

]) o) nent: str="All")
Creates a quantity representing the composition of a phase [weight-fraction].

Parameters

* phase — The name of the phase, use All to choose all stable phases

e component — The name of the component, use All to choose all components
Returns A new CompositionOfPhaseAsWeightFraction object.

classmethod density_ of_solid_phase (phase: str = "All’)
Creates a quantity representing the average density of a solid phase [g/cm”3].

Parameters phase — The name of the phase or All to choose all solid phases
Returns A new DensityOfSolidPhase object.

classmethod density of_system()
Creates a quantity representing the average density of the system [g/cm”3].

Returns A new DensityOfSystem object.

classmethod distribution_of component_of_phase (phase: str, component: str)
Creates a quantity representing the (molar) fraction of the specified component being present in the speci-
fied phase compared to the overall system [-]. This corresponds to the degree of segregation to that phase.

Parameters
* phase — The name of the phase
* component — The name of the component
Returns A new DistributionOfComponentOfPhase object.

classmethod heat_per_gram()
Creates a quantity representing the total heat release from the liquidus temperature down to the current
temperature [J/g].

5.5.

Module “quantity_factory” 109

TC-Python Documentation, Release 2019a

Note: The total or apparent heat release during the solidification process consists of two
parts: one is the so-called latent heat, i.e. heat due to the liquid -> solid phase transformation
(latent_heat_per _mole () and latent_heat_per_ gram()), and the other is the heat related
to the specific heat of liquid and solid phases (heat_per._mole () and heat_per._gram()).

Returns A new HeatPerGram object.

classmethod heat_per mole ()
Creates a quantity representing the total heat release from the liquidus temperature down to the current
temperature [J/mol].

Note: The total or apparent heat release during the solidification process consists of two
parts: one is the so-called latent heat, i.e. heat due to the liquid -> solid phase transformation
(latent_heat_per _mole () and latent_heat_per gram()), and the other is the heat related
to the specific heat of liquid and solid phases (heat_per_mole () and heat_per_gram()).

Returns A new HeatPerMole object.

classmethod latent_heat_per gram()
Creates a quantity representing the cumulated latent heat release from the liquidus temperature down to
the current temperature [J/g].

Note: The total or apparent heat release during the solidification process consists of two
parts: one is the so-called latent heat, i.e. heat due to the liquid -> solid phase transformation
(latent_heat_per _mole () and latent_heat_per gram()), and the other is the heat related
to the specific heat of liquid and solid phases (heat_per _mole () and heat_per._gram()).

Returns A new LatentHeatPerGram object.

classmethod latent_heat_per_mole ()
Creates a quantity representing the cumulated latent heat release from the liquidus temperature down to
the current temperature [J/mol].

Note: The total or apparent heat release during the solidification process consists of two
parts: one is the so-called latent heat, i.e. heat due to the liquid -> solid phase transformation
(latent_heat_per_mole () and latent_heat_per_gram()), and the other is the heat related
to the specific heat of liquid and solid phases (heat_per._mole () and heat_per_gram()).

Returns A new LatentHeatPerMole object.
classmethod mass_fraction_of_a_solid_phase (phase: str = "All’)
Creates a quantity representing the mass fraction of a solid phase.
Parameters phase — The name of the phase or All to choose all solid phases
Returns A new MassFractionOfASolidPhase object.

classmethod mass_fraction_of all liquid()
Creates a quantity representing the total mass fraction of all the liquid phase.

110 Chapter 5. API Reference

TC-Python Documentation, Release 2019a

Returns A new MassFractionOfAllLiquid object.

classmethod mass_fraction_of all_solid phases()
Creates a quantity representing the total mass fraction of all solid phases.

Returns A new MassFractionOfAllSolidPhase object.

classmethod molar_volume_of phase (phase: str = "All’)
Creates a quantity representing the molar volume of a phase [m”"3/mol].

Parameters phase — The name of the phase or All to choose all phases
Returns A new MolarVolumeOfPhase object.

classmethod molar_ volume_of_ system()
Creates a quantity representing the molar volume of the system [m”3/mol].

Returns A new MolarVolumeOfSystem object.

classmethod mole fraction of a solid_ phase (phase: str = "All’)
Creates a quantity representing the molar fraction of a solid phase.

Parameters phase — The name of the phase or All to choose all solid phases
Returns A new MoleFractionOfASolidPhase object.

classmethod mole_fraction_of all_liquid()
Creates a quantity representing the total molar fraction of all the liquid phase.

Returns A new MoleFractionOfAllLiquid object.

classmethod mole fraction_of all solid phases()
Creates a quantity representing the total molar fraction of all solid phases.

Returns A new MoleFractionOfAllSolidPhases object.

classmethod site_fraction_of_ component_in_phase (phase: str = 'All’, component: str
= "All’, sub_lattice_ordinal_no:
int = None)
Creates a quantity representing the site fractions [-].
Parameters
* phase — The name of the phase, use All to choose all stable phases

* component — The name of the component, use All to choose all components

e sub_lattice_ordinal_no - The ordinal number (i.e. 1, 2, ...) of the sublattice of
interest, use None to choose all sublattices

Note: Detailed information about the sublattices can be obtained by getting the Phase object of a phase
from the System object using tc_python.system.System.get_phase_in_system().
For each phase the sublattices are obtained by using tc_python.system.Phase.
get_sublattices (). The order in the returned list is equivalent to the sublattice ordinal number
expected, but note that the ordinal numbers do start with 1.

Returns A new SiteFractionOfComponentInPhase object.

classmethod temperature ()
Creates a quantity representing the temperature [K].

Returns A new Temperature object.

5.5.

Module “quantity_factory” 111

TC-Python Documentation, Release 2019a

class tc_python.quantity_factory.ThermodynamicQuantity
Bases: tc_python.quantity.AbstractQuantity

Factory class providing quantities used for defining equilibrium calculations (single equilibrium, property and

phase diagrams, ...) and their results.

Note: In this factory class only the most common quantities are defined, you can always use the Console Mode

syntax strings in the respective methods as an alternative (for example: “NPM(*)”).

classmethod activity of_component (component: str = 'All’, use_ser: bool = False)
Creates a quantity representing the activity of a component [-].

Parameters
* component — The name of the component, use “All” to choose all components

¢ use_ser — Use Stable-Element-Reference(SER). The user defined reference state will
be used when this setting is set to False.

Param use_ser: Use Stable-Element-Reference(SER). The user defined reference state will be
used when this setting is set to False.

Returns A new ActivityOfComponent object.

classmethod chemical_diffusion_coefficient (phase: str, diffusing_element: str, gra-
dient_element: str, reference_element:

)

Creates a quantity representing the chemical diffusion coefigltc:qent of a phase [m"2/s].
Parameters
* phase — The name of the phase
* diffusing_element — The diffusing element
* gradient_element - The gradient element
* reference_element — The reference element (for example “Fe” in a steel)
Returns A new ChemicalDiffusionCoefficient object.

classmethod chemical potential of component (component: str = All’, use_ser: bool =

False)
Creates a quantity representing the chemical potential of a component [J].

Parameters
* component — The name of the component, use “All” to choose all components

¢ use_ser — Use Stable-Element-Reference(SER). The user defined reference state will
be used when this setting is set to False.

Param use_ser: Use Stable-Element-Reference(SER). The user defined reference state will be
used when this setting is set to False.

Returns A new ChemicalPotentialOfComponent object.
classmethod composition_of_phase_as_mole_fraction (phase: str = 'All’, component:

str ="All’)
Creates a quantity representing the composition of a phase [mole-fraction].

Parameters

* phase — The name of the phase, use All to choose all stable phases

112 Chapter 5. API Reference

TC-Python Documentation, Release 2019a

* component — The name of the component, use All to choose all components
Returns A new CompositionOfPhaseAsMoleFraction object.

classmethod composition of phase_as_weight_fraction (phase: str = 'All’, compo-

)) ») nent: str="All")
Creates a quantity representing the composition of a phase [weight-fraction].

Parameters

* phase — The name of the phase, use All to choose all stable phases

¢ component — The name of the component, use All to choose all components
Returns A new CompositionOfPhaseAsWeightFraction object.

classmethod gibbs_energy of a_phase (phase: str = 'All’, use_ser: bool = False)
Creates a quantity representing the Gibbs energy of a phase [J].

Parameters
* phase — The name of the phase or All to choose all phases

¢ use_ser — Use Stable-Element-Reference(SER). The user defined reference state will
be used when this setting is set to False.

Returns A new GibbsEnergyOfAPhase object.

classmethod mass_fraction_of_a_component (component: str = 'All’)
Creates a quantity representing the mass fraction of a component.

Parameters component — The name of the component or A/l to choose all components
Returns A new MassFractionOfAComponent object.

classmethod mass_fraction_of_a_phase (phase: str = "All’)
Creates a quantity representing the mass fraction of a phase.

Parameters phase — The name of the phase or All to choose all phases.
Returns A new MassFractionOfAPhase object.

classmethod mole_ fraction_of_ a_component (component: str = 'All’)
Creates a quantity representing the mole fraction of a component.

Parameters component — The name of the component or A/l to choose all components
Returns A new MoleFractionOfAComponent object.

classmethod mole_ fraction_of_ a_phase (phase: str = "All’)
Creates a quantity representing the mole fraction of a phase.

Parameters phase — The name of the phase or All to choose all phases
Returns A new MoleFractionOfAPhase object.

classmethod normalized_driving force_of_a_phase (phase: str = "All’)
Creates a quantity representing normalized driving force of a phase [-].

Warning: A driving force calculation requires that the respective phase has been set to the state
DORMANT. The parameter All is only reasonable if all phases have been set to that state.

Parameters phase — The name of the phase or All to choose all phases

Returns A new DrivingForceOfAPhase object.

5.5.

Module “quantity_factory” 113

TC-Python Documentation, Release 2019a

classmethod pressure ()
Creates a quantity representing the pressure [Pa].

Returns A new Pressure object.

classmethod system size()
Creates a quantity representing the system size [mol].

Returns A new SystemSize object.

classmethod temperature ()
Creates a quantity representing the temperature [K].

Returns A new Temperature object.

classmethod tracer_diffusion_coefficient (phase: str, diffusing_element: str)
Creates a quantity representing tracer diffusion coefficient of a phase [m”2/s].

Parameters

* phase — The name of the phase

* diffusing_element — The diffusing element
Returns A new TracerDiffusionCoefficient object.

classmethod u_fraction_of_a_ component (component: str)
Creates a quantity representing the u-fraction of a component.

Parameters component — The name of the component
Returns A new UFractionOfAComponent object.

classmethod volume_fraction_of_ a_phase (phase: str = 'All’)
Creates a quantity representing the volume fraction of a phase.

Parameters phase — The name of the phase or All to choose all phases

Returns A new VolumeFractionOfAPhase object.

5.6 Module “utils”

class tc_python.utils.CompositionUnit
Bases: enum.Enum

The composition unit.

MASS FRACTION = 2
Mass fraction.

MASS_PERCENT = 3
Mass percent.

MOLE_FRACTION = 0
Mole fraction.

MOLE_PERCENT = 1
Mole percent.

class tc_python.utils.Condition (console_mode_syntax: str,value: float)
Bases: object

A condition expressed in Console mode syntax (e.g. “X(Cr)”).

114 Chapter 5. API Reference

TC-Python Documentation, Release 2019a

class tc_python.utils.InterfacePosition
Bases: enum.Enum

The position of an interface relative to its region. Only used for diffusion simulations.

LOWER = 0
The interface is on the lower side of its region.

UPPER = 1
The interface is on the upper side of its region.

class tc_python.utils.ResultValueGroup (result line_group_java)
Bases: object

A x-y-dataset representing a line data calculation result (i.e. a Thermo-Calc guantity I vs. quantity 2).

Warning: Depending on the calculator, the dataset might contain NaN-values to separate the data between
different subsets.

Variables
* x — list of floats representing the first quantity (“x-axis”
» y — list of floats representing the second quantity (“y-axis”)
class tc_python.utils.TemperatureProfile
Bases: object

Represents a time-temperature profile used by non-isothermal calculations.

Note: The total simulation time can differ from the defined temperature profile. Constant temperature is
assumed for any timepoint after the end of the defined profile.

add_time_temperature (time: float, temperature: float)
Adds a time-temperature point to the non-isothermal temperature profile.

Parameters
e time — The time [s]
* temperature - The temperature [K]

Returns This TemperatureProfile object

5.7 Module “exceptions”

exception tc_python.exceptions.APIServerException
Bases: tc_python.exceptions.GeneralException

An exception that occurred during the communication with the API-server. It is normally not related to an error
in the user program.

exception tc_python.exceptions.CalculationException
Bases: tc_python.exceptions.TCException

An exception that occurred during a calculation.

5.7. Module “exceptions” 115

TC-Python Documentation, Release 2019a

exception tc_python.exceptions.ComponentNotExistingException
Bases: tc_python.exceptions.GeneralException

The selected component is not existing.

exception tc_python.exceptions.DatabaseException
Bases: tc_python.exceptions.CalculationException

Error loading a thermodynamic or kinetic database, typically due to a misspelled database name or a database
missing in the system.

exception tc_python.exceptions.DegreesOfFreedomNotZeroException
Bases: tc_python.exceptions.CalculationException

The degrees of freedom in the system are not zero, i.e. not all required conditions have been defined. Please
check the conditions given in the exception message.

exception tc_python.exceptions.EquilibriumException
Bases: tc_python.exceptions.CalculationException

An equilibrium calculation has failed, this might happen due to inappropriate conditions or a very difficult
problem that can not be solved.

exception tc_python.exceptions.GeneralCalculationException
Bases: tc_python.exceptions.CalculationException

General error occurring while a calculation is performed.

exception tc_python.exceptions.GeneralException
Bases: tc_python.exceptions.TCException

A general exception that might occur in different situations.

exception tc_python.exceptions.InvalidCalculationConfigurationException
Bases: tc_python.exceptions.CalculationException

Thrown when errors are detected in the configuration of the calculation.

exception tc_python.exceptions.InvalidNumberOfResultGroupsException
Bases: tc_python.exceptions.ResultException

A calculation result contains several result groups, which is not supported for the used method.

exception tc_python.exceptions.InvalidResultConfigurationException
Bases: tc_python.exceptions.ResultException

A calculation result configuration is invalid.

exception tc_python.exceptions.InvalidResultStateException
Bases: tc_python.exceptions.CalculationException

Trying to access an invalid result (for example a SingleEquilibriumTempResult object that got already
invalidated by condition changes or a result that was invalidated by calling invalidate() on it).

exception tc_python.exceptions.LicenseException
Bases: tc_python.exceptions.GeneralException

No valid license for the API or any Thermo-Calc product used by it found.

exception tc_python.exceptions.NoDataForPhaseException
Bases: tc_python.exceptions.ResultException

There is no result data available for a selected phase.

116 Chapter 5. API Reference

TC-Python Documentation, Release 2019a

exception tc_python.exceptions.NotAllowedOperationException
Bases: tc_python.exceptions.CalculationException

The called method or operation is not allowed in the current mode of operation (i.e. debug or production mode).
Production mode means that the property model is only present as an * py.encrypted-file, while in debug mode it
is available as * py-file. Certain methods for obtaining internal model parameters are not available for encrypted
models.

exception tc_python.exceptions.PhaseNotExistingException
Bases: tc_python.exceptions.GeneralException

The selected phase is not existing, so no data can be provided for it.

exception tc_python.exceptions.ResultException
Bases: tc_python.exceptions.TCException

An exception that occurred during the configuration of a calculation result.

exception tc_python.exceptions.SyntaxException
Bases: tc_python.exceptions.CalculationException

Syntax error in a Console Mode expression.

exception tc_python.exceptions.TCException
Bases: Exception

The root exception of TC-Python.

exception tc_python.exceptions.UnrecoverableCalculationException
Bases: tc_python.exceptions.CalculationException

The calculation reached a state where no further actions are possible, this happens most often due to a
FORTRAN- hard crash in the API server backend.

Note: It is possible to catch that exception outside of the with-clause context and to continue by setting up a
new context (i.e. by a new with TCPython() as session).

tc_python.exceptions.raise_python_exceptions (func)
Internal method of the API: Usage of that decorator maps all relevant Java exceptions in the API to the
appropriate Python exception.

5.8 Module “abstract base”

class tc_python.abstract_base.AbstractCalculation (calculator)
Bases: object

Abstract base class for calculations.

get_configuration_as_string() — str
Returns detailed information about the current state of the calculation object.

Warning: The structure of the calculator objects is an implementation detail and might change be-
tween releases without notice. Therefore do not rely on the internal object structure.

class tc_python.abstract_base.AbstractResult (result)
Bases: object

5.8. Module “abstract_base” 117

TC-Python Documentation, Release 2019a

Abstract base class for results. This can be used to query for specific values .

invalidate()
Invalidates the object and frees the disk space used by it. This is only required if the disk space occupied by
the object needs to be released during the calculation. No data can be retrieved from the object afterwards.

118 Chapter 5. API Reference

CHAPTER
SIX

TROUBLESHOOTING

This section provides an FAQ for common problems that occur when using TC-Python.

6.1 “No module named tc_python” error on first usage

This problem occurs because your used Python interpreter cannot find the TC-Python package. We expect that you
have installed the TC-Python package in your Python system interpreter following the instructions in the 7C-Python
Quick Install Guide.

Normally the error message “No module named tc_python” is caused by unintentionally configuring a PyCharm project
to use a so-called Virtual Environment. This happens unfortunately by default when creating a new PyCharm project
with not changing the default settings.

Note: A Virtual Environment is basically a separate and completely independent copy of the system-wide Python
interpreter. It does not contain any packages.

On Windows systems we recommend to use the Anaconda Python Distribution as Python interpreter. However, the
instructions given here are valid for any operating system and distribution.

Since TC-Python 2018b we do recommend to not use Virtual Environments unless there is a reasonable use case for
that.

There are two possible solutions to fix the problem:

1. The quick fix for your problem is to run

pip install <path to the TC-Python folder>/TC_Python-<version>-py3-none-any.whl

within the Terminal window of the opened PyCharm project. This Terminal window automatically runs within
the Virtual Environment configured for the project (if any). You can see the name of the Virtual Environment at
the beginning of each command prompt line (here it is called venv):

Microsoft Windows [Version 10.0.16299.431]
(c) 2017 Microsoft Corporation. All rights reserved.

(venv) C:\Users\User\Documents\>

The command will consequently install TC-Python also within that Virtual Environment automatically.
The Terminal window can be found at the bottom of the IDE. Note that it might be necessary to enable these
buttons first by selecting the menu entry View—Tool Buttons.

2. The better fix is to change your project to use the system interpreter. This is described in detail in the section
Fixing potential issues with the environment in Step 5 of the TC-Python Quick Install Guide.

119

TC-Python Documentation, Release 2019a

It is recommendable to use that approach also for all your future projects.

Both fixes will only change the configuration of the opened project. Further useful information can be found in the
section Python Virtual Environments.

6.2 “pip install” fails with “Failed to establish a new network connec-
tion” or similar

99 ¢

If pip install fails with a network related error (might also be “socket not available”, “retrying after connection broken”,
...) it is often due to the computer being behind a proxy-server, this is common in large organizations. Of course also
the network connection might be broken.

1. TC-Python has a dependency to the package py4j. pip will resolve that by downloading it from the PyPI-
repository server (https://pypi.org). If your computer is located behind a proxy-server, the connection to the
repository will fail. In that case it is necessary to configure pip with the detailed configuration of the proxy
server:

’pip install -proxy user:password@proxy_ip:port py4j

2. Another alternative is to download the latest = . wh1-file of the py4j package from the repository server and to
install it manually using:

’pip install py4j-#.#.#-py2.py3-none-any.whl

The actual actual version number needs to be inserted into the file name. The downside of this approach that
updates to that package have to be fully manual also in the future.

120 Chapter 6. Troubleshooting

https://pypi.org

t

tc_python.
tc_python.
.entities, 96
tc_python.
tc_python.
tc_python.
tc_python.
tc_python.
tc_python.
tc_python.
tc_python.
.system, 91

tc_python

tc_python

tc_python.

abstract_base, 117
diffusion, 62

exceptions, 115
precipitation, 26
propertymodel, 87
quantity_factory, 104
scheil, 43

server, 99
single_equilibrium, 21
step_or_map_diagrams, 48

utils, 114

PYTHON MODULE INDEX

121

	TC-Python Quick Install Guide
	Step 1: Install a Python Distribution
	Install Anaconda

	Step 2: Install Thermo-Calc and the TC-Python SDK
	Step 3: Install TC-Python
	Step 4: Install an IDE (Integrated Development Environment)
	Step 5: Open the IDE and Run a TC-Python Example
	Open the TC-Python Project in PyCharm
	Fixing potential issues with the environment

	Updating to a newer version

	Mac OS: Setting Environment Variables
	Architecture overview
	TCPython
	SystemBuilder and System
	Calculation
	Single equilibrium calculations
	Precipitation calculations
	Scheil calculations
	Property diagram calculations
	Phase diagram calculations
	Diffusion calculations
	Property model calculations

	Result

	Best Practices
	Re-use and saving of results
	All TC-Python objects are non-copyable
	Python Virtual Environments
	Using with TCPython() efficiently
	Parallel calculations
	Handling crashes of the calculation engine
	Using TC-Python within a Jupyter Notebook or the Python console

	API Reference
	Calculations
	Module “single_equilibrium”
	Module “precipitation”
	Module “scheil”
	Module “step_or_map_diagrams”
	Module “diffusion”
	Module “propertymodel”

	Module “system”
	Module “entities”
	Module “server”
	Module “quantity_factory”
	Module “utils”
	Module “exceptions”
	Module “abstract_base”

	Troubleshooting
	“No module named tc_python” error on first usage
	“pip install” fails with “Failed to establish a new network connection” or similar

	Python Module Index

