Diffusion Module (DICTRA) Example Macros

Thermo-Calc Version 2025a

Copyright 2025 Thermo-Calc Software AB. All rights reserved.

Information in this document is subject to change without notice. The software described in this document is furnished under a license agreement or nondisclosure agreement. The software may be used or copied only in accordance with the terms of those agreements.

Thermo-Calc Software AB

Råsundavägen 18, SE-169 67 Solna, Sweden

+46 8 545 959 30

documentation@thermocalc.com

https://thermocalc.com/

exa1

One-phase problem. Homogenization of a binary Fe-Ni alloy. In this example it is assumed there is initially a linear Ni-concentration profile

eva2a

One-phase problem. Homogenization of a binary Fe-Ni alloy. A Ni rich and a Ni lean alloy are put together and initially there is a step profile.

exa2b

One-phase problem. Homogenization of a binary Fe-Ni alloy. This example is identical to a2a but instead it uses implicit time integration instead of the trapezoidal method for solving the PDEs.

eva3

One-phase problem. Uphill diffusion in an Fe-Si-C alloy This is an example to simulate uphill diffusion in a ternary single phase austenite matrix due to the classical Darken experiment published by L.S. Darken: Trans. Aime, v.180 (1949), pp. 430-438.

exa4

One-phase problem. Carburization of binary Fe-C alloy: Comparison to an analytical erf solution This is a simple binary simulation with a single phase region. The numerical simulation is compared with an analytical erf solution. For this reason a special database erf.tdb is created where the diffusion coefficient is set to a concentration independent value.

exa5

One-phase problem. Carburization of a binary Fe-0.15 wt% C alloy. A mixture of 40% N2 and 60% cracked methanol is used as carrier gas. The carburizing "carbon potential" in the gas is 0.85 wt%. A surface reaction controls the flux of C at the surface.

exa6

One-phase problem. Diffusion through a tube wall. A simple example about diffusion through a tube wall. The tube material is an Fe-0.6%Mn-0.7%Si-0.05%C alloy. On the inside wall a carbon activity of 0.9 is maintained whereas on the outside the C-activity is very low. This example demonstrates the use of the command SET-FIRST-INTERFACE as well as the MIXED boundary conditions.

<u>exa7</u>

One phase example. Homogenization heat treatment The initial segregation profile is created from a Scheil calculation (see macro create_initial_profile.TCM). The command INPUT_SCHEIL_PROFILE in the DICTRA MONITOR performs most of the set up. Only time and temperature must be entered after the INPUT_SCHEIL_PROFILE command is executed.

exb1a

Moving boundary problem. Austenite to ferrite transformation in a binary Fe-C alloy This example calculates a ferrite(BCC)/austenite(FCC)transformation in a binary Fe-C alloy. The initial state is an austenite of 2mm thickness. The composition of the austenite is Fe-0.15wt%C.

exh1h

Moving boundary problem. Austenite to ferrite transformation in a binary Fe-C alloy This is the same example as in exbla but now the problem is with ferrite as an inactive phase adjacent to the initial austenite.

exb1c

Moving boundary problem. Austenite to ferrite transformation in a binary Fe-C alloy This is the same example as in exbla and exblb but now the simulation starts at a higher temperature and assumes a gradual cooling down to 1050 K.

exb2

exb3

Moving boundary example. Dissolution of 23-carbide in an austenitic matrix This example calculates the dissolution of an M23C6 particle in an austenite matrix. A film of ferrite is allowed to nucleate around the carbide during the precipitation.

exb4a

Moving boundary problem. Solidification path of an Fe-18%Cr-8%Ni alloy: Eutectic reaction This example demonstrates the solidification path of an Fe-18%Cr-8%Ni alloy. A cutectic reaction is assumed, LIQUID -> BCC + FCC. Hence the BCC and FCC regions should be on separate sides of the liquid region. Comparison is made with both a Scheil-Gulliver simulation and equilibrium solidification conditions, both done in Thermo-Calc.

exb4b

Moving boundary problem. Solidification path of an Fe-18%Cr-8%Ni alloy: Peritectic reaction This example is the same as exb4a but now a peritectic reaction is assumed: LIQUID + BCC -> FCC. Hence the FCC region should appear in between the LIQUID and the BCC. Comparison is made with both a Scheil-Gulliver simulation and equilibrium solidification conditions, both done in Thermo-Calc.

exb4c

Moving boundary problem. Solidification path of an Fe-18%Cr-8%Ni alloy This example is the same as exb4b but now the diffusivity data is amended for the LTQUID and a high value for the diffusivity is used to simulate a case where it is assumed that the composition in the LTQUID is always homogeneous. This example is less realistic than exb4b. Comparison is made with both a Scheil-Gulliver simulation and equilibrium solidification conditions, both done in Thermo-Calc.

exb4d

Moving boundary problem. Solidification path of an Fe-18%Cr-8%Ni alloy This example is the same as exb4b but instead of controlling the temperature the amount of heat extracted is given. Comparison is made with both a Scheil-Gulliver simulation and equilibrium solidification conditions, both done in Thermo-Calc.

exb5

Moving boundary problem. Ternary diffusion couple of Fe-Ni-Cr alloys This example demonstrates the evaluation of a ternary Fe-Cr-Ni diffusion couple. A thin slice of alpha phase (30%Cr, 0%Ni) is clamped between two thicker slices of gamma phase (27%Cr, 20%Ni). The assembly is subsequently heat treated at 1373 K. This example corresponds to diffusion couple A in M. Kajihara, C.-B. Lim and M. Kikuchi: ISIJ International 33 (1993), pp. 498-507. See also M. Kajihara and M. Kikichi: Acta Metall.Mater. 41 (1993), pp.2045-2059.

exb6

Moving boundary problem. Microsegregation of phosphorus This example illustrates the effect of microsegregation of phosphorus during peritectic solidification in steel.

exb7

This example modifies the database interactively, which is not yet supported by GES6. Therefore, we enforce the use of GES5.

exc!

Cell calculation. Carbon cannon in ferrite/austenite: Fe-C system, 2-cell calculation This example simulates what happens to a ferrite plate

that has inherited the carbon content of its parent austenite. The ferrite plate formed is embedded in an austenite matrix. This setup corresponds to a proposed mechanism for formation of WidmannstÄrtten ferrite or for the ferrite phase of the bainite structure. It is assumed that the phase boundary between ferrite and austenite is immobile, this is achieved in the simulation by putting the ferrite and the austenite in two different cells. See also M. Hillert, L. HĶglund and J. Ä…gren: Acta Metall. Mater. 41 (1993), pp.1951-1957.

exc2

Cell calculation. Cementite dissolution in an Fe-Cr-C alloy: Three particle sizes and three different cells This example calculates the dissolution of cementite particles in an austenite matrix. This example is the same as excl but instead there are three particle sizes. A total of six particles are considered using three different cells. This is to represent some size distribution among the cementite particles. See also Z.-K. Liu, L. H¶glund, B. J¶nsson and J. Ā…gren: Metall.Trans.A, v. 22A (1991), pp. 1745-1752.

exd1a

Diffusion in dispersed systems. Carburization of Ni-25%Cr alloy: Dispersed system model This example is about carburization of a Ni-25Cr alloy. In this case the M3C2 and M7C3 carbides are entered as spheroid phases in a FCC matrix. This simulation can be run with either the DISPERSED SYSTEM MODEL or the HOMOGENIZATION MODEL. In this example the DISPERSED SYSTEM MODEL is used, which requires that the default HOMOGENIZATION MODEL is disabled. With the DISPERSED SYSTEM MODEL the command ENTER_LABYRINTH_FUNCTION is used to take into account the impeding effect of dispersed phases on long-range diffusion. For the HOMOGENIZATION MODEL the command ENTER_HOMOGENIZATION_FUNCTION should be used. This case is from A. Engstrå¶m, L. Hå¶glund and J. Å…gren: Metall.Trans.A v. 25A (1994), pp. 1127-1134.

exd1b

Diffusion in dispersed systems. Carburization of Ni-25%Cr alloy: Homogenization model This example is about carburization of a Ni-25Cr alloy. In this case the M3C2 and M7C3 carbides are entered as spheroid phases in a FCC matrix. This case is from A. EngstrÄqm, L. HĶglund and J. Ä… gren: Metall.Trans. A, v.25A (1994), pp. 1127-1134. This simulation can be run with the DISPERSED SYSTEM MODEL Or HOMOGENIZATION MODEL. The default HOMOGENIZATION MODEL is used and then ENTER_HOMOGENIZATION_FUNCTION should be used instead of ENTER_LABYRINTH_FUNCTION.

exd2a

Diffusion in dispersed systems. Diffusion couple of Fe-Cr-Ni alloys: Dispersed system model This example calculates the interdiffusion in a diffusion couple between a two-phase (FCC+BCC) and a single-phase (FCC) Fe-Ni-Cr alloy. This case is from A. Engström: Scand. J. Met., v. 24, 1995, pp.12-20. This simulation can be run with either the DISPERSED SYSTEM MODEL or the HOMOGENIZATION MODEL. In this example the DISPERSED SYSTEM MODEL is used, which requires that the default HOMOGENIZATION MODEL is disabled. With the DISPERSED SYSTEM MODEL the command ENTER_LABYRINTH_FUNCTION is used to take into account the impeding effect of dispersed phases on long-range diffusion. For the HOMOGENIZATION MODEL the command ENTER HOMOGENIZATION FUNCTION should be used.

exd2b

Diffusion in dispersed systems. Diffusion couple of Fe-Cr-Ni alloys: Homogenization model This example calculates the interdiffusion in a diffusion couple between a two-phase (FCC+BCC) and a single-phase (FCC) Fe-Ni-Cr alloy. This case is from A. EngstrAm: Scand. J. Met., v. 24, 1995, pp.12-20. This simulation can be run with either the DISPERSED SYSTEM MODEL or the HOMOGENIZATION MODEL. Here the default HOMOGENIZATION MODEL is used and then ENTER_HOMOGENIZATION_FUNCTION should be used instead of ENTER_LABYRINTH_FUNCTION.

exd3

Diffusion in dispersed systems. Diffusion couple of Fe-Cr-Ni alloys: Homogenization model This example uses the homogenization model. It is taken from H. Larsson and A. Engstrå¶m, Acta. Mater. v.54 (2006), pp. 2431-2439. Experimental data from A. Engstrå¶m, Scand J Metall, v.243 (1995), p.12. The homogenization model can be used for multiphase simulations like the dispersed system model, but unlike the dispersed system model there is no need to have a single continuous matrix phase and, furthermore, there is no need to limit the size of time-steps. The set-up is performed in the same manner as for the dispersed system model, which means that a certain phase is entered as the matrix phase and the other phases are entered as spheroidal, but the choice of matrix phase will not affect the simulation.

exe1

Cooperative growth. Growth of pearlite in an Fe-Mn-C alloy An example of pearlite growth in an Fe-0.50 wt \$C-0.91 wt \$Mn steel.

exf1

Coarsening problem. Coarsening of M6C precipitate in an Fe-Mo-C alloy This example calculates the Ostwald-ripening of a spherical M6C carbide in an austenite matrix.

exg1

Kinetic data example. Checking mobilities and diffusivities in an Fe-Ni alloy This is an example file to check the mobilities and diffusivities in an Fe-Ni alloy.

exq2

Kinetic data example. Optimization of mobilities in Ni-Al fcc alloys A file for reading thermodynamic data and setting up the kinetic parameters that are needed for an optimization of the FCC phase in the binary Ni-Al system. See also A. EngstrĶm and J. Ã...gren: ("Assessment of Diffusional Mobilities in Face-Centered Cubic Ni-Cr-Al Alloys" in Z. Metallkunde, Feb. 1996).

exh1

Deviation from local equilibrium. Ferrite/austenite diffusion couple with interface mobility This example calculates the growth of ferrite into austenite with a limited interface mobility. this is done by adding a Gibbs-energy contribution to the ferrite using the SET-SURFACE-ENERGY command.

exh2

Deviation from local equilibrium. Ferrite/austenite para-equilibrium in an Fe-Ni-C alloy This example calculates the growth of ferrite into austenite in an Fe-2.02%Ni-0.0885%C alloy using the para-equilibrium model. The results are compared with experimental information from Hutchinson, C. R., A. Fuchsmann, and Yves Brechet. "The diffusional formation of ferrite from austenite in Fe-C-Ni alloys." Metall. Mat. Trans. A 35.4 (2004): 1211-1221.

exh3

Deviation from local equilibrium. Diffusion induced by a temperature gradient (thermomigration) This calculation shows how a temperature gradient induces diffusion.

exi1

Diffusion in complex phases. Diffusion in a system with B2 ordering This example shows diffusion in a system with B2 ordering. The datafile AlFeNi-data.TDB contains both a thermodynamic and kinetic description for the ordered and disordered BCC.

exi2

Diffusion in complex phases. Diffusion of carbon in cementite This example demonstrates the use of the model for calculation of diffusion through a stoichiometric phase. The flux of a component in the stoichiometric phase is assumed to be proportional to the difference in chemical potential at each side of the stoichiometric phase multiplied with the mobility for the component in the phase. The mobility is assessed from experimental information and is basically the tracer diffusivity for the component.

exi3a

Diffusion in complex phases. Diffusion in iron oxide (FeO) This example shows the oxidation of an iron sample and the consequent growth of an oxide layer.

<u>exi3b</u>

Diffusion in complex phases. Diffusion in iron oxide (FeO) with a grain boundary contribution This example shows the oxidation of an iron sample and consequent growth of an oxide layer using the grain boundary diffusion contribution model.

On	P-P	hase	Prob	1	eme	C
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		7

Example exa1

Homogenization of a binary Fe-Ni alloy: Linear Concentration Profile

Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially a linear Ni-concentration profile.

$$T = 1400 K$$

Results

exal-setup

```
SYS: About
```

```
\label{thm:calc} Thermo-Calc \ / \ DICTRA \ is \ software \ package \ for \ calculation \ of \ phase \ diagrams, \\ simulation \ of \ phase \ transformation \ kinetics \ and \ much \ more.
 Copyright Foundation for Computational Thermodynamics,
 Stockholm, Sweden
 Software running on Windows 64-bit wordlength
 Compiler: unknown compiler
License library version: 9.7.0.0036
Linked: Fri Oct 18 11:32:56 2024
SYS:SYS:MACRO exal\setup.DCM
SYS: @@
SYS: @@ One-phase problem.
SYS: @@ Homogenization of a binary Fe-Ni alloy.
{\bf SYS}\colon @@ In this example it is assumed there is initially a linear {\bf SYS}\colon @@ Ni-concentration profile.
SYS: -
 NO SUCH COMMAND, USE HELP
SYS .
\ensuremath{\mathbf{SYS}}: @@ START BY GOING TO THE DATABASE MODULE \ensuremath{\mathbf{SYS}}: @@
SYS: goto_module
MODULE NAME: data
12:27:19,968 [Thread-0] INFO LicenseManager: Initializing user: jenkins.integrationtest@thermocalc.se
12:27:19,983 [Thread-0] INFO LicenseController: Running License Spring in DEV environment.

12:27:21,177 [Thread-0] INFO LicenseManager: There is an activated standalone license for jenkins.integrationtest@thermocalc.se for TC-
Application
 THERMODYNAMIC DATABASE module
 Database folder:
 C:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples\databases\da
 Current database: Steels/Fe-Alloys v12.0
 VA /- DEFINED DICTRA_FCC_A1 REJECTED PDB TCFF12:
TDB_TCFE12:
TDB_TCFE12: @@
TDB_TCFE12: 00 USE THERMODYNAMIC DATABASE TO RETRIEVE DATA
TDB_TCFE12: 00
TDB_TCFE12: switch_database
Use one of these databases
 TCFE12 = Steels/Fe-Alloys v12.0
TCFE12 = Steels/Fe-Alloys v12.0
TCFE9 = Steels/Fe-Alloys v9.3
SSUB6 = SGTE Substances v6.0
FEDEMO = Iron Demo Database v5.0
MOB2 = Alloys Mobility v2.7
MOBFE2 = Steels/Fe-Alloys Mobility v4.0
MOBFE4 = Steels/Fe-Alloys Mobility v4.0
MOBFF7 = Steels/Fe-Alloys Mobility v7.1
MFEDEMO = Fe-Alloys Mobility demo database v4.0
USER = User defined Database
DATABASE NAME /TCFE12/: fedemo
 Current database: Iron Demo Database v5.0
                                   /- DEFINED
TDB_FEDEMO: 00
TDB FEDEMO: 00 DEFINE THE SYSTEM TO WORK WITH TDB FEDEMO: 00
TDB_FEDEMO: define_system
ELEMENTS: fe ni
FE TDB FEDEMO:
                                   NI DEFINED
TDB_FEDEMO: 00 TDB_FEDEMO: 00 EXCLUDE THE THERMODYNAMIC DATA FOR THE PHASES THAT ARE NOT NEEDED
TDB_FEDEMO: @@
TDB FEDEMO: reject
ELEMENTS, SPECIES, PHASES, CONSTITUENT OR SYSTEM: /PHASES/: phase PHASES: *
 BCC_A2
FCC A1
                                    CBCC_A12
GAS:G
                                                                        HCP A3
LAVES_PHASE_C14
TDB_FEDEMO:
TDB_FEDEMO: @@
                                   LIQUID:L REJECTED
TDB_FEDEMO: @@ RESTORE THE THERMODYNAMIC DATA FOR THE FCC PHASE
TDB_FEDEMO: @@
TDB FEDEMO: restore
ELEMENTS, SPECIES, PHASES OR CONSTITUENTS: /ELEMENTS/: phase
PHASES: fcc
FCC_A1 RESTORED
TDB_FEDEMO:
TDB FEDEMO: 00

TDB FEDEMO: 00

RETRIEVE DATA FROM THE DATABASE FILE
TDB_FEDEMO: @@
TDB FEDEMO: get data
12:27:22,288 [Thread-0] INFO JavaWrapper: *** Invoking Gibbs Energy System v6 *** REINITIATING GES .....
 ELEMENTS .....
 PHASES ......
PARAMETERS ...
 FUNCTIONS ....
```

Use the command LIST_REFERENCES to see the list of references for assessed data

```
-OK-
TDB_FEDEMO: @@
TDB_FEDEMO: @@ MOBILITY/DIFFUSIVITY DATA ARE STORED IN A SEPARATE DATABASE FILE.
TDB FEDEMO: @@ SWITCH TO THE MOBILITY DATABASE TO RETRIEVE DATA
TDB_FEDEMO: append_database
Use one of these databases
 TCFE12 = Steels/Fe-Alloys v12.0
TCFE9 = Steels/Fe-Alloys v9.3
SSUB6 = SGTE Substances v6.0
FEDEMO = Iron Demo Database v5.0
MOB2 = Alloys Mobility v2.7
MOBFE2 = Steels/Fe-Alloys Mobility v2.0
MOBFE4 = Steels/Fe-Alloys Mobility v4.0
MOBFE7 = Steels/Fe-Alloys Mobility v7.1
MFEDEMO = Fe-Alloys Mobility demo database v4.0
USER = User defined Database
DATABASE NAME /FEDEMO/: mfedemo
  Current database: Fe-Alloys Mobility demo database v4.0
  VA DEFINED
APP: define_system
ELEMENTS: fe ni
FE
APP: reject
                                   NI DEFINED
ELEMENTS, SPECIES, PHASES, CONSTITUENT OR SYSTEM: /PHASES/: phase
PHASES: *
                                   FCC A1
                                                                     LIQUID:L
 BCC
   REJECTED
APP:
APP: restore
ELEMENTS, SPECIES, PHASES OR CONSTITUENTS: /ELEMENTS/: phase
PHASES: fcc
  FCC_A1 RESTORED
APP:
 ELEMENTS .....
  SPECIES .....
  PHASES .....
  PARAMETERS ...
 FUNCTIONS ....
 Use the command LIST_REFERENCES to see the list of references for assessed data
 -OK-
APP:
APP: @@
APP: 00 ENTER THE DICTRA MONITOR WHERE THE SYSTEM IS SET UP
APP: @@
APP: goto module
MODULE NAME: dictra monitor 12:27:22,862 [Thread-0] INFO StandaloneLicenseController: Checking out license for: Diffusion (DICTRA)
NO TIME STEP DEFINED
DIC>
DIC> @@
DIC> 00 ENTER THE GLOBAL CONDITION T
DIC> 00
DIC> set_condition
GLOBAL OR BOUNDARY CONDITION /GLOBAL/: global VARIABLE : T
LOW TIME LIMIT /0/: 0
T(TIME.X) = 1400;
HIGH TIME LIMIT /*/:
ANY MORE RANGES /N/: N
DIC>
DTC> 00
DIC> @@ START BY ENTERING A REGION
DIC> @@
DIC> enter_region
REGION NAME : austenite
DIC>
DIC> @@
DIC> @@ ENTER A GRID INTO THE REGION
DIC> @@ FOR SIMPLICITY, AN EQUIDISTANT GRID IS USED
DIC> enter_grid_coordinates
REGION NAME : /AUSTENITE/: austenite
WIDTH OF REGION /1/: 1e-4
TYPE /LINEAR/: AUTO
DTCS
DIC>
DIC> @@
DIC> @@ ENTER THE active PHASE INTO THE REGION
DIC> @@
DIC> enter_phase_in_region
ACTIVE OR INACTIVE PHASE /ACTIVE/: active
REGION NAME : /AUSTENITE/: austenite
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: fcc#1
DIC>
DIC> @@
DIC> @@ ENTER AN INITIAL NI COMPOSITION INTO THE PHASE. A LINEAR
\tt DIC> @@ VARIATION IN THE REGION IS ASSUMED. \tt DIC> @@
DIC> enter_compositions
PHASE NAME: /AUSTENITE/: austenite
PHASE NAME: /FCC_A1/: fcc#1
DEPENDENT COMPONENT ? /NI/: fe
COMPOSITION TYPE /MOLE_FRACTION/: weight_percent PROFILE FOR /NI/: ni
TYPE /LINEAR/: linear
VALUE OF FIRST POINT : 10
VALUE OF LAST POINT : /10/: 50
DTC>
DIC> @@
DIC> @@ THE BOUNDARY CONDITION IS A CLOSED SYSTEM AS WE DO NOT SPECIFY
DIC> @@ ANYTHING ELSE
```

```
DIC> @@
DIC>
DIC> @@
DIC> @@
DIC> @@ SET THE SIMULATION TIME
DIC> @@
DIC> set_simulation_time
END TIME FOR INTEGRATION /.1/: 1E6
AUTOMATIC TIMESTEP CONTROL /YES/:
MAX TIMESTEP DURING INTEGRATION /100000/:
INITIAL TIMESTEP : /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DIC>
DIC>
DIC>
DIC> @@
DIC> @@
DIC> @@ SAVE THE SET UP TO FILE AND EXIT
DIC> @@
DIC> save_workspaces exal Y
DIC>
DIC> set_interactive
_-OK---
_-OK---
```

```
NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exa1\run.DCM DIC>
DIC>
DIC> @@ exa1_run.DCM
DIC>
DIC> @@ FILE FOR RUNNING EXAMPLE a1
DIC> @@
DIC> goto module
MODULE NAME: dictra_monitor
TIME STEP AT TIME 0.00000E+00
DIC> read_workspaces exa1
DTC>
DIC> @@
DIC> @@ Start the simulation
DIC> @@
DIC> simulate_reaction
  Region: AUSTENITE
 linear 75 points
DEGREE OF IMPLICITY SET TO TRAPEZOIDAL RULE
DEGREE OF IMPLICITY SET TO TRAFEZOIDAL ROLE
U-FRACTION IN SYSTEM: FE = .709680136600384 NI = .290319863399616
TOTAL SIZE OF SYSTEM: 1E-04 [m]
U-FRACTION IN SYSTEM: FE = .709680136600384 NI = .290319863399616
TOTAL SIZE OF SYSTEM: 1E-04 [m]
TIME = 0.100000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.0000000
U-FRACTION IN SYSTEM: FE = .709680136600384 NI = .290319863399616 TOTAL SIZE OF SYSTEM: 1E-04 [m]
0 0000000
0.0000000
CPU time used in timestep 0 seconds
TIME = 23281.412 DT = 11732.163 SUM OF SQUARES = 0.001
U-FRACTION IN SYSTEM: FE = .709680136600384 NI = .290319863399616
TOTAL SIZE OF SYSTEM: 1E-04 [m]
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
TIME = 46745.739 DT = 23464.327
U-FRACTION IN SYSTEM: FE = .70968013660
TOTAL SIZE OF SYSTEM: 1E-04 [m]
                                              0
                                                  seconds
                            23464.327 SUM OF SQUARES = 0.00
.709680136600384 NI = .290319863399616
0 0000000
CPU time used in timestep 0 seconds
TIME = 187531.70 DT = 93857.308 SUM OF SQUARES = 0.001
U-FRACTION IN SYSTEM: FE = .709680136600385 NI = .290319863399615
TOTAL SIZE OF SYSTEM: 1E-04 [m]
 TIME =
                                                              0.0000000
 TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep

TIME = 487531.70 DT = 100000.00

U-FRACTION IN SYSTEM: FE = .709680136600

TOTAL SIZE OF SYSTEM: 1E-04 [m]
                                              0 seconds
                            100000.00 SUM OF SQUARES = 0.000
.709680136600383 NI = .290319863399616
TOTAL SIZE OF SYSTEM: 1E-04 [m]

CPU time used in timestep

TIME = 587531.70 DT = 100000.00 SUM OF SQUARES = 0.00

U-FRACTION IN SYSTEM: FE = .709680136600385 NI = .290319863399616

TOTAL SIZE OF SYSTEM: 1E-04 [m]
                                                              0.0000000
0.0000000
0 seconds
 CPU time used in timestep
```

```
TIME = 1000000.0 DT = 12468.299 SUM OF SQUARES = 0.001
U-FRACTION IN SYSTEM: FE = .709680136600385 NI = .290319863399615
TOTAL SIZE OF SYSTEM: 1E-04 [m]
MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR THE
  WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
                                                                                                                                                                0.0000000
0.10000000E-06
0.10010000E-03
0.40010010
                                                                                                                                                                        183.71515
550.34526
1283.6055
                                                                                                                                                                          2750.1259
5683.1668
                                                                                                                                                                          11549.249
23281.412
46745.739
                                                                                                                                                                          93674.393
187531.70
                                                                                                                                                                           287531.70
                                                                                                                                                                           387531.70
487531.70
                                                                                                                                                                          587531.70
687531.70
                                                                                                                                                                           787531.70
    KEEPING TIME-RECORD FOR TIME
AND FOR TIME
WORKSPACE RECLAIMED
                                                                                                                                                           987531.70
1000000.0
     TIMESTEP AT
                                                                            1000000.00 SELECTED
DIC>
DIC> 00
DIC> 00 THE SIMULATION IS FINISHED
DIC> 00
DIC> DIC>
DIC> set_interactive
--OK---
```

exal-plot

```
DIC>About
NO SUCH COMMAND, USE HELP
 DIC>DIC>MACRO exa1\plot.DCM DIC>
DIC>
DIC> @@ exa1_plot.DCM
DIC>
\overline{\text{DIC}}\text{>}\ \mbox{\for} Generating graphical output for example al \overline{\text{DIC}}\text{>}\ \mbox{\for}
DIC>
DIC> @@
DIC> 00 GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> 00 DIC> goto_module
MODULE NAME: dictra_monitor
TIME STEP AT TIME 1.00000E+06
DIC> read_workspaces exal
  OK
DIC>
DIC> @@
DIC> @@ GO TO THE POST PROCESSOR
DIC> @@
DIC> post_processor
   POST PROCESSOR VERSION 1.7
Implemented by Bjorn Jonsson POST-1:
POST-1:
 POST-1: @@
POST-1: @@ PLOT SOME CONCENTRATION PROFILES POST-1: @@
POST-1: set_diagram_axis
AXIS (X, Y OR Z) : x
VARIABLE : distance
INFO: Distance is set as independent variable {\tt DISTANCE} : /GLOBAL/: global
 POST-1:
POST-1:
POST-1: set_diagram_axis
AXIS (X, Y OR Z) : y
VARIABLE : weight-percent
FOR COMPONENT : ni
 POST-1:
POST-1: set_plot_condition
CONDITION /TIME/: time
VALUE(S) /LAST/: 0 1e5 3e5 1e6
 POST-1:
POST-1:
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
POST-1: SET_EXP_FILE_FORMAT 10
           50
           45
           40
           35
       Z
       Mass percent
           30
           25
           20
           15
           10
            5 -
          0.000000
                                 0.000020
                                                         0.000040
                                                                                 0.000060
                                                                                                         0.000080
                                                                                                                                 0.000100
                                                                    Distance
 POST-1:
POST-1:
POST-1:
 POST-1:@?<Hit_return_to_continue>
 POST-1:
 POST-1: set_interactive
  --OK--
POST-1:
```


Example exa2a

Homogenization of a binary Fe-Ni alloy: Step-profile

Simple homogenization of a binary Fe-Ni alloy. A Ni rich and a Ni lean alloy are put together and initially there is a step profile.

$$T = 1400 K$$

1E-4

exa2a-setup

SYS: About

```
Thermo-Calc / DICTRA is software package for calculation of phase diagrams, simulation of phase transformation kinetics and much more.
  Copyright Foundation for Computational Thermodynamics,
  Stockholm, Sweden
  Software running on Windows 64-bit wordlength
  Compiler: unknown compiler
License library version: 9.7.0.0036
Linked: Fri Oct 18 11:32:56 2024
SYS:SYS:MACRO exa2a\setup.DCM
SYS: @@
SYS: @@ One-phase problem.
SYS: 00 A Ni rich and a Ni lean alloy are put together and initially
SYS: 00 there is a step profile.
 NO SUCH COMMAND, USE HELP
SYS: @@ exa2a setup.DCM
SYS: @@
SYS: @@ IN exal ALL THE COMMANDS WERE WRITTEN IN FULL BUT NOW ABBREVIATED
SYS: @@ COMMANDS ARE USED
SYS: @@
SYS:
SYS: @@
SYS: 00 FIRST DEFINE A LOG-FILE FOR THIS EXAMPLE
SYS: @@
SYS: set_log_file setup
Heading:
SYS: @@ NOW GO TO THE DATABASE MODULE
SYS: @@
SYS: go da
Application
  THERMODYNAMIC DATABASE module
  Database folder:
  C:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples\databases\da
  Current database: Steels/Fe-Alloys v12.0
  VA
                                                    /- DEFINED
DICTRA_FCC_A1 REJECTED
TDB_TCFE12:
TDB_TCFE12: @@
TDE_TCFE12: @@ USE A THERMODYNAMIC DATABASE TO RETRIEVE DATA
TDE_TCFE12: @@
TDB_TCFE12: sw FEDEMO
 ... the command in full is SWITCH_DATABASE
Current database: Iron Demo Database v5.0
                                                    /- DEFINED
  VA
TDB_FEDEMO: 00
TDB_FE
TDB FEDEMO: @@
TDB_FEDEMO: def-system fe ni
  ... the command in full is DEFINE SYSTEM FE NI DEFINED
TDB FEDEMO:
TDB_FEDEMO: 00 EXCLUDE THE THERMODYNAMIC DATA FOR THE PHASES THAT ARE NOT NEEDED TDB_FEDEMO: 00
TDB_FEDEMO: rej ph * all
  ... the command in full is REJECT
BCC_A2 CBCC_A12
FCC_A1 GAS:G
                                                                                                      HCP A3
TOB FEDEMO: @@

TOB FEDEMO: TOB PEDEMO: TOB PEDEMO: TOB PEDEMO: TOB PEDEMO: TOB PEDEMO: TOB PEDEMO: @@
                                                   LIQUID:L REJECTED
TDB_FEDEMO: @@ RETRIEVE DATA FROM THE DATABASE FILE
TDB FEDEMO: @@
TDB_FEDEMO: get
... the command in full is GET_DATA

12:30:19,578 [Thread-0] INFO JavaWrapper: *** Invoking Gibbs Energy System v6 ***
REINITIATING GES .....
  ELEMENTS .....
SPECIES .....
  PHASES ..... the command in full is AMEND_PHASE_DESCRIPTION PARAMETERS ...
  FUNCTIONS ..
  Use the command LIST REFERENCES to see the list of references for assessed data
  -OK-
TDB_FEDEMO: @@
TDB FEDEMO: @@ MOBILITY/DIFFUSIVITY DATA ARE STORED IN A SEPARATE DATABASE FILE.
TDB FEDEMO: @@ SWITCH TO THE MOBILITY DATABASE TO RETRIEVE DATA
TDB_FEDEMO: @@
TDB FEDEMO: app
        ... the command in full is APPEND_DATABASE
  Use one of these databases
  TCFE12 = Steels/Fe-Alloys v12.0
  TCFE9 = Steels/Fe-Alloys v9.3
SSUB6 = SGTE Substances v6.0
```

```
FEDEMO = Iron Demo Database v5.0
  FEDEMO = Iron Demo Database v5.0
MOB2 = Alloys Mobility v2.7
MOBFE2 = Steels/Fe-Alloys Mobility v2.0
MOBFE4 = Steels/Fe-Alloys Mobility v4.0
MOBFE7 = Steels/Fe-Alloys Mobility v7.1
MFEDEMO = Fe-Alloys Mobility demo database v4.0
                = User defined Database
  USER
DATABASE NAME /FEDEMO/. mfedemo
  Current database: Fe-Alloys Mobility demo database v4.0
APP: def-sys fe ni
  ... the command in full is DEFINE_SYSTEM
FE NI DEFINED
APP: rej ph * all
  ... the command in full is REJECT BCC_A2 $^{\rm ECC}$ ^{\rm Ad}
                                              FCC_A1
                                                                                         T.TOUTD: I.
Les ph fcc
... the command in full is RESTORE
FCC_A1 RESTORED
APP: get
     ... the command in full is GET DATA
  ELEMENTS .....
SPECIES .....
  PHASES ......
PARAMETERS ...
  FUNCTIONS ....
  Use the command LIST_REFERENCES to see the list of references for assessed data
 APP:
 APP: @@
APP: @@ ENTER THE DICTRA MONITOR WHERE THE SYSTEM IS SET UP
... the command in full is GOTO_MODULE
12:30:20,070 [Thread-0] INFO StandaloneLicenseController: Checking out license for: Diffusion (DICTRA)
NO TIME STEP DEFINED
DIC>
DIC> @@
DIC> @@ ENTER THE GLOBAL CONDITION T
DIC> set-cond
... the command in full is SET_CONDITION
GLOBAL OR BOUNDARY CONDITION /GLOBAL/: glob
VARIABLE : T
LOW TIME LIMIT /0/: 0
 T(TIME, X) = 1400;
 HIGH TIME LIMIT /*/:
 ANY MORE RANGES /N/: N
DIC>
 DIC> @@
DIC> @@ ENTER A REGION
DIC> @@
DIC> enter-region REGION NAME : austenite
 DIC>
DIC> @@
DIC> 00 ENTER A GRID INTO THE REGION.
DIC> 00 IN THIS CASE WE WANT SEVERAL POINTS IN THE MIDDLE OF THE REGION,
DIC> 00 SO A DOUBLE GEOMETRIC GRID IS CONSTRUCTED.
DIC> @@
DIC> enter-grid
... the command in full is ENTER_GRID_COORDINATES
REGION NAME : /AUSTENITE/: austenite
WIDTH OF REGION /1/: 1e-4
 TYPE /LINEAR/: double
NUMBER OF POINTS /50/: 60
VALUE OF R IN THE GEOMETRICAL SERIE FOR LOWER PART OF REGION: 0.9
VALUE OF R IN THE GEOMETRICAL SERIE FOR UPPER PART OF REGION: 1.11
 DIC>
DIC> @@
DIC> @@ ENTER THE active PHASES INTO THE REGIONS
 DIC> @@
DIC> enter-phase
... the command in full is ENTER_PHASE_IN_REGION
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /AUSTENITE/: austenite
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: fcc#1
DIC>
DIC> @@ ENTER THE INITIAL NI COMPOSITION INTO THE PHASE. READ DATA FROM
DIC> 00 THE FILE ni.dat WHICH CONTAINS THE Ni-PROFILE.
DIC> @@
DIC> enter-composition
... the command in full is ENTER_COMPOSITIONS
REGION NAME : /AUSTENITE/: austenite
PHASE NAME: /FCC_A1/: fcc#1
DEPENDENT COMPONENT ? /NI/: fe
COMPOSITION TYPE /MOLE_FRACTION/: w-p
PROFILE FOR /NI/: ni
 TYPE /LINEAR/: read a2ani.dat
     ... the command in full is CREATE NEW EQUILIBRIUM
... the command in full is COMPUTE EQUILIBRIUM
... the command in full is COMPUTE EQUILIBRIUM
     the command in full is COMPUTE_EQUILIBRIUM
     the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
     ... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE EQUILIBRIUM
... the command in full is COMPUTE EQUILIBRIUM
```

```
... the command in full is COMPUTE EQUILIBRIUM
                                               the command in full is COMPUTE_EQUILIBRIUM
               the command in full is COMPUTE EQUILIBRIUM
the command in full is CO
                       . . .
                                                  the command in full is COMPUTE EOUILIBRIUM
                     the command in full is COMPUTE_EQUILIBRIUM
                     the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
                     the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
                     the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
                      ... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
                     .. the command in full is COMPUTE_EQUILIBRIUM
.. the command in full is COMPUTE_EQUILIBRIUM
.. the command in full is COMPUTE_EQUILIBRIUM
.. the command in full is COMPUTE_EQUILIBRIUM
.. the command in full is COMPUTE_EQUILIBRIUM
.. the command in full is COMPUTE_EQUILIBRIUM
.. the command in full is COMPUTE_EQUILIBRIUM
.. the command in full is COMPUTE_EQUILIBRIUM
.. the command in full is COMPUTE_EQUILIBRIUM
.. the command in full is COMPUTE_EQUILIBRIUM
.. the command in full is COMPUTE_EQUILIBRIUM
.. the command in full is COMPUTE_EQUILIBRIUM
.. the command in full is COMPUTE_EQUILIBRIUM
.. the command in full is COMPUTE_EQUILIBRIUM
.. the command in full is COMPUTE_EQUILIBRIUM
.. the command in full is COMPUTE_EQUILIBRIUM
.. the command in full is COMPUTE_EQUILIBRIUM
.. the command in full is COMPUTE_EQUILIBRIUM
.. the command in full is COMPUTE_EQUILIBRIUM
.. the command in full is COMPUTE_EQUILIBRIUM
.. the command in full is COMPUTE_EQUILIBRIUM
.. the command in full is COMPUTE_EQUILIBRIUM
.. the command in full is COMPUTE_EQUILIBRIUM
 ... the command in full is COMPUTE_EQUILIBRIUM DIC>
DIC> @@
  DIC> @@ THE BOUNDARY CONDITION IS A CLOSED SYSTEM AS WE DO NOT SPECIFY
  DIC>
                                   @@ ANYTHING ELSE
  DIC> @@
 DTC>
  DIC>
  DIC> @@ SET THE SIMULATION TIME
  DIC> @@
 DIC> set-simulation-time
```

```
DIC>About
NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO "c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples\examples\exa2a\run.DCM.test"
... the command in full is MACRO_FILE_OPEN
DTC>
DIC>
DIC> @@ exa2a_run.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR RUNNING EXAMPLE a2a
DIC> @@
DIC>
DIC> @@ LET US DEFINE A LOG-FILE FOR THIS EXAMPLE
DIC> @@
DIC> @@set-log-file run
DIC>
DIC> @@
DIC> 00 ENTER THE DICTRA MONITOR AN READ SETUP FROM FILE
DIC> @@
DIC> go d-m
 ... the command in full is GOTO_MODULE TIME STEP AT TIME 0.00000E+00
DIC>
DIC> read exa2a
   .. the command in full is READ_WORKSPACES
... the command in full is DEFINE_COMPONENTS
... the command in full is SELECT_EQUILIBRIUM
OK
DIC>
DIC> @@
DIC> @@ START THE SIMULATION
DIC> simulate
... the command in full is SIMULATE_REACTION
DEGREE OF IMPLICITY SET TO TRAPEZOIDAL RULE
... the command in full is SET_NUMERICAL_LIMITS
U-FRACTION IN SYSTEM: FE = .708888245406169 NI = .29111175459383
TOTAL SIZE OF SYSTEM: 1E-04 [m]
U-FRACTION IN SYSTEM: FE = .708888245406169 NI = .29111175459383
TOTAL SIZE OF SYSTEM: 1E-04 [m]
2 GRIDPOINT(S) ADDED TO CELL #1 REGION: AUSTENITE
TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.000
U-FRACTION IN SYSTEM: FE = .708888245406169 NI = .291111754593831
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep 0 seconds
DIC> simulate
 TOTAL SIZE OF SISTEM: IE-04 [m] 0 seconds

TIME = 0.40010010 DT = 0.40000000 SUM OF SQUARES = 0.

U-FRACTION IN SYSTEM: FE = .70888824540617 NI = .29111175459383

TOTAL SIZE OF SYSTEM: 1E-04 [m]
                                                                                              0.0000000
 CPU time used in timestep 0 seconds

TIME = 8.1787785 DT = 7.7786784 SUM OF SQUARES = 0.00

U-FRACTION IN SYSTEM: FE = .70888824540617 NI = .291111754593831

TOTAL SIZE OF SYSTEM: 1E-04 [m]
                                                                     0 seconds
 CPU time used in timestep

TIME = 23.736135 DT = 15.557357

U-FRACTION IN SYSTEM: FE = .70888824540

TOTAL SIZE OF SYSTEM: 1E-04 [m]
                                          0 seconds
15.557357 SUM OF SQUARES = 0.00
.708888245406169 NI = .291111754593831
                                                                                              0 0000000
 TOTAL SIZE OF SYSTEM: 1E-04 [m]

CPU time used in timestep

O seconds

TIME = 241.53913 DT = 124.45886 SUM OF SQUARES = 0.00

U-FRACTION IN SYSTEM: FE = .708888245406169 NI = .291111754593831

TOTAL SIZE OF SYSTEM: 1E-04 [m]
                                                                                              0 0000000
 0 0000000
 TOTAL SIZE OF SYSTEM: 1E-04 [m]

CPU time used in timestep

0 seconds

TIME = 1983.9631 DT = 995.67084 SUM OF SQUARES = 0.

U-FRACTION IN SYSTEM: FE = .70888824540617 NI = .29111175459383

TOTAL SIZE OF SYSTEM: 1E-04 [m]
                                                                                               0.0000000
 0.0000000
 CPU time used in timestep 0 seconds

TIME = 15923.355 DT = 7965.3667 SUM OF SQUARES = 0.0

U-FRACTION IN SYSTEM: FE = .708888245406169 NI = .29111175459383

TOTAL SIZE OF SYSTEM: 1E-04 [m]
                                                                                               0.0000000
 0.0000000
                                                                     0
```

CPU time used in timestep 0 seconds $\texttt{TIME} = 227438.49 \quad \texttt{DT} = 100000.00 \quad \texttt{SUM OF SQUARES} = 0.0000000$

```
U-FRACTION IN SYSTEM: FE = .708888245406172 NI = .291111754593828 TOTAL SIZE OF SYSTEM: 1E-04 [m]
 CPU time used in timestep 0 seconds
TIME = 327438.49 DT = 100000.00 SUM OF SQUARES = 0.00
U-FRACTION IN SYSTEM: FE = .708888245406173 NI = .291111754593827
                                                                               0.0000000
 TOTAL SIZE OF SYSTEM:
                             1E-04 [m]
 0.0000000
 TOTAL SIZE OF SYSTEM: 1E-04 [m]

CPU time used in timestep

TIME = 627438.49

DT = 100000.00

U-FRACTION IN SYSTEM: FE = .708888245406177

NI = .291111754593823

TOTAL SIZE OF SYSTEM: 1E-04 [m]
                                                                                0.0000000
 0 0000000
 CPU time used in timestep 0 seconds
TIME = 1000000.0 DT = 72561.511 SUM OF SQUARES = 0.00
U-FRACTION IN SYSTEM: FE = .708888245406174 NI = .291111754593826
                                                                               0.0000000
 TOTAL SIZE OF SYSTEM: 1E-04
MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
                             1E-04 [m]
 WORKSPACE ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                          0.0000000
                                        0.10000000E-06
0.10010000E-03
 DELETING TIME-RECORD FOR TIME
                                         0.40010010
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                          8.178778
                                          23.736135
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                          54.850849
                                          117.08028
 DELETING TIME-RECORD FOR TIME
                                          241.53913
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                          988.29226
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                          1983.9631
                                          3975.3048
 DELETING TIME-RECORD FOR TIME
                                          7957.9881
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                          31854.088
 DELETING TIME-RECORD FOR TIME
                                          63715.555
 DELETING TIME-RECORD FOR TIME
 DELETING TIME-RECORD FOR TIME
                                          227438 49
 DELETING TIME-RECORD FOR TIME
 DELETING TIME-RECORD FOR TIME
                                          427438.49
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                          527438.49
                                          627438.49
 DELETING TIME-RECORD FOR TIME
                                          727438 49
 DELETING TIME-RECORD FOR TIME
                                          827438.49
 KEEPING TIME-RECORD FOR TIME AND FOR TIME
                                      927438.49
1000000.0
 WORKSPACE RECLAIMED
 TIMESTEP AT
                    1000000.00
                                     SELECTED
DIC> 00
DIC> 00 THE SIMULATION IS FINISHED
DIC> @@
DIC>
 ... the command in full is SET_INTERACTIVE --OK---
```

exa2a-plot

```
DIC>About
NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exa2a\plot.DCM
... the command in full is MACRO FILE OPEN
DIC>
DIC> @@ exa2a_plot.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE a2a
DIC> @@
DIC>
DIC> @@
DIC> @@ LET US DEFINE A LOG-FILE FOR THIS EXAMPLE
DIC> @@ LET US DEFINE A LOG-
DIC> @@
DIC> set-log-file plot
AMBIGUOUS COMMAND, USE HELP
DIC>
DIC> @@
DIC> 00 GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> 00
DIC> go d-m
 ... the command in full is GOTO_MODULE TIME STEP AT TIME 1.00000E+06
DIC>
DIC> read exa2a
 ... the command in full is READ_WORKSPACES
... the command in full is DEFINE_COMPONENTS
... the command in full is SELECT_EQUILIBRIUM
OK
DIC> @@
DIC> @@ GO TO THE POST PROCESSOR DIC> @@
DIC> post
   ... the command in full is POST_PROCESSOR
POST PROCESSOR VERSION 1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1:
POST-1: @@
POST-1: @@ PLOT SOME NI-CONCENTRATION PROFILES
POST-1: @@
POST-1: s-d-a
... the command in full is SET_DIAGRAM_AXIS

AXIS (X, Y OR Z) : x

VARIABLE : dist
INFO: Distance is set as independent variable
... the command in full is SET_INDEPENDENT_VARIABLE
DISTANCE: /GLOBAL/: glo
POST-1: s-d-a
... the command in full is SET_DIAGRAM_AXIS

AXIS (X, Y OR Z) : y

VARIABLE : weight-percent

FOR COMPONENT : ni
POST-1: s-p-c
... the command in full is SET_PLOT_CONDITION
CONDITION /TIME/: time
VALUE(S) /LAST/: 0 1e5 3e5 1e6
POST-1:
POST-1: @@
POST-1: 00 SET SCALING ON Y-AXIS BEFORE PLOTTING POST-1: 00
POST-1: s-s-s
FUST-1: S-S-S
... the command in full is SET_SCALING_STATUS
AXIS (X, Y OR Z) : y
AUTOMATIC SCALING (Y OR N) /N/: n
MIN VALUE : 0
MAX VALUE : 60
DOSM_1.
POST-1:
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
... the command in full is MAKE_EXPERIMENTAL_DATAFILE POST-1: SET EXP FILE FORMAT 10
POST-1:
POST-1: plot
     ... the command in full is PLOT_DIAGRAM
```


POST-1:
POST-1:
POST-1:@?<Hit_return_to_continue>
POST-1:@?<Hit_return_to_continue>
POST-1: set-inter
... the command in full is SET_INTERACTIVE_MODE
--OK--POST-1:

Example exa2b

Homogenization of a binary Fe-Ni alloy

Simple homogenization of a binary Fe-Ni alloy. We have put together a Ni rich and a Ni lean alloy. This example is identical to exa2a. However, in this example implicit time integration is used instead of the trapezoidal method for solving the PDEs.

$$T = 1400 K$$

← 1E-4

exa2b-setup

SYS: About

```
{\tt Thermo-Calc} \ / \ {\tt DICTRA} \ {\tt is} \ {\tt software} \ {\tt package} \ {\tt for} \ {\tt calculation} \ {\tt of} \ {\tt phase} \ {\tt diagrams},
 simulation of phase transformation kinetics and much more.
 Copyright Foundation for Computational Thermodynamics,
 Stockholm, Sweden
 Software running on Windows 64-bit wordlength
 Compiler: unknown compiler
License library version: 9.7.0.0036
Linked: Fri Oct 18 11:32:56 2024
SYS:SYS:MACRO exa2b\setup.DCM
SYS: @@
SYS: @@ One-phase problem.
SYS: @@ Homogenization of a binary Fe-Ni alloy.
SYS: @@ This example is identical to a2a but instead it uses implicit time
SYS: @@ integration instead of the trapezoidal method for solving the PDEs.
 NO SUCH COMMAND, USE HELP
SYS: @@ exa2b setup.DCM
SYS: @@
SYS: @@ FIRST DEFINE A LOG-FILE FOR THIS EXAMPLE
SYS: @@
SYS: set_log_file setup
Heading:
SYS: @@
SYS: @@ THEN GO TO THE DATABASE MODULE
SYS: @@
... the command in full is GOTO_MODULE

12:33:13,716 [Thread-0] INFO LicenseManager: Initializing user: jenkins.integrationtest@thermocalc.se

12:33:13,736 [Thread-0] INFO LicenseController: Running License Spring in DEV environment.

12:33:14,897 [Thread-0] INFO LicenseManager: There is an activated standalone license for jenkins.integrationtest@thermocalc.se for TC-
Application
 THERMODYNAMIC DATABASE module
 Database folder:
C:\jenkins\workspace\dev pipeline\generate dictra console examples\databases\da
 Current database: Steels/Fe-Alloys v12.0
 ... /- DEFINED
DICTRA_FCC_A1 REJECTED
FDB TCFE19.
TDB_TCFE12: @@
TDB_TCFE12: @@ USE THE TCFE DATABASE FOR THERMODYNAMIC DATA
TDB_TCFE12: @@
TDB_TCFE12: sw fedemo
     ... the command in full is SWITCH DATABASE
 Current database: Iron Demo Database v5.0
                                   /- DEFINED
 VA
TDB_FEDEMO:
TDB FEDEMO: 00

TDB FEDEMO: 00 DEFINE THE SYSTEM TO WORK WITH
TDB_FEDEMO: @@
TDB FEDEMO: def-system fe ni
 ... the command in full is DEFINE_SYSTEM FE NI DEFINED
TDB_FEDEMO: 00
TDB_FEDEMO: 00 EXCLUDE THE THERMODYNAMIC DATA FOR THE PHASES THAT ARE NOT NEEDED TDB_FEDEMO: 00
TDB_FEDEMO: e0 TDB_FEDEMO: rej ph * all ... the command in full is REJECT BCC_A2 CBCC_A12
                                                                    CUB A13
BCC_A2 GBCC_A12
FCC A1 GAS:G
LAVES_PHASE_C14 LIQUID:L RE
TDB_FEDEMO: res ph fcc
... the command in full is RESTORE
FCC_A1 RESTORED
                                 LIQUID:L REJECTED
TDB_FEDEMO:
TDB FEDEMO: 00 TDB FEDEMO: 00 RETRIEVE DATA FROM THE DATABASE FILE
TDB FEDEMO: @@
TDB_FEDEMO: get
... the command in full is GET_DATA
12:33:15,963 [Thread-0] INFO JavaWrapper: *** Invoking Gibbs Energy System v6 ***
 REINITIATING GES ....
 ELEMENTS ....
 SPECIES .....
 PHASES ......
... the command in full is AMEND_PHASE_DESCRIPTION
 PARAMETERS ...
 Use the command LIST_REFERENCES to see the list of references for assessed data
 -OK-
TDB_FEDEMO:
TDB_FEDEMO: 00

TDB_FEDEMO: 00 MOBILITY/DIFFUSIVITY DATA ARE STORED IN A SEPARATE DATABASE FILE.
TDB FEDEMO: @@ SWITCH TO THE MOBILITY DATABASE TO RETRIEVE DATA.
TDB FEDEMO: @@
TDB_FEDEMO: app
     ... the command in full is APPEND_DATABASE
 Use one of these databases
 TCFE12 = Steels/Fe-Allovs v12.0
          = Steels/Fe-Alloys v9.3
= SGTE Substances v6.0
 TCFE9
 SSUB6
 SSUB SUBSTAINCES V6.0
FEDEMO = Iron Demo Database v5.0
MOB2 = Alloys Mobility v2.7
MOBFE2 = Steels/Fe-Alloys Mobility v4.0
MOBFF4 = Steels/Fe-Alloys Mobility v4.0
```

```
MFEDEMO = Fe-Allovs Mobility demo database v4.0
  USER
                = User defined Database
DATABASE NAME /FEDEMO/: mfedemo
  Current database: Fe-Alloys Mobility demo database v4.0
APP: def-sys fe ni
  ... the command in full is DEFINE_SYSTEM
FE NI DEFINED
APP: rej ph * all
 ... the command in full is REJECT BCC_A2
                                             FCC_A1
                                                                                       T.TOUTD: I.
     REJECTED
Les ph fcc
... the command
FCC_A1 RESTORED
APP: get
                   command in full is RESTORE
     ... the command in full is GET DATA
  ELEMENTS .....
SPECIES .....
  PHASES .....
  PARAMETERS ...
  FUNCTIONS ....
  Use the command LIST_REFERENCES to see the list of references for assessed data
 APP:
 APP: @@
 APP: @@ ENTER THE DICTRA MONITOR WHERE THE SYSTEM IS SET UP
... the command in full is GOTO_MODULE
12:33:16,474 [Thread-0] INFO StandaloneLicenseController: Checking out license for: Diffusion (DICTRA)
NO TIME STEP DEFINED
DIC>
DIC> 00
DIC> 00 ENTER THE GLOBAL CONDITION T
 DIC> @@
DIC> set-cond
 ... the command in full is SET_CONDITION
GLOBAL OR BOUNDARY CONDITION /GLOBAL/: glob
VARIABLE : T
LOW TIME LIMIT /0/: 0
T(TIME,X) = 1400;
HIGH TIME LIMIT /*/: *
ANY MORE RANGES /N/: N
DIC>
DIC> @@ ENTER A REGION
 DIC> @@
DIC> enter-region REGION NAME : austenite
DIC> @@
 DIC> @@ ENTER A GRID INTO THE REGION.
DIC> @@ AS IN EXAMPLE a2a WE WANT SEVERAL POINTS IN THE MIDDLE OF THE REGION.
 DIC> @@ SO A DOUBLE GEOMETRIC GRID IS ALSO CONSTRUCTED IN THIS EXAMPLE.
DIC> @@
 DIC> enter-grid
... the command in full is ENTER_GRID_COORDINATES
REGION NAME : /AUSTENITE/: austenite
WIDTH OF REGION /1/: 1e-4
 TYPE /LINEAR/: double
NUMBER OF POINTS /50/: 60 VALUE OF R IN THE GEOMETRICAL SERIE FOR LOWER PART OF REGION: 0.9
 VALUE OF R IN THE GEOMETRICAL SERIE FOR UPPER PART OF REGION: 1.11
 DIC>
DIC> @@
DIC> @@ ENTER ACTIVE PHASES INTO THE REGIONS
DIC> @@
DIC> enter-phase
... the command in full is ENTER_PHASE_IN_REGION
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /AUSTENITE/: austenite
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: fcc#1
DIC>
DIC> @@ ENTER THE INITIAL NI COMPOSITION INTO THE PHASE. READ DATA FROM DIC> @@ THE FILE ni.dat WHICH CONTAINS THE Ni-PROFILE.
DIC> @@
 DIC> enter-composition
... the command in full is ENTER_COMPOSITIONS
REGION NAME : /AUSTENITE/: austenite
PHASE NAME: /FCC_A1/: fcc#1
DEPENDENT COMPONENT ? /NI/: fe
COMPOSITION TYPE /MOLE_FRACTION/: w-p PROFILE FOR /NI/: ni
 TYPE /LINEAR/: read a2bni.dat
     ... the command in full is CREATE NEW EQUILIBRIUM
... the command in full is COMPUTE EQUILIBRIUM
... the command in full is COMPUTE EQUILIBRIUM
     the command in full is COMPUTE_EQUILIBRIUM
     the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
     .. the command in full is COMPUTE EQUILIBRIUM
```

```
... the command in full is COMPUTE EQUILIBRIUM
                                       the command in full is COMPUTE_EQUILIBRIUM
                 . . .
                                         the command in full is COMPUTE EOUILIBRIUM
                ... the command in full is COMPUTE_EQUILIBRIUM
.. the command in full is COMPUTE_EQUILIBRIUM
.. the command in full is COMPUTE_EQUILIBRIUM
.. the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
.. the command in full is COMPUTE_EQUILIBRIUM
           the command in full is COMPUTE EQUILIBRIUM
the command in full is CO
                the command in full is COMPUTE_EQUILIBRIUM
                the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
                the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
                the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
                the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
the command in full is COMPUTE_EQUILIBRIUM
                 ... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
                .. the command in full is COMPUTE EQUILIBRIUM
... the command in full is COMPUTE_EQUILIBRIUM
DIC>
DIC> @@
 DIC> @@ THE BOUNDARY CONDITION IS A CLOSED SYSTEM AS WE DO NOT SPECIFY
DIC>
                            @@ ANYTHING ELSE
 DIC> @@
DTC>
 DIC> @@
DIC> 00 AFTER THE SIMULATION IN exa2a THE PROFILES HAVE SOME FLUCTUATIONS. WE DIC> 00 NOW TRY TO GET RID OF THESE USING IMPLICIT (1) TIME INTEGRATION DIC> 00 INSTEAD OF THE MORE ACCURATE (BUT LESS STABLE) TRAPETZOIDAL METHOD
 DIC> @@ (THE DEFAULT).
DIC> @@
DIC> s-s-c
... the command in full is SET_SIMULATION_CONDITION
NSO1A PRINT CONTROL : /0/:
```

```
FLUX CORRECTION FACTOR: /1/:
NUMBER OF DELTA TIMESTEPS IN CALLING MULDIF: /2/:
CHECK INTERFACE POSITION /AUTO/:
VARY POTENTIALS OR ACTIVITIES OR LNAC: /ACTIVITIES/:
ALLOW AUTOMATIC SWITCHING OF VARYING ELEMENT: /YES/:
SAVE WORKSPACE ON FILE (YES,NO,0-999) /YES/:
DEGREE OF IMPLICITY WHEN INTEGRATING PDES (AUTO, 0 -> 0.5 -> 1): /AUTO/: 1.0
MAX TIMESTEP CHANGE PER TIMESTEP : /2/:
USE FORCED STARTING VALUES IN EQUILIBRIUM CALCULATION /AUTO/: @@
ALWAYS CALCULATE STIFFNES MATRIX IN MULDIF /YES/: @@ SET THE SIMULATION TIME
DIC> @@
DIC> set-simulation-time
END TIME FOR INTEGRATION /.1/: 1E6
AUTOMATIC TIMESTEP CONTROL /YES/:
MAX TIMESTEP DURING INTEGRATION /100000/:
INITIAL TIMESTEP DURING INTEGRATION /100000/:
INITIAL TIMESTEP : /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DIC>
DIC> @@
DIC> @@ SAVE THE SET UP TO FILE AND EXIT
DIC> @@
DIC> save exa2b Y
    ... the command in full is SAVE_WORKSPACES
DIC>
DIC> set-inter
    ... the command in full is SET_INTERACTIVE
    ... the command in full is SET_INTERACTIVE
    ... TOK---
DIC>
DIC>
DIC>
DIC>
DIC> DIC> DIC> DIC> DIC> DIC> DIC SET_INTERACTIVE
    ... the command in full is SET_INTERACTIVE
    ... TOK---
DIC>
```

```
NO SUCH COMMAND, USE HELP
DIC>DIC>DACRO exa2b\run.DCM
... the command in full is MACRO FILE OPEN
DIC>
DIC> @@ exa2b_run.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR RUNNING EXAMPLE a2b
DIC> @@
DIC>
DIC> @@
DIC> @@ LET US DEFINE A LOG-FILE FOR THIS EXAMPLE
DIC> @@
DIC> set-log-file run
AMBIGUOUS COMMAND, USE HELP
DIC>
DIC> @@ ENTER THE DICTRA MONITOR AN READ SETUP FROM FILE
DIC> @@
DIC> go d-m
 ... the command in full is GOTO_MODULE TIME STEP AT TIME 0.00000E+00
DIC> read exa2b
   ... the command in full is READ WORKSPACES
    ... the command in full is DEFINE_COMPONENTS
... the command in full is SELECT_EQUILIBRIUM
DIC>
DIC> @@
DIC> @@ Start the simulation
DIC> simulate
  ... the command in full is SIMULATE_REACTION
 ... the command in full is SET_NUMERICAL_LIMITS U-FRACTION IN SYSTEM: FE = .708888245406169 NI = .29111175459383 TOTAL SIZE OF SYSTEM: 1E-04 [m]
 TOTAL SIZE OF SYSTEM: IE-U4 [m]
U-FRACTION IN SYSTEM: FE = .708888245406169 NI = .29111175459383
TOTAL SIZE OF SYSTEM: 1E-04 [m]
2 GRIDPOINT(S) ADDED TO CELL #1 REGION: AUSTENITE
TIME = 0.10000000E-06 DT = 0.1000000E-06 SUM OF SQUARES = 0.00
U-FRACTION IN SYSTEM: FE = .708888245406169 NI = .29111175459383
TOTAL SIZE OF SYSTEM: 1E-04 [m]
 0.0000000
 CPU time used in timestep 0 seconds
TIME = 0.40010010 DT = 0.40000000 SUM OF SQUARES = 0.01
U-FRACTION IN SYSTEM: FE = .708888245406169 NI = .29111175459383
TOTAL SIZE OF SYSTEM: 1E-04 [m]
 0.0000000
 CPU time used in timestep 0 seconds
TIME = 23.713863 DT = 15.542509 SUM OF SQUARES = 0.01
U-FRACTION IN SYSTEM: FE = .708888245406169 NI = .29111175459383
TOTAL SIZE OF SYSTEM: 1E-04 [m]
 CPU time used in timestep 0 seconds
TIME = 54.798881 DT = 31.085018 SUM OF SQUARES = 0.00
U-FRACTION IN SYSTEM: FE = .708888245406169 NI = .29111175459383
TOTAL SIZE OF SYSTEM: 1E-04 [m]
 0.0000000
 0 seconds
 CPU time used in timestep 0 seconds
TIME = 489.98913 DT = 248.68014 SUM OF SQUARES = 0.00
U-FRACTION IN SYSTEM: FE = .708888245406169 NI = .291111754593831
                                                                                      0.0000000
 TOTAL SIZE OF SYSTEM: 1E-04 [m]
 0 0000000
 TOTAL SIZE OF SISTEM: IE-04 [m] 0 seconds

TIME = 31823.687 DT = 15915.529 SUM OF SQUARES = 0.

U-FRACTION IN SYSTEM: FE = .70888824540617 NI = .29111175459383

TOTAL SIZE OF SYSTEM: 1E-04 [m]
                                                                                      0.0000000
 CPU time used in timestep
TIME = 127316.86 DT = 636
U-FRACTION IN SYSTEM: FE = .7088
TOTAL SIZE OF SYSTEM: 1E-04 [m]
                                      0 seconds
63662.116 SUM OF SQUARES = 0.00
.708888245406172 NI = .291111754593829
                                                                                      0 0000000
 CPU time used in timestep 0 seconds

TIME = 227316.86 DT = 100000.00 SUM OF SQUARES = 0.00

U-FRACTION IN SYSTEM: FE = .708888245406169 NI = .291111754593831
```

```
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep 0 seconds

TIME = 327316.86 DT = 100000.00 SUM OF SQUARES = 0.00

U-FRACTION IN SYSTEM: FE = .708888245406162 NI = .291111754593838
 TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SISIEM: 1E-04 [m]

CPU time used in timestep

TIME = 427316.86 DT = 100000.00

U-FRACTION IN SYSTEM: FE = .70888824540

TOTAL SIZE OF SYSTEM: 1E-04 [m]
                                                         seconds
                                0 seconds
100000.00 SUM OF SQUARES = 0.00
.708888245406158 NI = .291111754593842
                                                                       0.0000000
0 0000000
0.0000000
0.0000000
 MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
 RECLAIMING WORKSPACE
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                    0.0000000
0.10000000E-06
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                     0.10010000E-03
0.40010010
 DELETING TIME-RECORD FOR TIME
                                      8.1713545
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                      23.713863 54.798881
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                      116.96892
                                      241.30899
 DELETING TIME-RECORD FOR TIME
                                      489.98913
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                      1982.0700
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                      3971.5111
                                      7950.3934
 DELETING TIME-RECORD FOR TIME
                                      15908.158
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                      63654.745
 DELETING TIME-RECORD FOR TIME
                                      127316.86
227316.86
 DELETING TIME-RECORD FOR TIME
 DELETING TIME-RECORD FOR TIME
                                      327316 86
 DELETING TIME-RECORD FOR TIME
 DELETING TIME-RECORD FOR TIME
                                      527316.86
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                      627316.86
                                      727316.86
 DELETING TIME-RECORD FOR TIME
                                      827316.86
 KEEPING TIME-RECORD FOR TIME
                                     927316.86
AND FOR TIME
WORKSPACE RECLAIMED
                                    1000000.0
TIMESTEP AT 1000000.00 SELECTED
DTC>
DIC> @@
DIC> @@ THE SIMULATION IS FINISHED
DIC> @@
 ... the command in full is SET_INTERACTIVE
DIC> set-inter
DTCS
```

exa2b-plot

```
DIC>About
NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exa2b\plot.DCM
... the command in full is MACRO FILE OPEN
DIC>
DIC> @@ exa2b_plot.DCM
DIC>
DIC> @@
DIC> 00 FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE a2b
DIC> @@
DIC>
DIC> @@
DIC> 00 LET US DEFINE A LOG-FILE FOR THIS EXAMPLE DIC> 00 DIC> set-log-file plot
AMBIGUOUS COMMAND, USE HELP
DIC>
DIC> @@
DIC> 00 GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> 00
DIC> go d-m
... the command in full is GOTO_MODULE TIME STEP AT TIME 1.00000E+06

DIC> read exa2b
 ... the command in full is READ_WORKSPACES
... the command in full is DEFINE_COMPONENTS
... the command in full is SELECT_EQUILIBRIUM
OK
DIC>
DIC> 00
DIC> 00 GO TO THE POST PROCESSOR
DIC> 00
DIC> post
... the command in full is POST_PROCESSOR POST PROCESSOR VERSION 1.7 Implemented by Bjorn Jonsson POST-1:
POST-1:
POST-1: @@
POST-1: 00 PLOT SOME CONCENTRATION PROFILES POST-1: 00
POST-1: s-d-a
... the command in full is SET_DIAGRAM_AXIS AXIS (X, Y OR Z) : x VARIABLE : dist
INFO: Distance is set as independent variable
... the command in full is SET_INDEPENDENT_VARIABLE
DISTANCE : /GLOBAL/: glo
POST-1:
... the command in full is SET_DIAGRAM_AXIS

AXIS (X, Y OR Z) : y

VARIABLE : w-p
POST-1: s-d-a
FOR COMPONENT : ni
POST-1:
POST-1: s-p-c
... the command in full is SET_PLOT_CONDITION CONDITION /TIME/: time VALUE(S) /LAST/: 0 1e5 3e5 1e6
POST-1: 00
POST-1: @@ SET SCALING ON Y-AXIS BEFORE PLOTTING
POST-1: @@
AXIS (X, Y OR Z): y
AUTOMATIC SCALING (Y OR N) /N/: n
MIN VALUE: 0
MAX VALUE: 60
POST-1:
POST-1:
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
... the command in full is MAKE_EXPERIMENTAL_DATAFILE
POST-1: SET_EXP_FILE_FORMAT 10
POST-1:
POST-1: plot
    ... the command in full is PLOT DIAGRAM
```


Example exa3

Uphill diffusion in an Fe-Si-C alloy

Simulation of uphill diffusion in a ternary single phase austenite matrix due to the classical darken experiment published by L.S. Darken (Trans. Aime, v.180 (1949), pp. 430-438).

In this example, two pieces of austenite (3.80 wt%Si, 0.49 wt%C) and (0.05 wt%Si, 0.45 wt%C) are put together and are subsequently annealed at 1050 C for 13 days. As both pieces are austenite they must be entered into the same region. This is done by giving the compositions of Si and C in each gridpoint individually. These data are then stored on file.

$$T = 1323 K$$

5E-2

exa3-setup

SYS: About

```
Thermo-Calc / DICTRA is software package for calculation of phase diagrams, simulation of phase transformation kinetics and much more.
 Copyright Foundation for Computational Thermodynamics,
 Stockholm, Sweden
 Software running on Windows 64-bit wordlength
 Compiler: unknown compiler
License library version: 9.7.0.0036
Linked: Fri Oct 18 11:32:56 2024
SYS:SYS:MACRO exa3\setup.DCM
SYS: @@
SYS: @@ One-phase problem.
SYS: @@ Uphill diffusion in an Fe-Si-C alloy
      @@ This is an example to simulate uphill diffusion in a ternary single
SYS: @@ phase austenite matrix due to the classical Darken experiment published SYS: @@ by L.S. Darken: Trans. Aime, v.180 (1949), pp. 430-438.
SYS: @@
SYS: @@ In this example two pieces of austenite (3.80 wt%Si, 0.49 wt%C) and
SYS: 00 (0.05 wt%Si, 0.45 wt%C) are put together and are subsequently annealed SYS: 00 at 1050C for 13 days. As both pieces are austenite they must be entered SYS: 00 into the same region. This is done by individually giving the compositions SYS: 00 of Si and C in each grid point. These data are then stored to file.
SYS:
 NO SUCH COMMAND, USE HELP
SYS .
SYS: @@ darken setup.DCM
SYS:
SYS: 00
SYS: 00 Note that LOG-FILES used previously in examples a2a and a2b are
SYS: 00 no longer used.
SYS: @@
SYS:
SYS: @@
SYS: @@ RETRIEVE DATA FROM THE DATABASE
SYS: @@
12:36:09,339 [Thread-0] INFO LicenseManager: Initializing user: jenkins.integrationtest@thermocalc.se
12:36:09,350 [Thread-0] INFO LicenseController: Running License Spring in DEV environment.
12:36:10,484 [Thread-0] INFO LicenseManager: There is an activated standalone license for jenkins.integrationtest@thermocalc.se for TC-
Application
 THERMODYNAMIC DATABASE module
 Database folder:
 C:\jenkins\workspace\dev pipeline\generate dictra console examples\databases\da
 Current database: Steels/Fe-Allovs v12.0
 /- DEFINED
DICTRA_FCC_A1 REJECTED
TOB TCFR12.
TDB_TCFE12:
TDB_TCFE12: @@
TDB_TCFE12: @@ USE A TCFE DATABASE FOR THE THERMODYNAMIC DATA
TDB_TCFE12: @@
TDB_TCFE12: sw tcfe9
 Current database: Steels/Fe-Alloys v9.3
                                  /- DEFINED
 L12 FCC
                                  B2 BCC
                                                                 DICTRA_FCC_A1
    REJECTED
TDB_TCFE9: def-sys fe si c
 FΕ
   DEFINED
TDB_TCFE9: rej ph * all
                                  LIOUID:L
 GAS:G
                                                                  BCC A2
 FCC_A1
CUB_A13
                                  HCP_A3
DIAMOND_FCC_A4
                                                                  CBCC_A12
GRAPHITE
                                  M23C6
KSI_CARBIDE
LAVES_PHASE_C14
 CEMENTITE
                                                                  м7с3
                                                                   FE4N LP1
 FECN CHI
                                                                  M3SI
 CR3SI
                                  FE2SI
                                                                  FESI2_H
 FESI2_L
                                                                  M5SI3
                                  MSI
                                                                  SIC
 AT.4C3
                                  FE8ST2C
 AL5FE4
                                                                  M2P C22
                                  MP_B31
   REJECTED
TDB_TCFE9: res ph fcc
      A1 RESTORED
TDB_TCFE9: get
12:36:11,923 [Thread-0] INFO JavaWrapper: *** Invoking Gibbs Energy System v6 ***
 REINITIATING GES .....
 ELEMENTS ....
 SPECIES ....
 PARAMETERS ...
 Use the command LIST_REFERENCES to see the list of references for assessed data
 -OK-
TDB_TCFE9:
TDB_TCFE9: @@
TDB_TCFE9: @@ SWITCH TO A MOBILITY DATABASE TO RETRIEVE MOBILITY DATA
TDB_TCFE9: @@
TDB_TCFE9: app mobfe4
 Current database: Steels/Fe-Alloys Mobility v4.0
 VA DEFINED
B2_BCC REJECTED

APP: def-sys fe si c
 FE
    DEFINED
APP: rej ph * all
BCC_A2
                                  CEMENTITE
 FE4N LP1
                                 HCP A3
                                                                  LIOUID:L
    REJECTED
APP: res ph fcc
FCC_A1 RESTORED
```

```
APP: get
   ELEMENTS ....
  SPECIES .....
  PHASES ......
PARAMETERS ...
  FUNCTIONS ....
  Use the command LIST REFERENCES to see the list of references for assessed data
  -OK-
APP: @@
APP: 00 ENTER THE DICTRA MONITOR APP: 00
APP: go d-m

12:36:13,912 [Thread-0] INFO StandaloneLicenseController: Checking out license for: Diffusion (DICTRA)

NO TIME STEP DEFINED

DIC>
DIC>
00
DIC> 00 ENTER GLOBAL CONDITION T
DIC> 00
DIC> set-cond glob T 0 1323; * N
DIC>
DIC>
DIC> 00
DIC> 00 ENTER THE REGION austenite
DIC> 00
DIC> 00
DIC> anter-region
REGION NAME : austenite
DIC> @@
DIC> 00 ENTER THE GRID
DIC> 00 NOTE THAT GRID POINT DISTANCES ARE SMALLEST AROUND THE MIDDLE
DIC> @@ NOTE THAT GRID POINT DISTANCE
DIC> @@
DIC> enter-grid
REGION NAME : /AUSTENITE/: austenite
WIDTH OF REGION /1/: 50E-3
TYPE /LINEAR/: AUTO
TYPE /LINEAR/: AUTO
DIC>
DIC> @@
DIC> @@
DIC> @@ ENTER THE PHASE INTO A REGION (BOTH PIECES ARE AUSTENITIC)
DIC> @@
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: active
REGION NAME : /AUSTENITE/: austenite
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: fcc#1
DIC>
DIC> @@
DIC> @@ ENTER COMPOSITIONS INTO THE PHASE
DIC> 00 DIC> on The compositions into the color of DIC> on the composition region name: /AUSTENITE/: austenite PHASE NAME: /FCC_A1/: fcc#1 DEPENDENT COMPONENT ? /SI/: FE
 COMPOSITION TYPE /MOLE_FRACTION/: w-p
PROFILE FOR /C/: C func 0.49-0.04*hs(x-25e-3);
PROFILE FOR /SI/: SI func 3.80-3.75*hs(x-25e-3);
DIC>
 DIC> @@
DIC> 00 SET THE SIMULATION TIME AND OTHER SIMULATION PARAMETERS DIC> 00
DIC> set-simulation-time
END TIME FOR INTEGRATION /.1/: 1e10
AUTOMATIC TIMESTEP CONTROL /YES/:
MAX TIMESTEP DURING INTEGRATION /1E+09/:
INITIAL TIMESTEP: /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP: /1E-07/:
 DIC>
DIC> save exa3 Y
DIC> save exas
DIC>
DIC> set-inter
--OK--
```

```
NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exa3\run.DCM DIC>
DIC>
DIC> 00 darken_run.DCM
DIC>
DIC> @@ ENTER THE DICTRA MONITOR
DIC> @@
DIC> go d-m
 TIME STEP AT TIME 0.00000E+00
DTC>
DIC> @@
DIC> @@ READ SETUP FROM FILE AND START SIMULATION
DIC> @@
DIC> read exa3
 OK
DIC>
DIC> sim
 Region: AUSTENITE
                                dense at 0.250000E-01 62 points dense at 0.250000E-01 61 points
 geometric 0.775567
 geometric 1.28938 dense at U.ZDUUUUL U. DEGREE OF IMPLICITY SET TO TRAPEZOIDAL RULE
U-FRACTION IN SYSTEM: C = .0215351645464253 FE = .962915638654286
SI = .0370843613457149
 TOTAL SIZE OF SYSTEM: .05 [m]
U-FRACTION IN SYSTEM: C = .0215351645464253 FE = .962915638654286
SI = .0370843613457149
 TOTAL SIZE OF SYSTEM: .05 [m]

TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.000
U-FRACTION IN SYSTEM: C = .0215351645464254 FE = .962915638654286
SI = .0370843613457149

TOTAL SIZE OF SYSTEM: .05 [m]
0 0000000
```

```
\label{eq:size}  \text{SI} = .0370843613457149 \\  \text{TOTAL SIZE OF SYSTEM:} \quad .05 \text{ [m]}
0.0000000
0 0000000
0 0000000
output ignored...
0 0000000
                                                           0 0000000
CPU time used in timestep 0 seconds

TIME = 48713454. DT = 24356727. SUM OF SQUARES = 0.00

U-FRACTION IN SYSTEM: C = .021535164545032 FE = .962915638654285

SI = .0370843613457148

TOTAL SIZE OF SYSTEM: .05 [m]
                                                           0 0000000
0 0000000
0 0000000
0 0000000
CPU time used in timestep 0 seconds

TIME = 0.77941526E+09 DT = 0.38970763E+09 SUM OF SQUARES = 0.00i

U-FRACTION IN SYSTEM: C = .0215351645457158 FE = .962915638654286

SI = .0370843613457144

TOTAL SIZE OF SYSTEM: .05 [m]
                                                           0.0000000
CPU time used in timestep 0 seconds

TIME = 0.15588305E+10 DT = 0.77941526E+09 SUM OF SQUARES = 0.000

U-FRACTION IN SYSTEM: C = .0215351645372402 FE = .962915638654286

SI = .0370843613457147

TOTAL SIZE OF SYSTEM: .05 [m]
                                                           0.0000000
                      .05 [m]
CPU time used in timestep 0 seconds

TIME = 0.25588305E+10 DT = 0.10000000E+10 SUM OF SQUARES = 0.000

U-FRACTION IN SYSTEM: C = .0215351645333891 FE = .962915638654286

SI = .0370843613457145

TOTAL SIZE OF SYSTEM: .05 [m]
                                                           0,0000000
                      .05 [m]
CPU time used in timestep 0 seconds

TIME = 0.35588305E+10 DT = 0.10000000E+10 SUM OF SQUARES = 0.00

U-FRACTION IN SYSTEM: C = .0215351645298693 FE = .962915638654285

SI = .0370843613457146

TOTAL SIZE OF SYSTEM: .05 [m]
                                                           0.0000000
0.0000000
0.0000000
MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
 RECLAIMING WORKSPACE
 DELETING TIME-RECORD FOR TIME
```

```
DELETING TIME-RECORD FOR TIME
                                                  0.10000000E-06
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                 0.10010000E-03
0.57710924E-02
DELETING TIME-RECORD FOR TIME
                                                  0.17113077E-01
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                  0.39797047E-01
                                                  0.85164986E-01
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                  0.17590086
                                                  0.35737262
DELETING TIME-RECORD FOR TIME
                                                  0 72031613
DELETING TIME RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                   1.4462032
                                                   2.8979772
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                   5.8015253
                                                   11.608622
DELETING TIME-RECORD FOR TIME
                                                   23 222814
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                   92.907969
                                                   185.82151
371.64859
743.30274
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                   2973.2277
5946.4610
11892.927
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                   23785.861
47571.727
DELETING TIME-RECORD FOR TIME
                                                   95143.459
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                   190286.92
380573.85
DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                   761147.71
1522295.4
DELETING TIME-RECORD FOR TIME
                                                   3044590.9
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                   6089181.7
12178363.
DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                   24356727.
48713454.
DELETING TIME-RECORD FOR TIME
                                                   97426908.
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                  0.19485382E+09
0.38970763E+09
DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                  0.77941526E+09
0.15588305E+10
DELETING TIME-RECORD FOR TIME
                                                  0.25588305E+10
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                  0.35588305E+10
0.45588305E+10
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                  0.55588305E+10
0.65588305E+10
DELETING TIME-RECORD FOR TIME
                                                  0.75588305E+10
DELETING TIME-RECORD FOR TIME
                                                  0.85588305E+10
KEEPING TIME-RECORD FOR TIME 0.95588305E+10
AND FOR TIME
                                                0.10000000E+11
WORKSPACE RECLAIMED
```

TIMESTEP AT 0.10000000E+11 SELECTED

DIC>
DIC> set-inter
--OK--DIC>

exa3-plot

```
DIC>About
NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exa3\plot.DCM DIC>
DIC>
DIC> @@ darken_plot.DCM
DIC>
DIC> @@ ENTER THE DICTRA MODULE AND SPECIFY THE STORE-RESULT FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 1.00000E+10
DIC> read exa3
 OK
DTC>
DIC> @@
DIC> 00 ENTER THE DICTRA POST PROCESSOR
DIC> 00
DIC> post
POST PROCESSOR VERSION 1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1: @@
POST-1: @@ PLOT THE CONCENTRATION PROFILE FOR Si AT TIMES 0, 1E5, 1123200, 1E7,
POST-1: @@ 1E8, 1E9 AND 1E10 S
POST-1: @@
POST-1: @@ SET DISTANCE IN SYSTEM AS X-AXIS, WEIGHT-% SI ON Y-AXIS AND SPECIFY POST-1: @@ FOR WHICH SIMULATION TIMES TO PLOT THE PROFILES.
POST-1: set-diagram-axis x distance global
INFO: Distance is set as independent variable POST-1: set-diagram-axis y weight-percent si POST-1: set-plot-condition time 0 1E5 1123200 1e7 1E8 1E9 1E10
POST-1: 00
POST-1: @@ PLOT THE DIAGRAM
POST-1: @@
 POST-1: set-title
TITLE : Figure a3.1
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
POST-1: SET_EXP_FILE_FORMAT 10
POST-1: Plot
                                                   Figure a3.1
```



```
POST-1:
POST-1:
POST-1:
POST-1:Hit RETURN to continue
POST-1: 00
POST-1: Set-diagram-axis y w-p c
POST-1: set-diagram-axis y w-p c
POST-1: set-title Figure a3.2
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: SET_EXP_FILE_FORMAT 10
POST-1: SET_EXP_FILE_FORMAT 10
POST-1: plot
```

```
0.65
   0.60
   0.55
Mass percent C
   0.45
   0.40
   0.35
      0.000
                0.005
                         0.010
                                   0.015
                                              0.020
                                                       0.025
                                                                 0.030
                                                                           0.035
                                                                                     0.040
                                                                                               0.045
                                                     Distance
```

```
POST-1:
POST-1:
POST-1:
POST-1:
POST-1: 00
P
```

Figure a3.3


```
POST-1:
POST-1:
POST-1:
POST-1:Hit RETURN to continue
POST-1: set-inter
--OK---
POST-1:
```


Carburization of a binary Fe-C alloy: Comparison to analytical erf solution

This is a simple binary simulation with one single phase region. It compares a numerical simulation with an analytical erf-solution. For this reason a special database is created (*erf.tdb*) where the diffusion coefficient is set to a concentration independent value.

$$T = 1200 K$$

exa4-setup

```
Thermo-Calc / DICTRA is software package for calculation of phase diagrams, simulation of phase transformation kinetics and much more.
 Copyright Foundation for Computational Thermodynamics,
 Stockholm, Sweden
 Software running on Windows 64-bit wordlength
 Compiler: unknown compiler
License library version: 9.7.0.0036
Linked: Fri Oct 18 11:32:56 2024
SYS:SYS:MACRO exa4\setup.DCM
SYS: @@
SYS: @@ One-phase problem.
SYS: @C Carburization of binary Fe-C alloy: Comparison to an analytical erf solution SYS: @C This is a simple binary simulation with a single phase region.
SYS: @C The numerical simulation is compared with an analytical erf solution.
SYS: @@ For this reason a special database erf.tdb is created where the
SYS: 00 diffusion coefficient is set to a concentration independent value.
 NO SUCH COMMAND, USE HELP
SYS: @@ exa4 setup.DCM
SYS:
SYS: @@ READ THE DATA FROM THE DATABASES
SYS: 00
SYS: go da
12:39:14,903 [Thread-0] INFO LicenseManager: Initializing user: jenkins.integrationtest@thermocalc.se
12:39:14,921 [Thread-0] INFO LicenseController: Running License Spring in DEV environment.
12:39:15,987 [Thread-0] INFO LicenseManager: There is an activated standalone license for jenkins.integrationtest@thermocalc.se for TC-Application
  THERMODYNAMIC DATABASE module
 Database folder:
 {\tt C:\jenkins\backslash workspace\backslash dev\_pipeline\backslash generate\_dictra\_console\_examples\backslash databases\backslash databases} \\
 Current database: Steels/Fe-Alloys v12.0
 VA
                                   /- DEFINED
DICTRA_FCC_A1 REJECTED
TDB_TCFE12: sw FEDEMO
 Current database: Iron Demo Database v5.0
                                    /- DEFINED
VA
TDB_FEDEMO: def-system fe,c
C DEFINED
TDB_FEDEMO: rej-ph *
 BCC_A2
CUB_A13
                                    CBCC A12
                                                                      CEMENTITE
                                   DIAMOND_FCC_A4
GRAPHITE
                                                                      FCC_A1
HCP_A3
 GAS:G
 KSI_CARBIDE
M23C6
                                   LAVES_PHASE_C14
                                                                      T-TOUTD: I-
    REJECTED
TDB_FEDEMO: rest-ph fcc
FCC_A1 RESTORED
TDB_FEDEMO: get 12:39:17,090 [Thread-0] INFO JavaWrapper: *** Invoking Gibbs Energy System v6 ***
 REINITIATING GES ....
  ELEMENTS ....
 SPECIES .....
 FUNCTIONS ....
 Use the command LIST REFERENCES to see the list of references for assessed data
  -OK-
TDB_FEDEMO:
TDB_FEDEMO: append user exa4.TDB
Current database: User defined Database
This database does not support the DATABASE_INFORMATION command
TDB_APP: def-system fe,c

TDBFileParser: USER_1068030556_19, number of lines read: 29

12:39:17,603 [Thread-0] INFO DatabaseUtils: Parsing of USER_1068030556_19 completed in 136 ms

TDB_APP: def-system fe,c
                                   C DEFINED
 FE
FCC_A1 REJECTED

TDB_APP: rest-ph fcc
FCC_A1 RESTORED
TDB_APP: get
12:39:17,691 [Thread-0] INFO Database: Preparing system for use: USER_1068030556_19 ELEMENTS .....
 SPECIES .....
 PHASES .....
PARAMETERS ...
FUNCTIONS ...
-OK-
TDB_APP: @@
TDB_APP: 00 GO TO THE DICTRA MODULE AND SET UP THE SYSTEM TDB_APP: 00
TDB_APP: go d-m
12:39:18,738 [Thread-0] INFO StandaloneLicenseController: Checking out license for: Diffusion (DICTRA)
NO TIME STEP DEFINED DIC> DIC> @@
DIC> @@ ENTER GLOBAL CONDITION T
DIC> @@
DIC> set-cond glob T 0 1200; * N
DTC>
DIC> @@
DIC> @@ ENTER THE REGION steel
DIC> @@
DIC> enter-region
```

```
REGION NAME : steel
 DIC>
DIC> @@
DIC> 00 ENTER THE GRID
DIC> 00 CARBON ENTERS THE SYSTEM FROM THE LOWER BOUNDARY AND CONSEQUENTLY
 DIC> @@ MORE POINTS ARE REQUIRED AT THAT BOUNDARY. THIS IS WHY A GEOMETRIC
DIC> @@ GRID IS USED.
DIC> @@
DIC> enter-grid
REGION NAME: /STEEL/: steel
WIDTH OF REGION /1/: 1E-4
TYPE /LINEAR/: AUTO
TYPE /LINEAR/: AUTO
DIC>
DIC> @@
DIC> @@ ENTER THE PHASE INTO THE REGION
DIC> @@
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /STEEL/: steel
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: fcc#l
DIC>
DIC>
 DIC>
DIC> @@
DIC> @@ ENTER THE INITIAL COMPOSITION IN THE FCC PHASE
DIC> @@
DIC> enter-composition
DIC> enter-composition
REGION NAME: /STEEL/: steel
PHASE NAME: /FCC_A1/: fcc#1
COMPOSITION TYPE /MOLE_FRACTION/: mole-fraction
PROFILE FOR /C/: c
TYPE /LINEAR/: linear
VALUE OF FIRST POINT: 0.005
VALUE OF LAST POINT: /SE-3/: 0.005
12:30:10, 172 [Throad-Ol IMPO Phase: Proparing A
 12:39:19,172 [Thread-0] INFO Phase: Preparing phase for use: FCC_A1
DIC>
 DIC> @@
DIC> 00 SET A FIXED COMPOSITION AS THE BOUNDARY VALUE DIC> 00 DIC> set-condition GLOBAL OR BOUNDARY CONDITION /GLOBAL/: boundary
BOUNDARY /LOWER/: lower

CONDITION TYPE /CLOSED_SYSTEM/: state-variable-value

State variable expression #1 : /N=1/: n=1

State variable expression #2 : x(c)=0.03
DIC>
DIC> 00
DIC> 00 SET A SIMULATION TIME
 DIC> @@
 DIC> set-simulation-time
DIC> set-simulation-time
END TIME FOR INTEGRATION /.1/: 100
AUTOMATIC TIMESTEP CONTROL /YES/:
MAX TIMESTEP DURING INTEGRATION /10/:
INITIAL TIMESTEP : /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
 DIC>
DIC>
 DIC>
DIC> save exa4 Y
DIC>
DIC> set-inter
--OK---
```

```
DIC>About
NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exa4\run.DCM DIC>
DIC>
DIC> @@ exa4_run.DCM
DIC>
DIC> @@ FILE FOR RUNNING EXAMPLE a4
DIC> @@
DIC>
DIC> @@
\overline{\text{DIC>}} @@ enter the dictra monitor and read the store result file \overline{\text{DIC>}} @@
  TIME STEP AT TIME 0.00000E+00
DIC> read exa4
 OK
DTC>
DIC> @@
DIC> @@ START THE SIMULATION
DIC> @@
DIC> sim
 Region: STEEL
  geometric 1.25105 dense at 0.00000
DEGREE OF IMPLICITY SET TO TRAPEZOIDAL RULE
                                                    0.00000
                                                                       94 points
 DEGREE OF IMPLICITY SET TO TRAFEZOIDAL ROLE
U-FRACTION IN SYSTEM: C = .0050251256281407 FE = 1
TOTAL SIZE OF SYSTEM: 1E-04 [m]
U-FRACTION IN SYSTEM: C = .0050251256281407 FE = 1
TOTAL SIZE OF SYSTEM: 1E-04 [m]
TIME = 0.100000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.0000000
 U-FRACTION IN SYSTEM: C = .00502617509162927 FE = 1 TOTAL SIZE OF SYSTEM: 1E-04 [m]
 TOTAL SIZE OF SYSTEM: 1E-04 [m]

CPU time used in timestep 0 seconds

TIME = 0.37956667E-05 DT = 0.36956667E-05 SUM OF SQUARES =

U-FRACTION IN SYSTEM: C = .00502708779555048 FE = 1

TOTAL SIZE OF SYSTEM: 1E-04 [m]
 0.0000000
                                                                                            0.0000000
 0.0000000
  CPU time used in timestep 0 seconds
TIME = 0.23292700E-03 DT = 0.11826133E-03 SUM OF SQUARES =
                                                                                            0 0000000
 TOTAL SIZE OF SYSTEM: 1E-04 [m]
 0.0000000
                                                                                            0.0000000
 0.0000000
 0.0000000
 TOTAL SIZE OF SYSTEM: 1E-04 [m]

CPU time used in timestep 0 seconds

TIME = 0.75651297E-02 DT = 0.37843627E-02 SUM OF SQUARES =

U-FRACTION IN SYSTEM: C = .00509924254027779 FE = 1

TOTAL SIZE OF SYSTEM: 1E-04 [m]
                                                                                            0.0000000
 0 0000000
 0.0000000
 0.0000000
                                                                                            0.0000000
 CPU time used in timestep 0 seconds

TIME = 0.48439483 DT = 0.24219921 SUM OF SQUARES =
U-FRACTION IN SYSTEM: C = .00561802316451053 FE = 1

TOTAL SIZE OF SYSTEM: 1E-04 [m]
                                                                                            0.0000000
 TOTAL SIZE OF SYSTEM: 1E-04 [m]

CPU time used in timestep 0 seconds

TIME = 0.96879325 DT = 0.48439842 SUM OF SQUARES =

U-FRACTION IN SYSTEM: C = .00586359475094639 FE = 1

TOTAL SIZE OF SYSTEM: 1E-04 [m]

CPU time used in timestep 0 seconds

TIME = 1.9375901 DT = 0.96879685 SUM OF SQUARES =

U-FRACTION IN SYSTEM: C = .00621077816889617 FE = 1

TOTAL SIZE OF SYSTEM: 1E-04 [m]
                                                                                            0.0000000
                                                                                            0.0000000
 CPU time used in timestep 0 sec

TIME = 3.8751838 DT = 1.9375937 SUM OF SQ

U-FRACTION IN SYSTEM: C = .00670148793819335 FE = 1
                                                            0 seconds
SUM OF SQUARES =
```

```
TOTAL SIZE OF SYSTEM: 1E-04 [m]
 CPU time used in timestep 0 sec

TIME = 7.7503712 DT = 3.8751874 SUM OF SQI

U-FRACTION IN SYSTEM: C = .00739523402893566 FE = 1
                                                                       0 seconds
                                                                   SUM OF SQUARES =
                                                                                               0.0000000
 TOTAL SIZE OF SYSTEM: 1E-04 [m]
 TOTAL SIZE OF SISION: 15 07 1mg

CPU time used in timestep 0 seco

TIME = 15.500746 DT = 7.7503748 SUM OF SQU

U-FRACTION IN SYSTEM: C = .00837631081644418 FE = 1

TOTAL SIZE OF SYSTEM: 1E-04 [m]
                                                                            seconds
                                                               SUM OF SQUARES =
                                                                                              0.0000000
 CPU time used in timestep 1 se

TIME = 25.500746 DT = 10.000000 SUM OF S

U-FRACTION IN SYSTEM: C = .0093213064061285 FE = 1

TOTAL SIZE OF SYSTEM: 1E-04 [m]
                                                                   1 seconds
SUM OF SQUARES =
                                                                                               0.0000000
 0.0000000
 TOTAL SIZE OF SYSTEM: 1E-04 [m]

CPU time used in timestep 0 seconds

TIME = 45.500746 DT = 10.000000 SUM OF SQUARES = U-FRACTION IN SYSTEM: C = .0107609822959055 FE = 1

TOTAL SIZE OF SYSTEM: 1E-04 [m]
                                                                                               0 0000000
 CPU time used in timestep 0 sec

TIME = 55.500746 DT = 10.000000 SUM OF SC

U-FRACTION IN SYSTEM: C = .0113593595275401 FE = 1

TOTAL SIZE OF SYSTEM: 1E-04 [m]
                                                                       0 seconds
                                                                  SUM OF SQUARES =
                                                                                               0.0000000
 TOTAL SIZE OF SYSTEM: 1E-04 [m]

CPU time used in timestep

TIME = 65.500746 DT = 10.000000 SUM OF SQUARES = U-FRACTION IN SYSTEM: C = .0119059374456757 FE = 1

TOTAL SIZE OF SYSTEM: 1E-04 [m]
                                                                                              0.0000000
 TOTAL SIZE OF SYSTEM: IE-04 [m]

CPU time used in timestep 0 se

TIME = 75.500746 DT = 10.000000 SUM OF S

U-FRACTION IN SYSTEM: C = .0124122120385256 FE = 1

TOTAL SIZE OF SYSTEM: 1E-04 [m]
                                                                  0 seconds
SUM OF SQUARES =
                                                                                               0.0000000
 0 0000000
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                  0 0000000
                                                 0.1000000E-06
 DELETING TIME-RECORD FOR TIME
                                                 0.37956667E-05
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                 0.25969667E-04
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                 0.55535000E-04
                                                 0.11466567E-03
 DELETING TIME-RECORD FOR TIME
                                                 0 23292700E-03
 DELETING TIME RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                 0.46944967E-03
                                                 0.94249500E-03
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                 0.18885857E-02
                                                 0.37807670E-02
 DELETING TIME-RECORD FOR TIME
                                                 0 75651297E-02
  DELETING TIME-RECORD FOR TIME
 DELETING TIME-RECORD FOR TIME
                                                 0.30271306E-01
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                 0.60546207E-01
                                                 0.12109601
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                 0 24219562
                                                 0.48439483
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                 0.96879325
                                                  1.9375901
3.8751838
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                   7 7503712
 DELETING TIME-RECORD FOR TIME
                                                   25.500746
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                   35.500746
                                                   45.500746
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                   55.500746
 DELETING TIME-RECORD FOR TIME
                                                   75.500746
 DELETING TIME-RECORD FOR TIME
 KEEPING TIME-RECORD FOR TIME
                                               95 500746
 AND FOR TIME
                                                 100.00000
 WORKSPACE RECLAIMED
 TIMESTEP AT
                        100.000000
                                           SELECTED
DIC> @@
DIC> @@ THE SIMULATION IS FINISHED
DIC> @@
DIC>
DIC> set-inter
  --OK---
DTC>
```

exa4-plot

```
DIC>About
NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exa4\plot.DCM DIC>
DIC>
DIC> @@ exa4_plot.DCM
DIC>
\overline{\text{DIC}}\text{>}\ 00 File for Generating graphical output for example exa4 \overline{\text{DIC}}\text{>}\ 00
DIC>
DIC> @@
\overline{\text{DIC}}\text{>}\ \mbox{@}\ \mbox{@}\ \mbox{G} GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE \overline{\text{DIC}}\text{>}\ \mbox{@}\ \mbox{@}
DIC> go d-m
TIME STEP AT TIME 1.00000E+02
DIC> read exa4
 OK
DIC>
DIC> @@
DIC> @@ GO TO THE POST PROCESSOR
DIC> @@
DIC> post
  POST PROCESSOR VERSION 1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1: @@ PLOT A COMPOSITION PROFILE POST-1: @@
POST-1: s-d-a x distance global
   INFO: Distance is set as independent variable
POST-1: s-d-a y x(c)
POST-1: s-p-c time 25
POST-1: 00
POST-1: 00 ENTER THE ANALYTICAL SOLUTION, CALLED ERFSOL POST-1: 00
Function or table /FUNCTION/: function NAME: erfsol
FUNCTION: 0.03-0.025*erf(gd/sqrt(4*dc(fcc,c,c,fe)*25));
POST-1:
POST-1: @@
POST-1: @@ COMPARE THE ANALYTICAL AND NUMERICAL SOLUTIONS
POST-1: @@
POST-1: enter-symbol
Function or table /FUNCTION/: table
NAME: aaa
Variable(s) x(c) erfsol
POST-1:
POST-1: s-d-a y aaa
COLUMN NUMBER /*/: 1 2
POST-1: set-axis-text
AXIS (X, Y OR Z) : y
AUTOMATIC AXIS TEXT (Y OR N) /N/: n
AXIS TEXT : Mole fraction C
POST-1:
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
POST-1: SET_EXP_FILE_FORMAT 10
POST-1:
POST-1: plot
        0.025
     Mole fraction C
        0.010
        0.005 -
          0.000000
                             0.000020
                                               0.000040
                                                                 0.000060
                                                                                    0.000080
                                                                                                       0.000100
 Distance
POST-1:
POST-1:
POST-1:
POST-1:@?<Hit_return_to_continue>
POST-1: @@
POST-1: @@ PLOT THE DIFFERENCE
POST-1: @@
POST-1: enter func diff=x(c)-erfsol;
POST-1: s-d-a y diff POST-1: s-s-s y n -1e-2 1e-2
POST-1:
```

```
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
POST-1: SET_EXP_FILE_FORMAT 10
POST-1:
POST-1: plot
           0.0080
           0.0060
           0.0040
           0.0020
      0.0000
          -0.0020
          -0.0040
          -0.0060
          -0.0080
          -0.0100
               0.000000
                                    0.000020
                                                          0.000040
                                                                                0.000060
                                                                                                     0.000080
                                                                                                                           0.000100
  Distance
POST-1:
POST-1:
POST-1:
POST-1:@?<Hit_return_to_continue>
POST-1: set-interactive
--OK---
POST-1:
```


Carburization of a binary Fe-0.15 wt% C alloy: A surface reaction controls the flux of C at the surface

A mixture of 40% N2 and 60% cracked methanol is used as carrier gas. The carburizing "carbon potential" in the gas is 0.85 wt%.

$$T = 1173 K$$

exa5-setup

```
Thermo-Calc / DICTRA is software package for calculation of phase diagrams,
 simulation of phase transformation kinetics and much more.
 Copyright Foundation for Computational Thermodynamics,
 Stockholm, Sweden
 Software running on Windows 64-bit wordlength
 Compiler: unknown compiler
License library version: 9.7.0.0036
Linked: Fri Oct 18 11:32:56 2024
SYS:SYS:MACRO exa5\setup.DCM
SYS: i>;@@
NO SUCH COMMAND, USE HELP SYS: @@ One-phase problem.
SYS: 00 Carburization of a binary Fe-0.15 wt% C alloy.
SYS: 00 A mixture of 40% N2 and 60% cracked methanol is used as carrier gas.
SYS: 00 The carburizing "carbon potential" in the gas is 0.85 wt%.
SYS: 00 A surface reaction controls the flux of C at the surface.
 NO SUCH COMMAND, USE HELP
SYS:
SYS: 00 exa5 setup.DCM
SYS: @@
SYS: 00 GO TO THE DATABASES AND READ THE THERMODYNAMIC AND KINETIC DATA
SYS: @@
SYS: go da
12:42:13,056 [Thread-0] INFO LicenseManager: Initializing user: jenkins.integrationtest@thermocalc.se
12:42:13,068 [Thread-0] INFO LicenseController: Running License Spring in DEV environment.
12:42:14,181 [Thread-0] INFO LicenseManager: There is an activated standalone license for jenkins.integrationtest@thermocalc.se for TC-
Application
THERMODYNAMIC DATABASE module
 Database folder:
  C:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples\databases\da
 Current database: Steels/Fe-Alloys v12.0
VA /- DEFINED
DICTRA_FCC_A1 REJECTED
TDB_TCFE12: sw FEDEMO
Current database: Iron Demo Database v5.0
TDB_FEDEMO: def-sys fe,c
TDB_FEDEMO: rej-ph *
                                    CBCC_A12
DIAMOND_FCC_A4
GRAPHITE
 BCC_A2
CUB_A13
                                                                        CEMENTITE
                                                                        FCC_A1
HCP_A3
 GAS:G
                                     LAVES_PHASE_C14
 KSI_CARBIDE
M23C6
   REJECTED
REJECTED
TDB_FEDEMO: rest-ph fcc graphite
FCC_A1 GRAPHITE RESTORED
TDB_FEDEMO: get
12.42:15,265 [Thread-0] INFO JavaWrapper: *** Invoking Gibbs Energy System v6 ***
REINITIATING GES ....
 ELEMENTS .....
  SPECIES ....
  PHASES .....
  PARAMETERS ...
 Use the command LIST_REFERENCES to see the list of references for assessed data
  -OK-
TDB_FEDEMO: @?
TDB_FEDEMO: e?
TDB_FEDEMO: append
Use one of these databases
 TCFE12 = Steels/Fe-Alloys v12.0
TCFE9 = Steels/Fe-Alloys v9.3
SSUB6 = SGTE Substances v6.0
FEDEMO = Iron Demo Database v5.0
MOB2 = Alloys Mobility v2.7
MOBFE2 = Steels/Fe-Alloys Mobility v2.0
MOBFE4 = Steels/Fe-Alloys Mobility v4.0
MOBFE7 = Steels/Fe-Alloys Mobility v7.1
MFEDEMO = Fe-Alloys Mobility demo database v4.0
USER = User defined Database
DATABASE NAME /FEDEMO/: mfedemo
 Current database: Fe-Alloys Mobility demo database v4.0
 VA DEFINED
APP: def-sys fe,c
 FE
                                   C DEFINED
APP: rej-ph *
                                                                      CEMENTITE
                                   FCC A1
 BCC A2
  LIQUID:L REJECTED
APP: rest-ph fcc
FCC_A1 RESTORED
APP: get
  ELEMENTS ....
 SPECIES .....
 PHASES
  PHASES ......
PARAMETERS ...
 FUNCTIONS ....
 Use the command LIST_REFERENCES to see the list of references for assessed data
 -OK-
APP: @?
APP: @@
APP: @@ GO TO THE DICTRA MONITOR TO SET UP THE INITIAL STATE OF THE SPECIMEN
APP: go d-m
```

```
12:42:15.814 [Thread-0] INFO StandaloneLicenseController: Checking out license for: Diffusion (DICTRA)
 NO TIME STEP DEFINED

*** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE
DIC>
DIC> set-cond glob T 0 1173; * N
DTC>
DIC> @@
\ensuremath{\mathsf{DIC}}\xspace @@ Select a reference state for the C activity \ensuremath{\mathsf{DIC}}\xspace @@
DIC> set-ref-state
Component: c
Reference state: graph
Temperature /*/: *
Pressure /100000/: 1e5
DIC>
DIC> @@ ENTER A REGION, GRID, PHASE AND COMPOSITION
DIC> @@
DIC> enter-region
REGION NAME : steel
DIC>
DIC> enter-grid
REGION NAME : /STEEL/: steel
WIDTH OF REGION /1/: 3E-3
TYPE /LINEAR/: AUTO
DIC>
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /STEEL/: steel
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: fcc#1
DTC>
DIC> enter-composition
PREGION NAME: /STEEL/: steel
PHASE NAME: /FCC_A1/: fcc#1
COMPOSITION TYPE /MOLE_FRACTION/: w-p
PROFILE FOR /C/: c
TYPE /LINEAR/: lin
VALUE OF FIRST POINT : 0.15
VALUE OF LAST POINT : /0.15/: 0.15
DIC>
DIC> @@
DIC> 00 NOW SET THE BOUNDARY CONDITIONS. WE ARE ONLY INTERESTED IN THE DIC> 00 SURFACE REGION, FOR EXAMPLE IT IS SUFFICIENT TO SET CONDITIONS AT THE
DIC> @@ LOWER BOUNDARY.
DIC> @@
DIC>
DIC> @@
DIC> @@ Specify the activity flux function which controls the uptake of C.
DIC> @@
DIC> 00 The functions f and g and the parameter N has to be specified. DIC> 00 k k k
DIC> @@
DIC> @@ J V = f (variables)*(ACTIVITY -g (variables))
DIC> @@ k m k k k
DIC> @@
DIC> @@
DIC> 00
DIC> 00 f and g in equation 1 is the mass-transfer coefficient and
DIC> 00 k k
DIC> 00 the activity of k in the gas, respectively. ACTIVITY in eq. 1 means
DIC> 00 the actual activity of species k at the surface.
DIC> @@
DIC>
DIC> @@
DIC> @@ The main carburizing reaction for our atmosphere is:
DIC> @@
DIC> @@
DIC> @@ CO + H -> C + H O
DIC> @@ 2 <- - 2
DIC> @@
DIC> @@
DIC> @@ Following Sproge and A...gren (J. Heat Treating, v6, no 1, 1988 pp. 9-19)
DIC> 00 we calculate the mass-transfer coefficient for carbon, f in DIC> 00 eq. 1 above by means of eq. 3, 4 and 12 in Sproge and Ã...gren's paper.
DIC> @@
DIC> @@
DIC> @@
                     DIC> @@
           f = -----/ gamma
DIC> @@
              a + B * K * P * sqrt(P)
C I CO H
DIC> @@
DIC> @@
DIC> @@
\mbox{DIC>} 00 K is the equilibrium constant for reaction (I)
DTC> @@ T
DIC> @@
DIC> 00 A and B are constants defined in Sproge and \tilde{A}...gren's paper. gamma DIC> 00 is the activity coefficient for carbon in the steel.
DIC> @@
DIC> 00 Assume a constant value for P * sqrt(P
                                                                        ) = 0.14
DIC> @@
DIC> @@
DIC> @@ The carbon activity in the gas is controlled by the partial
	t DIC> @@ pressure of water as can be understood from reaction (I).
DIC> @@
DIC> @@ Assume that the carbon activity, a of the gas is 0.64 DIC> @@ $\rm C$
\overline{\text{DIC}} (0 which corresponds to a carburizing "carbon potential" of 0.85 wt%. \overline{\text{DIC}} (0
DIC> @@ In this way we may calculate f to 8.25E-9 mol/s.
DIC> @@
DIC>
DIC> set-cond
GLOBAL OR BOUNDARY CONDITION /GLOBAL/: bound
BOUNDARY /LOWER/: lower
CONDITION TYPE /CLOSED_SYSTEM/: activity_flux_function
 ENTER THE EXPRESSION AS:
  J V = f (variables) * (ACTIVITY -g (variables))
k k k
 k m k
FLUX OF FCC A1,C
```

```
LOW TIME LIMIT /0/: 0

f(T,P,TIME)= -8.25E-9;
HIGH TIME LIMIT /*/: *
ANY MORE RANGES /N/: N
N /1/: 1
LOW TIME LIMIT /0/: 0
g(T,P,TIME)= 0.64;
HIGH TIME LIMIT /*/: *
ANY MORE RANGES /N/: N
DIC>
DIC> @@
DIC> @@ SPECIFY A SIMULATION TIME
DIC> @@
DIC> set-simulation-time
END TIME FOR INTEGRATION /.1/: 18000
AUTOMATIC TIMESTEP CONTROL /YES/:
MAX TIMESTEP DURING INTEGRATION /1800/:
INITIAL TIMESTEP : /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DIC> @@
DIC> @@
DIC> @@
DIC> @@
DIC> @@
DIC> SAVE THE SET UP TO FILE
DIC> @@
DIC> Save exa5 Y
DIC>
DIC> set-inter
--OK---
DIC>
```

```
NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exa5\run.DCM DIC>
DIC>
DIC> @@ exa5_run.DCM
DIC>
DIC> @@ FILE FOR RUNNING EXAMPLE a5
DIC> @@
DIC>
DIC> @@
DIC> @@ ENTER THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
 TIME STEP AT TIME 0.00000E+00
*** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE DIC> read exa5
 OK
DIC> 00
DIC> 00 Start the simulation
DIC> @@
DIC> sim
 Region: STEEL
 geometric 1.27936 dense at 0.00000 95
DEGREE OF IMPLICITY SET TO TRAPEZOIDAL RULE
U-FRACTION IN SYSTEM: C = .00698495916383109 FE = 1
TOTAL SIZE OF SYSTEM: .003 [m]
U-FRACTION IN SYSTEM: C = .00698495916383109 FE = 1
TOTAL SIZE OF SYSTEM: .003 [m]
 TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.0000000
 0 0000000
 0.0000000
 CPU time used in timestep 0 seconds
TIME = 0.66703643E-02 DT = 0.38115796E-02 SUM OF SQUARES =
U-FRACTION IN SYSTEM: C = .00698496930531781 FE = 1
TOTAL SIZE OF SYSTEM: .003 [m]
CPU time used in timestep 1 seconds
TIME = 0.14293524E-01 DT = 0.76231592E-02 SUM OF SQUARES =
                                                                                0.0000000
                                                                               0.0000000
 U-FRACTION IN SYSTEM: C = .00698498087073359 FE = 1
TOTAL SIZE OF SYSTEM: .003 [m]
 0.0000000
 0 seconds
0.60985274E-01 SUM OF SQUARES =
                                                                                0.0000000
 0 0000000
 0 seconds
SUM OF SQUARES =
                                                                               0.0000000
 CPU time used in timestep 1 seconds
TIME = 1.9505760 DT = 0.97576438 SUM OF SQUARES =
U-FRACTION IN SYSTEM: C = .00698781256430923 FE = 1
                                                                               0.0000000
 U-FRACTION IN SYSTEM: C = .00698781256430923 FE = 1 TOTAL SIZE OF SYSTEM: .003 [m]

CPU time used in timestep

TIME = 3.9021047 DT = 1.9515288 SUM OF SQ
U-FRACTION IN SYSTEM: C = .00699057318697584 FE = 1
TOTAL SIZE OF SYSTEM: .003 [m]
                                                        0 seconds
SUM OF SQUARES =
                                                                                0.0000000
 CPU time used in timestep 1 seconomic TIME = 7.8051623 DT = 3.9030575 SUM OF SQU U-FRACTION IN SYSTEM: C = .00699593118623284 FE = 1 TOTAL SIZE OF SYSTEM: .003 [m]
                                                       SUM OF SQUARES =
 0.0000000
 SUM OF SQUARES =
                                                                                0.0000000
 0.0000000
 TOTAL SIZE OF SYSTEM: .003 [m]

CPU time used in timestep 1 seconds

TIME = 249.79473 DT = 124.89784 SUM OF SQUARES = U-FRACTION IN SYSTEM: C = .00723942185480152 FE = 1

TOTAL SIZE OF SYSTEM: .003 [m]
                                                                                0.0000000
 0.0000000
 CPU time used in timestep
TIME = 999.18178 DT = 499.59136
                                                    SUM OF SQUARES = 0.0000000
```

```
U-FRACTION IN SYSTEM: C = .00773776331980571 FE = 1 TOTAL SIZE OF SYSTEM: .003 [m]
TOTAL SIZE OF SYSTEM: .003 [m]

CPU time used in timestep

TIME = 1998.3645 DT = 999.18273 SUM OF SQ

U-FRACTION IN SYSTEM: C = .00821761065515563 FE = 1

TOTAL SIZE OF SYSTEM: .003 [m]
                                                                  SUM OF SOUARES =
                                                                                              0.0000000
1 seconds
                                                                  SUM OF SQUARES =
                                                                                              0.0000000
 CPU time used in timestep 0 seconds TIME = 5598.3645 DT = 1800.0000 SUM OF SQUARES = U-FRACTION IN SYSTEM: C = .00940738002428763 FE = 1
                                                                                              0.0000000
 TOTAL SIZE OF SYSTEM:
                                   .003 [m]
1 seconds
SUM OF SQUARES =
                                                                                              0.0000000
0.0000000
 CPU time used in timestep 1 seconds
TIME = 10998.365 DT = 1800.0000 SUM OF SQUARES =
U-FRACTION IN SYSTEM: C = .0106420492512965 FE = 1
                                                                                              0 0000000
 TOTAL SIZE OF SYSTEM: .003 [m]
CPU time used in timestep 1 sec

TIME = 12798.365 DT = 1800.0000 SUM OF SC

U-FRACTION IN SYSTEM: C = .0109853092783316 FE = 1

TOTAL SIZE OF SYSTEM: .003 [m]
                                                                 SUM OF SQUARES =
                                                                                              0.0000000
 CPU time used in timestep 0 seconds

TIME = 14598.365 DT = 1800.0000 SUM OF SQUARES = U-FRACTION IN SYSTEM: C = .0113061900988817 FE = 1
                                                                                             0.0000000
 TOTAL SIZE OF SYSTEM:
                                   .003 [m]
TOTAL SIZE OF SYSTEM: .003 [m]

CPU time used in timestep 1 se

TIME = 16398.365 DT = 1800.0000 SUM OF S

U-FRACTION IN SYSTEM: C = .0116085766431791 FE = 1

TOTAL SIZE OF SYSTEM: .003 [m]
                                                                  1 seconds
SUM OF SQUARES =
                                                                                              0.0000000
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                  0.0000000
                                                 0.1000000E-06
                                                 0.95299491E-03
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                 0.28587847E-02
                                                 0.66703643E-02
 DELETING TIME-RECORD FOR TIME
                                                 0.14293524E-01
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                 0.60032479E-01
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                 0.12101775
 DELETING TIME-RECORD FOR TIME
                                                 0 48692940
 DELETING TIME RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                  1.9505760
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                  3.9021047
                                                  7.8051623
 DELETING TIME-RECORD FOR TIME
                                                  15 611277
 DELETING TIME-RECORD FOR TIME
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                  62.447968
                                                  124.89689
                                                  249.79473
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                  499 59041
 DELETING TIME-RECORD FOR TIME
                                                  1998.3645
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                  3798 3645
                                                  5598.3645
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                  7398 3645
                                                  9198.3645
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                  10998.365
                                                  12798.365
                                                  14598.365
 KEEPING TIME-RECORD FOR TIME
                                                16398.365
 AND FOR TIME
                                                18000.000
 WORKSPACE RECLAIMED
TIMESTEP AT
                       18000.0000
                                           SELECTED
DIC>
DIC> set-inter
```

--OK---

exa5-plot

```
DIC>About
NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exa5\plot.DCM DIC>
DIC>
DIC> @@ exa5_plot.DCM
DIC>
\overline{\text{DIC}}\text{>}\ \mbox{00} file for Generating graphical output for example a5 \overline{\text{DIC}}\text{>}\ \mbox{00}
DIC>
DIC> @@
\overline{\text{DIC}}\text{>}\ \mbox{@}\ \mbox{@}\ \mbox{G} GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE \overline{\text{DIC}}\text{>}\ \mbox{@}\ \mbox{@}
DIC> go d-m
TIME STEP AT TIME 1.80000E+04

*** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE
DIC> read exa5
DIC>
DIC> 00
DIC> 00 ENTER THE POST PROCESSOR
DIC> @@
DIC> post
  POST PROCESSOR VERSION 1.7
Implemented by Bjorn Jonsson
POST-1: @@
POST-1: 00 PLOT SOME DIFFERENT CONCENTRATION PROFILES POST-1: 00
POST-1: s-d-a x dist glo
INFO: Distance is set as independent variable POST-1: s-d-a y w-p c POST-1: s-p-c time 100 1000 5000 18000
POST-1:
POST-1:
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
POST-1: SET_EXP_FILE_FORMAT 10
         0.8
         0.7
         0.6
      Mass percent C
         0.5
         0.4
         0.3
         0.2
         0.1
           0.0000
                            0.0005
                                              0.0010
                                                               0.0015
                                                                                 0.0020
                                                                                                   0.0025
                                                                                                                     0.0030
                                                              Distance
POST-1:
POST-1:
POST-1:
POST-1:@?<Hit_return_to_continue>
POST-1:
POST-1: @@
POST-1: @@ PLOT THE VARIATION OF THE C ACTIVITY AT THE SURFACE
POST-1: @@
POST-1: s-d-a y acr(c)
POST-1:
POST-1: s-d-a x time
   INFO: Time is set as independent variable
POST-1:
POST-1: s-p-c
CONDITION /TIME/: interface
INTERFACE : first
POST-1:
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5

POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y

OST-1: SET_EXP_FILE_FORMAT 10
POST-1:
POST-1: plot
```

```
0.6
           0.5
           0.4
      ACR(C)
           0.2
           0.1
                          2000
                                       4000
                                                    6000
                                                                 8000
                                                                             10000
                                                                                           12000
                                                                                                       14000
                                                                                                                     16000
                                                                                                                                  18000
                                                                       Time
 POST-1:
POST-1:
POST-1:
POST-1:@?<Hit_return_to_continue>
POST-1: @@
rOST-1: 00
POST-1: 00
USE A LOGARITHMIC SCALE ON THE X-AXIS
POST-1: 00
POST-1: set-axis-type
AXIS (X, Y OR Z) : x
AXIS TYPE /LINEAR/: logarithmic
POST-1:
POST-1: s-s-s x n 0.001 2e4
POST-1:
POST-1:
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
POST-1: SET_EXP_FILE_FORMAT 10
           0.6
           0.5
           0.4
      ACR(C)
           0.2
           0.1
                            10-2
                                           10-1
                                                          10º
                                                                         10¹
                                                                                        10<sup>2</sup>
                                                                                                       10<sup>3</sup>
                                                                                                                     104
                                                                                                                                    105
                                                                       Time
 POST-1:
POST-1:
POST-1:
POST-1:
POST-1:@?<Hit_return_to_continue>
POST-1:
POST-1: @@
POST-1: @@ PLOT THE AVERAGE WEIGHT FRACTION OF C IN THE SPECIMEN
POST-1: @@
POST-1: s-d-a y iww(c)
POST-1:
POST-1: set-ax-ty
AXIS (X, Y OR Z) : x
AXIS TYPE /LINEAR/: linear
POST-1:
POST-1:
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
OST-1: SET_EXP_FILE_FORMAT 10
```


POST-1:
POST-1:
POST-1:
POST-1:@?<Hit_return_to_continue>
POST-1:
POST-1:
POST-1:
POST-1: set-inter
--OK--POST-1:

Diffusion through a tube wall: Boundary conditions result in a gradient in C-activity

A simple example of diffusion through a tube wall. The tube-material is an Fe-0.6%Mn-0.7%Si-0.05%C alloy. On the inside wall a carbon activity of 0.9 is maintained whereas on the outside the Cactivity is very low. This example demonstrates the use of the command SET-FIRST-INTERFACE as well as the use of MIXED boundary conditions.

exa6-setup

```
Thermo-Calc / DICTRA is software package for calculation of phase diagrams, simulation of phase transformation kinetics and much more.
  Copyright Foundation for Computational Thermodynamics,
  Stockholm, Sweden
  Software running on Windows 64-bit wordlength
  Compiler: unknown compiler
License library version: 9.7.0.0036
Linked: Fri Oct 18 11:32:56 2024
SYS:SYS:MACRO exa6\setup.DCM
SYS: @@
SYS: @@ One-phase problem.
SYS: @@ Diffusion through a tube wall.
           00 A simple example about diffusion through a tube wall.
SYS: 00 The tube material is an Fe-0.6%Mn-0.7%Si-0.05%C alloy. On
SYS: 00 the inside wall a carbon activity of 0.9 is maintained whereas on SYS: 00 the outside the C-activity is very low. This example demonstrates SYS: 00 the use of the command SET-FIRST-INTERFACE as well as the MIXED
SYS: 00 boundary conditions.
  NO SUCH COMMAND, USE HELP
SYS:
SYS: 00 setup.DCM
SYS:
SYS: @@ GO TO THE DATABASE MODULE
SYS: @@
SYS: go da
12:45:24,234 [Thread-0] INFO LicenseManager: Initializing user: jenkins.integrationtest@thermocalc.se
12:45:24,246 [Thread-0] INFO LicenseController: Running License Spring in DEV environment.
12:45:25,315 [Thread-0] INFO LicenseManager: There is an activated standalone license for jenkins.integrationtest@thermocalc.se for TC-
Application
   THERMODYNAMIC DATABASE module
  Database folder:
  {\tt C:\jenkins\workspace\dev\_pipeline\generate\_dictra\_console\_examples\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\data
  Current database: Steels/Fe-Alloys v12.0
... /- DEFINED DICTRA_FCC_A1 REJECTED TDB_TCEF12:
TDB_TCFE12: @@
TDB_TCFE12: 00 USE THE TCFE DATABASE FOR THERMODYNAMIC DATA TDB_TCFE12: 00
TDB TCFE12: sw tcfe9
  Current database: Steels/Fe-Alloys v9.3
                                                            /- DEFINED
                                                           B2_BCC
                                                                                                                    DICTRA FCC A1
      REJECTED
TDB_TCFE9: def-sys fe si mn c
                                                                                                                    MN
  FE
  C DEFINED
TDB_TCFE9: rej ph * all
  GAS:G
FCC_A1
CUB_A13
                                                           LIQUID:L
                                                                                                                    BCC_A2
CBCC_A12
                                                            HCP_A3
                                                            DIAMOND_FCC_A4
                                                                                                                     GRAPHITE
                                                           DIAMOND_FCC_A4
M23C6
KSI_CARBIDE
LAVES_PHASE_C14
MN11ST19
   CEMENTITE
                                                                                                                     FE4N LP1
  M5C2
   FECN CHI
                                                                                                                     мзет
  MN9SI2
                                                                                                                     MN6SI
  G PHASE
                                                           CR3ST
                                                                                                                     FE2SI
                                                                                                                     FE8SI2C
  M5SI3
                                                            AL4C3
                                                            MN5STC
                                                                                                                   CUZN_EPSILON
M2P_C22
  AL5FE4
                                                           MP B31
      REJECTED
TDB_TCFE9: res ph fcc,grap
                                                          GRAPHITE RESTORED
  FCC
           A1
TDB_TCFE9: get
12:45:26,778 [Thread-0] INFO JavaWrapper: *** Invoking Gibbs Energy System v6 ***
   REINITIATING GES .....
  ELEMENTS .....
   SPECIES ....
  PARAMETERS ...
   FUNCTIONS ....
  Use the command LIST_REFERENCES to see the list of references for assessed data
   -OK-
TDB_TCFE9:
TDB_TCFE9: 00

TDB_TCFE9: 00 SWITCH TO A MOBILITY DATABASE TO RETRIVE KINETIC DATA
TDB_TCFE9: @@
TDB TCFE9: app
  Use one of these databases
 TCFE12 = Steels/Fe-Alloys v12.0
TCFE9 = Steels/Fe-Alloys v9.3
SSUB6 = SGTE Substances v6.0
FEDEMO = Iron Demo Database v5.0
MOB2 = Alloys Mobility v2.7
MOBFE2 = Steels/Fe-Alloys Mobility v2.0
MOBFE4 = Steels/Fe-Alloys Mobility v4.0
MOBFE7 = Steels/Fe-Alloys Mobility v7.1
MFEDEMO = Fe-Alloys Mobility demo database v4.0
USER = User defined Database
DATABASE NAME /TCFE9/: mobfe4
  Current database: Steels/Fe-Alloys Mobility v4.0
   VA DEFINED
B2_BCC REJECTED

APP: def-sys fe si mn c
```

```
MN
 FE
C DEFINED

APP: rej ph * all
 BCC_A2
FE4N_LP1
                                                                        FCC_A1
LIQUID:L
                                    CEMENTITE
                                    HCP A3
    REJECTED
APP: res ph fcc
FCC_A1 RESTORED
APP: get
 ELEMENTS .....
 SPECIES .....
  PARAMETERS ..
 FUNCTIONS ....
 Use the command LIST_REFERENCES to see the list of references for assessed data
 -0K-
APP:
APP: @@
APP: @@ ENTER THE DICTRA MONITOR WHERE THE PROBLEM IS SET UP
APP: @@
APP: go d-m
12:45:28,732 [Thread-0] INFO StandaloneLicenseController: Checking out license for: Diffusion (DICTRA)
NO TIME STEP DEFINED
*** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE
DIC>
DIC> @@
DIC> @@ ENTER GLOBAL CONDITION T
DIC> @@
DIC> set-cond glob T 0 1273; * N
DIC>
DIC> @@
DIC> \stackrel{\textstyle \circ}{\text{\tiny Q}}{\text{\tiny Q}} SET THE REFERENCE STATE FOR CARBON DIC> \stackrel{\textstyle \circ}{\text{\tiny Q}}{\text{\tiny Q}}
DIC> set-ref C grap * 101325
DIC> @@
DIC> @@ ENTER A REGION
DIC> @@
DIC> enter-region aus
DIC> @@
DIC> 00 ENTER A DOUBLE GEOMETRIC GRID INTO THE REGION
DIC> 00
DIC> enter-grid
REGION NAME : /AUS/: aus
WIDTH OF REGION /1/: 1e-2
TYPE /LINEAR/: AUTO
DIC>
DIC> @@
DIC> @@ SET THE GEOMETRY (1 = CYLINDER)
DIC> @@
DIC> enter-geo
GEOMETRICAL EXPONENT /0/: 1
DIC>
DIC> @@ SET THE FIRST INTERFACE => TUBE
DIC> @@
DIC> set-first-interface
COORDINATE FOR FIRST INTERFACE /0/: 2e-2
DIC> @@
DIC> 00 ENTER AN active PHASE IN THE REGION DIC> 00 DIC> 00 DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: act REGION NAME : /AUS/: aus PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: fcc_a1#1
DTC>
DIC> @@
DIC> 00 ENTER INITIAL COMPOSITIONS INTO THE PHASE DIC> 00
DIC> enter-composition
REGION NAME : /AUS/: aus
PHASE NAME: /FCC_A1/: fcc#1
DEPENDENT COMPONENT ? /SI/: fe
COMPOSITION TYPE /MOLE FRACTION/: w-p
PROFILE FOR /C/: si lin 0.7 0.7
PROFILE FOR /MN/: mn lin 0.6 0.6
PROFILE FOR /SI/: c lin 5e-2 5e-2
DIC>
DIC> @@
DIC> 00 SET THE BOUNDARY CONDITIONS ON BOTH THE LOWER AND UPPER PART OF THE REGION
DIC> @@
DIC> @@ USE MIXED CONDITIONS: AN ACTIVITY CONDITION FOR C AND CLOSED
DIC> @@ SYSTEMS FOR MN AND SI.
DIC> @@
DIC> set-cond
GLOBAL OR BOUNDARY CONDITION /GLOBAL/: boundary
BOUNDARY /LOWER/: lower
CONDITION TYPE /CLOSED_SYSTEM/: mixed Dependent substitutional element:FE
Dependent interstitial element: VA
TYPE OF CONDITION FOR COMPONENT C /ZERO_FLUX/: activity LOW TIME LIMIT /0/: 0
ACR(C)(TIME) = 0.9;
HIGH TIME LIMIT /*/: *
ANY MORE RANGES /N/: N
TYPE OF CONDITION FOR COMPONENT MM /ZERO_FLUX/: zero_flux
TYPE OF CONDITION FOR COMPONENT SI /ZERO_FLUX/: zero_flux
DIC>
DIC> set-cond
GLOBAL OR BOUNDARY CONDITION /GLOBAL/: boundary
BOUNDARY /UPPER/: upper
CONDITION TYPE /CLOSED_SYSTEM/: mixed Dependent substitutional element:FE
Dependent interstitial element:VA

TYPE OF CONDITION FOR COMPONENT C /ZERO_FLUX/: activity
LOW TIME LIMIT /0/: 0
```

```
ACR(C)(TIME) = 1e-5;
HIGH TIME LIMIT /*/: *
ANY MORE RANGES /N/: N
TYPE OF CONDITION FOR COMPONENT MN /ZERO_FLUX/: zero_flux
TYPE OF CONDITION FOR COMPONENT SI /ZERO_FLUX/: zero_flux
DIC>
DIC> @@
DIC> @@
DIC> @@ DIC> set-simulation-time
END TIME FOR INTEGRATION /.1/: 1e9
AUTOMATIC TIMESTEP CONTROL /YES/:
MAX TIMESTEP DURING INTEGRATION /100000000/:
INITIAL TIMESTEP : /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DIC>
DIC>
DIC> @@
DIC> @@
DIC> @@
DIC> @@
DIC> @@
DIC> save exa6 y
DIC>
DIC> set-inter
--OK---
DIC>
```

```
NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exa6\run.DCM DIC>
DIC>
DIC> @@ run.DCM
DIC>
DIC> @@ FILE FOR RUNNING exa6
DIC> @@
DIC>
DIC> @@
DIC> @@ ENTER THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
TIME STEP AT TIME 0.00000E+00
*** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE
DIC> read exa6
DTC> @@
DIC> @@ Start the simulation
DIC> 00
DIC> simulate
 geometric 1.2/60-2 6.783674
                            dense at 0.00000 60 points dense at 0.100000E-01 61 points
.00314139263339 [m 2]
C = .00115488575879621 FE = .490055682684517
MN = .00302988813183617 SI = .00691442924890043
TOTAL SIZE OF SYSTEM: .00314159265359 [m^2]

TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.000000

U-FRACTION IN SYSTEM: C = .00115512673207609 FE = .490055682684517

MN = .00302988813183617 SI = .00691442924890043
                           .00314159265359 [m^2]
 TOTAL SIZE OF SYSTEM:
 U-FRACTION IN SYSTEM: C = .00115539046454592 FE = .490055682684517
MN = .00302988813183617 SI = .00691442924890043
                           .00314159265359 [m^2]
 TOTAL SIZE OF SYSTEM:
 U-FRACTION IN SYSTEM: C = .00115567510064984 FE = .490055682684517
MN = .00302988813183617 SI = .00691442924890043
                           .00314159265359 [m^2]
 TOTAL SIZE OF SYSTEM:
 CPU time used in timestep 0 seconds
TIME = 0.39804807E-02 DT = 0.22745033E-02 SUM OF SQUARES =
U-FRACTION IN SYSTEM: C = .0011560487094729 FE = .490055682684517

MN = .00302988813183617 SI = .00691442924890043

TOTAL SIZE OF SYSTEM: .00314159265359 [m^2]
                           .00314159265359 [m^2]
 CPU time used in timestep 0 seconds
TIME = 0.85294872E-02 DT = 0.45490065E-02 SUM OF SQUARES =
U-FRACTION IN SYSTEM: C = .00115727073516779 FE = .490055682684517

MN = .00302988813183617 SI = .00691442924890043

TOTAL SIZE OF SYSTEM: .00314159265359 [m^2]
                           .00314159265359 [m^2]
MN = .003029888131656...
.00314159265359 [m^2]
0 seconds
 TOTAL SIZE OF SYSTEM.
0.0000000
                          MN = .0030298881310001.
.00314159265359 [m^2]

1 seconds
 TOTAL SIZE OF SYSTEM:
 CPU time used in timestep 1 seconds
TIME = 1.1639771 DT = 0.58227283 SUM OF SQUARES = 0.000001
U-FRACTION IN SYSTEM: C = .00117407951438293 FE = .490055682684517
MN = .00302988813183616 SI = .0069144292489005
                                                                       0.0000000
                          TOTAL SIZE OF SYSTEM:
CPU time used in timestep 0 seconds

TIME = 2.3285228 DT = 1.1645457 SUM OF SQUARES = 0.000001

U-FRACTION IN SYSTEM: C = .0011820305728604 FE = .490055682684517

MN = .00302988813183615 SI = .0069144292489006
                                                                       0.0000000
 TOTAL SIZE OF SYSTEM:
                           .00314159265359 [m^2]
 CPU time used in timestep 0 seconds
TIME = 4.6576141 DT = 2.3290913 SUM OF SQUARES = 0.0000001
U-FRACTION IN SYSTEM: C = .00119327652565352 FE = .490055682684517
MN = .00302988813183613 SI = .00691442924890082
                                                                       0.0000000
                          MN = .0030298881510001 .00314159265359 [m^2] 0
 TOTAL SIZE OF SYSTEM:
 0.0000000
                          MN = .0030298881510000 .00314159265359 [m^2] 0
 0.0000000
```

```
TOTAL SIZE OF SYSTEM:
                                 .00314159265359 [m^2]
TOTAL SIZE OF SYSTEM: .UU314159205357 [m 2]

CPU time used in timestep 1 seconds

TIME = 37.264893 DT = 18.632731 SUM OF SQUARES = 0.0000

U-FRACTION IN SYSTEM: C = .0012635303688526 FE = .490055682684514

MN = .0030298881318358 SI = .0069144292489041

TOTAL SIZE OF SYSTEM: .00314159265359 [m^2]
 MN =
TOTAL SIZE OF SYSTEM: .003
CPU time vac.
CPU time used in timestep 0 seconds

TIME = 149.06128 DT = 74.530923 SUM OF SQUARES = 0.000

U-FRACTION IN SYSTEM: C = .00137237416492751 FE = .490055682684503
output ignored...
... output resumed
TIME = 4510975.0 DT = 2068745.7 SUM OF SQUARES = 0.000000 U-FRACTION IN SYSTEM: C = .016525523457144 FE = .490055682687858 MN = .00302988813213476 SI = .00691442924526043 TOTAL SIZE OF SYSTEM: .00314159265359 [m^2]
                                                                                        0.0000000
TOTAL SIZE OF SISTEM: .0U314159265359 [m 2]

CPU time used in timestep 1 seconds

TIME = 7984253.8 DT = 3473278.8 SUM OF SQUARES = 0.000000

U-FRACTION IN SYSTEM: C = .0165254508590697 FE = .490055682692971

MN = .00302988813259319 SI = .00691442923968928

TOTAL SIZE OF SYSTEM: .00314159265359 [m^2]
                                                                                         0.0000000
0.0000000
TOTAL SIZE OF SISTEM: .0U314159263539 [m 2]

CPU time used in timestep 0 seconds

TIME = 27099609. DT = 12743570. SUM OF SQUARES = 0.000000

U-FRACTION IN SYSTEM: C = .0165248326666943 FE = .490055682744166

MN = .00302988813721716 SI = .00691442918387045

TOTAL SIZE OF SYSTEM: .00314159265359 [m^2]
                                                                                         0.0000000
0 0000000
 CPU time used in timestep
TIME = 0.10356103E+09 DT = 50974280.
                                                                  Ο
                                                         SUM OF SQUARES =
                                                                                         0 0000000
U-FRACTION IN SYSTEM: C = .0165244338589318 FE = .490055683043849
MN = .00302988816787848 SI = .00691442885352646
0.0000000
 MN = .00302700021000032
TOTAL SIZE OF SYSTEM: .00314159265359 [m^2]
0 0000000
 MN = .00304200002000....

TOTAL SIZE OF SYSTEM: .00314159265359 [m^2]

0 seconds
0.0000000
 TOTAL SIZE OF SYSTEM: .00314159265359 [m^2]
0.0000000
                                TOTAL SIZE OF SYSTEM.
0.0000000
 TOTAL SIZE OF SYSTEM: .00314159265359 [m^2]
TIME = 0.70356103E+09 DT = 0.10000000E+09 SUM OF SQUARES = 0.000000 U-FRACTION IN SYSTEM: C = .0165415123631262 FE = .490055684606355 MN = .00302988837829336 SI = .00691442708060457
                                                                                        0.0000000
 MN = .UU3UZ9000370Z3333
TOTAL SIZE OF SYSTEM: .00314159265359 [m^2]
0.0000000
 TOTAL SIZE OF SYSTEM: .00314159265359 [m^2]
0.0000000
                                 MN = .00302988843000001
.00314159265359 [m^2]
 TOTAL SIZE OF SYSTEM:
CPU time used in timestep
TIME = 0.99821067E+09 DT = 94649637.
U-FRACTION IN SYSTEM: C = .0165491221039358
MN = .003029888453971:
TOTAL SIZE OF SYSTEM: .00314159265359 [m^2]
                                       1 seconus
94649637. SUM OF SQUARES = 0.000000
.0165491221039358 FE = .490055685119269
.00302988845397132 SI = .00691442649201306
                                                                                        0.0000000
                                 MN = .00302988845557152 .00314159265359 [m^2] 0
CPU time used in timestep 0 seconds

TIME = 0.10000000E+10 DT = 1789334.3 SUM OF SQUARES = 0.00000

U-FRACTION IN SYSTEM: C = .0165517598390004 FE = .490055685122132

MN = .0030298884543974 SI = .00691442648872354
                                                                                        0.0000000
 TOTAL SIZE OF SYSTEM:
                                  .00314159265359 [m^2]
MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-PECORD
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                               0.0000000
                                             0.1000000E-06
 DELETING TIME-RECORD FOR TIME
                                             0.56872581E-03
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                             0.17059774E-02
                                             0.39804807E-02
 DELETING TIME-RECORD FOR TIME
                                             0.85294872E-02
 DELETING TIME-RECORD FOR TIME
                                             0.17627500E-01
 DELETING TIME-RECORD FOR TIME
                                             0.35823526E-01
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                             0.72215578E-01
0.14499968
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                             0.29056789
```

```
DELETING TIME-RECORD FOR TIME
                                                                     1.1639771
  DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                    2.3285228
  DELETING TIME-RECORD FOR TIME
                                                                     9.3157968
  DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                     37.264893
  DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                     74.530354
149.06128
  DELETING TIME-RECORD FOR TIME
                                                                     298.12312
                                                                    1192.4942
2384.9890
4769.9785
9539.9575
19079.916
  DELETING TIME-RECORD FOR TIME
                                                                     38159.832
76319.664
152639.33
  DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                     305278.66
610557.32
  DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                     1221114.6
                                                                     2442229.3
4510975.0
  DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                                     7984253.8
  DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                     27099609.
                                                                   52586749.
0.10356103E+09
  DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                  0.20356103E+09
0.30356103E+09
  DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                   0.40356103E+09
                                                                  0.50356103E+09
0.60356103E+09
  DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                  0.70356103E+09
0.80356103E+09
  DELETING TIME-RECORD FOR TIME
                                                                 0.90356103E+09
  KEEPING TIME-RECORD FOR TIME
                                                               0.99821067E+09
  AND FOR TIME
WORKSPACE RECLAIMED
                                                                0.10000000E+10
  TIMESTEP AT 0.10000000E+10 SELECTED
DTC>
DIC> @@
DIC> 00 THE SIMULATION IS FINISHED DIC> 00
DIC> set-inter
--OK---
```

exa6-plot

```
DIC>About
NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exa6\plot.DCM DIC>
DIC>
DIC> @@ exa6_plot.DCM
DIC>
DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE exa6
DIC> @@
DIC>
DIC> @@
\overline{\text{DIC}}\text{>}\ \mbox{@}\ \mbox{@}\ \mbox{G} GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE \overline{\text{DIC}}\text{>}\ \mbox{@}\ \mbox{@}
DIC> go d-m
TIME STEP AT TIME 1.00000E+09

*** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE
DIC> read exa6
DIC>
DIC> 00
DIC> 00 GO TO THE POST PROCESSOR
DIC> 00
DIC> post
  POST PROCESSOR VERSION 1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1: 00
POST-1: 00 PLOT THE CONCENTRATION OF C AT DIFFERENT TIMES
POST-1: s-d-a x distance global
   INFO: Distance is set as independent variable
POST-1: s-d-a y w-p c
POST-1: s-p-c time 0,1e4,2e5,1e7,1e9
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5

POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y

POST-1: SET_EXP_FILE_FORMAT 10
POST-1:
POST-1: plot
        1.2
        1.0
     Mass percent C
        0.8
        0.6
        0.4
        0.2
                                                                   0.026
                   0.021
          0.020
                             0.022
                                      0.023
                                                0.024
                                                         0.025
                                                                            0.027
                                                                                      0.028
                                                                                               0.029
                                                                                                        0.030
  Distance
POST-1:
POST-1:
POST-1:Hit RETURN to continue
POST-1: 00
POST-1: @@ PLOT THE ACTIVITY OF C
POST-1: @@
POST-1:
POST-1: s-d-a y acr(c)
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y POST-1: SET_EXP_FILE_FORMAT 10
POST-1: Plot
```

```
1.0
         0.9
         0.8
         0.7
         0.6
         0.5
         0.4
         0.3
         0.2
         0.1
         0.0
           0.020
                      0.021
                                0.022
                                           0.023
                                                      0.024
                                                                0.025
                                                                            0.026
                                                                                      0.027
                                                                                                 0.028
                                                                                                            0.029
                                                                                                                      0.030
                                                               Distance
POST-1:
POST-1:
POST-1:Hit RETURN to continue
POST-1:
\ensuremath{\textbf{POST-1:}} @@ LET US LOOK AT THE MN AND SI PROFILES \ensuremath{\textbf{POST-1:}} @@
POST-1: 00

POST-1: 00 WE PLOT THE U-FRACTION OF MN AND SI WHICH WILL BE INDEPENDENT POST-1: 00 OF THE C-CONCENTRATION.

POST-1: 00

POST-1: s-d-a y u-f mn
POST-1:
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5

POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y

POST-1: SET_EXP_FILE_FORMAT 10
POST-1:
POST-1: plot
         0.006140
         0.006120
         0.006100
         0.006080
         0.006060
     0.006040
O.006040
         0.006020
         0.006000
         0.005980
         0.005960
         0.005940
                 0.020
                           0.021
                                      0.022
                                               0.023
                                                          0.024
                                                                    0.025
                                                                              0.026
                                                                                        0.027
                                                                                                   0.028
                                                                                                             0.029
                                                                                                                       0.030
                                                                 Distance
  POST-1:
POST-1:
POST-1:
POST-1:
POST-1:Hit RETURN to continue
POST-1:
POST-1: s-d-a y u-f si
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5

POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y

POST-1: SET_EXP_FILE_FORMAT 10

POST-1:
```

POST-1: plot

```
0.01480
         0.01460
         0.01440
         0.01420
     0.01400
         0.01380
         0.01360
         0.01340
         0.01320
                0.020
                                                                0.025 0.026
                         0.021
                                   0.022 0.023
                                                       0.024
                                                                                      0.027
                                                                                                0.028
                                                                                                           0.029
                                                                                                                     0.030
 Distance
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:Hit RETURN to continue
POST-1:
POST-1: 00
POST-1: 00 FINALLY, LOOK AT THE ACTIVITY PROFILES OF SI
POST-1: 00
POST-1: s-d-a y ac(si)
POST-1:
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
POST-1: SET_EXP_FILE_FORMAT 10
POST-1:
POST-1: plot
  ×10<sup>-8</sup>
         2.2
           2
     AC(SI)
         1.8
         1.6
           0.020
                     0.021
                              0.022
                                         0.023
                                                    0.024
                                                              0.025
                                                                           0.026
                                                                                    0.027
                                                                                               0.028
                                                                                                          0.029
                                                                                                                     0.030
                                                             Distance
POST-1:
POST-1:
POST-1:
POST-1:Hit RETURN to continue
POST-1:
POST-1: set-inter
--OK---
POST-1:
```


Homogenization heat-treatment

(Initial profile imported from Scheil simulation)

The initial segregation profile is created from a Scheil calculation (see macro create_initial_profile.TCM). The command INPUT_SCHEIL_PROFILE in the DICTRA monitor performs most of the setup. Only time and temperature must be entered after the INPUT_SCHEIL_PROFILE command is executed.

exa7-setup

```
Thermo-Calc / DICTRA is software package for calculation of phase diagrams, simulation of phase transformation kinetics and much more.
 Copyright Foundation for Computational Thermodynamics,
 Stockholm, Sweden
 Software running on Windows 64-bit wordlength
 Compiler: unknown compiler
License library version: 9.7.0.0036
Linked: Fri Oct 18 11:32:56 2024
SYS:SYS:MACRO exa7\setup.DCM
SYS: @@ One phase example.
SYS: @@ Homogenization heat treatment
SYS: 00 The initial segregation profile is created from a Scheil SYS: 00 calculation (see macro create_initial_profile.TCM). The command
SYS: 00 INPUT_SCHEIL_PROFILE in the DICTRA MONITOR performs most of the SYS: 00 set up. Only time and temperature must be entered after the SYS: 00 INPUT_SCHEIL_PROFILE command is executed.
 NO SUCH COMMAND, USE HELP
SYS: @@ In this example only a single phase, ferrite, is entered in the simulation
THERMODYNAMIC DATABASE module
 Database folder:
  C:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples\databases\da
 Current database: Steels/Fe-Alloys v12.0
VA /- DEFINED
DICTRA_FCC_A1 REJECTED
TDB_TCFE12: sw FEDEMO
Current database: Iron Demo Database v5.0
                                /- DEFINED
TDB_FEDEMO: def-sys fe cr ni mn
 FE
                                CR
                                                              NT
 MN DEFINED
TDB_FEDEMO: rej ph *
                                CBCC_A12
DIAMOND_FCC_A4
 BCC_A2
CUB A13
                                                               CHI_A12
 GAS:G
                                HCP_A3
SIGMA REJECTED
                                                                LAVES_PHASE_C14
 LIQUID:L
INTO FEDEMO: rest ph bcc

BCC_A2 RESTORED

TDB FEDEMO: rest ph bcc

BCC_A2 RESTORED

TDB FEDEMO: get

12:49:56,469 [Thread-0] INFO JavaWrapper: *** Invoking Gibbs Energy System v6 ***

REINITIATING GES .....
 ELEMENTS .....
 PHASES ......
PARAMETERS ...
 FUNCTIONS ....
 Use the command LIST REFERENCES to see the list of references for assessed data
TDB_FEDEMO:
TDB_FEDEMO: app MFEDEMO
 Current database: Fe-Alloys Mobility demo database v4.0
 VA DEFINED
APP: def-sys fe cr ni mn
                                                               NI
 FE
 MN DEFINED
APP: rej ph *
BCC_A2
                               FCC A1
                                                              LIOUID:L
    REJECTED
APP: rest ph bcc
BCC_A2 RESTORED
APP: get
 ELEMENTS ....
 SPECIES .....
PHASES ....
PARAMETERS ...
 FUNCTIONS
 Use the command LIST REFERENCES to see the list of references for assessed data
 -OK-
APP: go dict-mon
12:49:57,034 [Thread-0] INFO StandaloneLicenseController: Checking out license for: Diffusion (DICTRA) NO TIME STEP DEFINED
DIC>
DIC>
DIC> @@ THE INPUT_SCHEIL_PROFILE COMMAND PERFORMS MOST OF THE SET UP
DIC> input_scheil_profile
INFO: SCHEIL REGION CREATED
FILE NAME /XF.TXT/: segregation profile.TXT
ENTER WIDTH OF REGION /1/: 100e-6
INFO: LINEAR GRID IN SCHEIL_REGION ENTERED WITH 100 GRID POINTS
ENTER MAIN SOLID SOLUTION PHASE PHASE NAME: bcc#1
INFO: CHANGING DEPENDENT COMPONENT FROM NI TO FE
INFO: COMPOSITION PROFILE ENTERED IN REGION
SHOULD MORE PHASES BE ENTERED IN THE REGION /NO/: n
 INFO: TO COMPLETE SETUP, ENTER TEMPERATURE AND
 SIMULATION TIME
DIC>
DIC> @@ ENTER THE HEAT TREATMENT TEMPERATURE
DIC> s-cond
```

```
GLOBAL OR BOUNDARY CONDITION /GLOBAL/: glob
VARIABLE: t
LOW TIME LIMIT /0/: 0 1473; * n
DIC>
DIC>
DIC> @@ ENTER A SIMULATION TIME
DIC> se-si-ti
END TIME FOR INTEGRATION /.1/: 3600
AUTOMATIC TIMESTEP CONTROL /YES/: y
MAX TIMESTEP DURING INTEGRATION /360/: 360
INITIAL TIMESTEP : /1E-07/: 1e-7
SMALLEST ACCEPTABLE TIMESTEP: /1E-07/: 1e-9
DIC>
DIC>
DIC> Save exa7 y
DIC>
DIC> set-inter
--OK---
DIC>
```

```
DIC>About
  NO SUCH COMMAND, USE HELP
DIC>DIC>DIC>MACRO exa7\run.DCM DIC> go dict-mon
TIME STEP AT TIME 0.00000E+00
DIC> read exa7
DIC>
  DEGREE OF IMPLICITY SET TO TRAPEZOIDAL RULE
   DEGREE OF IMPLICITI SET TO TRAFEGUIDAD ROBE
U-FRACTION IN SYSTEM: CR = .180420497424242 FE = .79649878787888
MN = .00999016878282828 NI = .0130905459141415
  TOTAL SIZE OF SYSTEM: 1E-04 [m]
U-FRACTION IN SYSTEM: CR = .180420497424242 FE = .796498787878788
MN = .00999016878282828 NI = .0130905459141415
  MN = .00999016878282828 NI = .0130905459141415
   TOTAL SIZE OF SYSTEM: 1E-04 [m]
  TOTAL SIZE OF SYSTEM: IE-04 [m]

CPU time used in timestep

TIME = 0.10010000E-03 DT = 0.10000000E-03 SUM OF SQUARES = 0.00000

U-FRACTION IN SYSTEM: CR = .180420497424242 FE = .796498787878788

MN = .009999016878282828 NI = .0130905459141415

TOTAL SIZE OF SYSTEM: IE-04 [m]
                                                                                                                                                                                                               0.0000000
  CPU time used in timestep 1 seconds
TIME = 0.43088419 DT = 0.43078409 SUM OF SQUARES = 0.00000
U-FRACTION IN SYSTEM: CR = .180420497424242 FE = .796498787878788
MN = .009999016878282828 NI = .0130905459141415
TOTAL SIZE OF SYSTEM: 1E-04 [m]
                                                                                                                                                                                                              0.0000000
  TOTAL SIZE OF SISTEM: IE-04 [m]

CPU time used in timestep 0 seconds

TIME = 1.2924524 DT = 0.86156818 SUM OF SQUARES = 0.00000

U-FRACTION IN SYSTEM: CR = .180420497424242 FE = .796498787878788

MN = .009999016878282829 NI = .0130905459141415

TOTAL SIZE OF SYSTEM: 1E-04 [m]
                                                                                                                                                                                                              0.0000000
  TOTAL SIZE OF SISTEM: IE-04 [m]

1 seconds

                                                                                                                                                                                                               0 0000000
  TOTAL SIZE OF SISTEM: IE-04 [m]

CPU time used in timestep

0 seconds

TIME = 6.4618615 DT = 3.4462727 SUM OF SQUARES = 0.00000

U-FRACTION IN SYSTEM: CR = .180420497424241 FE = .796498787878781

MN = .009999016878283681 NI = .0130905459141414

TOTAL SIZE OF SYSTEM: 1E-04 [m]
                                                                                                                                                                                                              0.0000000
  0.0000000
  TOTAL SIZE OF SISTEM: ID-04 [m] 0 seconds

CPU time used in timestep 0 seconds

TIME = 27.139498 DT = 13.785091 SUM OF SQUARES = 0.0000

U-FRACTION IN SYSTEM: CR = .180420497424222 FE = .796498787878759

MN = .0099901687828793 NI = .0130905459141401

TOTAL SIZE OF SYSTEM: 1E-04 [m]
                                                                                                                                                                                                              0.0000000
  TOTAL SIZE OF SYSTEM: 1E-04 [m]

CPU time used in timestep

O seconds

TIME = 54.709680 DT = 27.570182 SUM OF SQUARES = 0.000001

U-FRACTION IN SYSTEM: CR = .180420497424197 FE = .79649878787879

MN = .00999016878287965 NI = .0130905459141338

TOTAL SIZE OF SYSTEM: 1E-04 [m]

1 seconds
                                                                                                                                                                                                              0.0000000
  0.0000000
  CPU time used in timestep 0 seconds

TIME = 220.13077 DT = 110.28073 SUM OF SQUARES = 0.00000

U-FRACTION IN SYSTEM: CR = .180420497424055 FE = .796498787878951

MN = .009999016878288575 NI = .0130905459141089

TOTAL SIZE OF SYSTEM: 1E-04 [m]
                                                                                                                                                                                                              0.0000000
  CPU time used in timestep 0 seconds

TIME = 440.69223 DT = 220.56145 SUM OF SQUARES = 0.00000

U-FRACTION IN SYSTEM: CR = .180420497423961 FE = .79649878787904

MN = .00999016878289932 NI = .0130905459140991

TOTAL SIZE OF SYSTEM: 1E-04 [m]
                                                                                                                                                                                                              0.0000000
  CPU time used in timestep 0 seconds

TIME = 800.69223 DT = 360.00000 SUM OF SQUARES = 0.00000

U-FRACTION IN SYSTEM: CR = .180420497423903 FE = .796498787879085

MN = .00999016878291501 NI = .0130905459140973

TOTAL SIZE OF SYSTEM: 1E-04 [m]
   TOTAL SIZE OF SYSTEM:
  CPU time used in timestep 0 seconds

TIME = 1160.6922 DT = 360.00000 SUM OF SQUARES = 0.000000

U-FRACTION IN SYSTEM: CR = .180420497423884 FE = .796498787879096

MN = .00999016878292102 NI = .0130905459140985

TOTAL SIZE OF SYSTEM: 1E-04 [m]
   TOTAL SIZE OF SYSTEM:
  TOTAL SIZE OF SYSTEM:
  TOTAL SIZE OF SISTEM: IE-04 [m]

CPU time used in timestep

TIME = 1880.6922 DT = 360.00000 SUM OF SQUARES = 0.00000

U-FRACTION IN SYSTEM: CR = .180420497423861 FE = .796498787879119

MN = .00999016878292205 NI = .0130905459140981

TOTAL SIZE OF SYSTEM: 1E-04 [m]
  TOTAL SIZE OF SISTEM: 1E-04 [m]

CPU time used in timestep 0 seconds

TIME = 2240.6922 DT = 360.00000 SUM OF SQUARES = 0.000000

U-FRACTION IN SYSTEM: CR = .180420497424025 FE = .796498787878919

MN = .00999016878295026 NI = .0130905459141059

TOTAL SIZE OF SYSTEM: 1E-04 [m]
  TOTAL SIZE OF SISTEM: IE-04 [m]

CPU time used in timestep

TIME = 2600.6922 DT = 360.00000 SUM OF SQUARES = 0.00000

U-FRACTION IN SYSTEM: CR = .180420497424179 FE = .796498787878731

MN = .00999016878297177 NI = .0130905459141178

TOTAL SIZE OF SYSTEM: 1E-04 [m]
  CPU time used in timestep
                                                                                                                                                          0 seconds
```

```
TIME = 3320.6922 DT = 360.00000 SUM OF SQUARES = 0.00000
U-FRACTION IN SYSTEM: CR = .180420497424408 FE = .796498787878447
MN = .00999016878300547 NI = .0130905459141397
TOTAL SIZE OF SYSTEM: 1E-04 [m]
                                                                                                                                                                                            0.0000000
  TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep 0 seconds
TIME = 3600.000 DT = 279.30777 SUM OF SQUARES = 0.000001
U-FRACTION IN SYSTEM: CR = .180420497424463 FE = .7964987878379
MN = .00999016878301348 NI = .0130905459141452
TOTAL SIZE OF SYSTEM: 1E-04 [m]
  MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
  WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
                                                                                                     0.0000000
                                                                                                0.10000000E-06
0.10010000E-03
                                                                                                  0.43088419
                                                                                                     1.2924524
                                                                                                     6.4618615
  DELETING TIME-RECORD FOR TIME
                                                                                                     27.139498
                                                                                                     54.709680
109.85004
                                                                                                     220.13077
440.69223
   DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                                                     800.69223
                                                                                                     1160.6922
1520.6922
   DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                                                     1880.6922
2240.6922
                                                                                                     2600.6922
    DELETING TIME-RECORD FOR TIME
                                                                                                     2960.6922
  KEEPING TIME-RECORD FOR TIME
AND FOR TIME
WORKSPACE RECLAIMED
                                                                                             3320.6922
3600.0000
  TIMESTEP AT
                                                 3600.00000
                                                                                         SELECTED
DIC>
DIC> set-inter
```

--OK---DIC>

```
DIC>About

NO SUCH COMMAND, USE HELP
DIC>DIC>DIC>MACRO exa7\plot.DCM DIC> go dict-mon
TIME STEP AT TIME 3.60000E+03
DIC>
DIC>
DIC> read exa7
OK
DIC>
DIC> post
   POST PROCESSOR VERSION 1.7
 Implemented by Bjorn Jonsson
 POST-1: s-p-c time 0,3600
POST-1: s-d-a x d g
 INFO: Distance is set as independent variable POST-1: s-d-a y w-p mn POST-1:
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
POST-1: SET_EXP_FILE_FORMAT 10
POST-1:
 POST-1: plot
           2.2
           2.0
      Mass bercent MN 1.8
           1.2
           1.0
                                                                           5
                                                                                       6
                                                                                                                                      10
                                                                      Distance
                                                                                                                                ×10<sup>-5</sup>
POST-1:
POST-1: @@ Hit enter for the next plot
POST-1:@?
POST-1:
 POST-1: s-d-a y w-p ni
POST-1: s-d-a y w-p n1
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
POST-1: SET_EXP_FILE_FORMAT 10
POST-1:
 POST-1: plot
           2.5
      Mass percent NI
           1.5
           1.0 -
                                                                           5
                                                                                                                                     10
                                                               4
                                                                                       6
                                                                      Distance
                                                                                                                                ×10<sup>-5</sup>
 POST-1:
POST-1: set-inter
 --OK--
POST-1:
```


Moving Boundary Problems

γ to α transformation in a binary Fe-C alloy

This example calculates a ferrite (BCC)/austenite (FCC) transformation in a binary Fe-C alloy. The initial state is an austenite of 2 mm thickness. The composition of the austenite is Fe-0.15wt%C. After austenitization the specimen has been quenched down to 1050K. The system is assumed closed, no boundary conditions are set (a closed system is the default). Ferrite is expected to grow into the austenite. For this reason you start with a thin region with ferrite adjacent to the austenite.

exbla-setup

```
Thermo-Calc / DICTRA is software package for calculation of phase diagrams,
 simulation of phase transformation kinetics and much more.
 Copyright Foundation for Computational Thermodynamics,
 Stockholm, Sweden
 Software running on Windows 64-bit wordlength
 Compiler: unknown compiler
License library version: 9.7.0.0036
Linked: Fri Oct 18 11:32:56 2024
SYS:SYS:MACRO exbla\setup.DCM
SYS: @@
SYS: @@ Moving boundary problem.
SYS: @@ Austenite to ferrite transformation in a binary Fe-C alloy
SYS: 00 This example calculates a ferrite(BCC)/austenite(FCC)transformation SYS: 00 in a binary Fe-C alloy. The initial state is an austenite of 2mm SYS: 00 thickness. The composition of the austenite is Fe-0.15wt%C.
SYS: @@
SYS: @@ After austenitization the specimen is quenched down to 1050K.
{\bf SYS}\colon 00 The system is assumed closed, so no boundary conditions are set {\bf SYS}\colon 00 (a closed system is the default). Ferrite is expected to grow
{\bf SYS}\colon QQ into the austenite, which is why we start with a thin {\bf SYS}\colon QQ region with ferrite adjacent to the austenite.
SYS:
 NO SUCH COMMAND, USE HELP
SYS .
SYS: 00 exbla setup.DCM
SYS
SYS:
SYS: @@
SYS: 00 START BY GOING TO THE DATABASE MODULE
SYS: @@
SYS: go da
12:52:52,972 [Thread-0] INFO LicenseManager: Initializing user: jenkins.integrationtest@thermocalc.se
12:52:52,986 [Thread-0] INFO LicenseController: Running License Spring in DEV environment.
12:52:54,174 [Thread-0] INFO LicenseManager: There is an activated standalone license for jenkins.integrationtest@thermocalc.se for TC-
  THERMODYNAMIC DATABASE module
 Database folder:
 C:\jenkins\workspace\dev pipeline\generate dictra console examples\databases\da
 Current database: Steels/Fe-Alloys v12.0
DICTRA_FCC_A1 REJECTED

TDB_TCFE12:

TDB_TCFE12:
TDB_TCFE12: @@
TDB_TCFE12: @@ USE A THERMODYNAMIC DATABASE TO RETRIEVE THE DATA
TDB_TCFE12: @@
TDB_TCFE12: sw FEDEMO
 Current database: Iron Demo Database v5.0
                                  /- DEFINED
 VA
TDB_FEDEMO:
TDB_FEDEMO: @@
TDB_FEDEMO: @@ DEFINE THE SYSTEM TO WORK WITH
TDB_FEDEMO: 00
TDB_FEDEMO: def-sys fe c
C DEFINED
TDB FEDEMO: @@
TDB_FEDEMO:
TDB_FEDEMO: 00 TDB_FEDEMO: 00 EXCLUDE THE THERMODYNAMIC DATA FOR THE PHASES THAT ARE NOT NEEDED
TDB_FEDEMO: @@
TDB_FEDEMO: rej ph * all
BCC_A2
                                    CBCC A12
                                                                      CEMENTITE
 CUB_A13
                                   DIAMOND_FCC_A4
GRAPHITE
                                                                      FCC_A1
HCP_A3
 GAS:G
 KSI_CARBIDE
M23C6
                                    LAVES_PHASE_C14
                                                                      T.TOIITD • I.
   REJECTED
TDB_FEDEMO: res ph fcc bcc
FCC_A1 BC
TDB_FEDEMO:
TDB_FEDEMO: @@
                                   BCC A2 RESTORED
TDB_FEDEMO: @@ RETRIEVE DATA FROM THE DATABASE FILE
TDB FEDEMO: @@
TDB_FEDEMO: get
12:52:55,250 [Thread-0] INFO JavaWrapper: *** Invoking Gibbs Energy System v6 ***
  REINITIATING GES .....
 ELEMENTS ....
 SPECIES .....
  PARAMETERS ..
 FUNCTIONS ....
 Use the command LIST_REFERENCES to see the list of references for assessed data
 -0K-
TDB_FEDEMO: 00
TDB_FEDEMO: @@ MOBILITY/DIFFUSIVITY DATA ARE STORED IN A SEPARATE DATABASE FILE.
TDB_FEDEMO: @@ SWITCH TO A MOBILITY DATABASE TO RETRIEVE DATA TDB_FEDEMO: @@
TDB_FEDEMO: append
 Use one of these databases
 TCFE12 = Steels/Fe-Alloys v12.0
TCFE9 = Steels/Fe-Alloys v9.3
SSUB6 = SGTE Substances v6.0
FEDEMO = Iron Demo Database v5.0
 FELLEMO = Iron Demo Database v5.0

MOB2 = Alloys Mobility v2.7

MOBFE2 = Steels/Fe-Alloys Mobility v2.0

MOBFE4 = Steels/Fe-Alloys Mobility v4.0

MOBFE7 = Steels/Fe-Alloys Mobility v7.1

MFEDEMO = Fe-Alloys Mobility demo database v4.0

USER = User defined Database
```

```
DATABASE NAME /FEDEMO/: MFEDEMO
 Current database: Fe-Alloys Mobility demo database v4.0
APP: def-sys fe c
                                 C DEFINED
APP: rej ph * all
                                 FCC_A1
                                                                  CEMENTITE
 LIQUID:L REJECTED
APP: res ph fcc bcc
FCC A1
                                 BCC A2 RESTORED
APP: get
 ELEMENTS ....
 SPECIES .....
PHASES .....
PARAMETERS ...
 FUNCTIONS ....
 Use the command LIST_REFERENCES to see the list of references for assessed data
 -0K-
APP: @@
APP: @@ ENTER THE DICTRA MONITOR WHERE THE SYSTEM IS SET UP
APP: @@
APP: go d-m
12:52:55,811 [Thread-0] INFO StandaloneLicenseController: Checking out license for: Diffusion (DICTRA) NO TIME STEP DEFINED DIC>
DIC> @@
DIC> @@ ENTER GLOBAL CONDITION T
DIC> set-condition global T 0 1050; * N
DIC>
DIC> @@
DIC> @@ START BY ENTERING THE REGIONS ferrite AND austenite WHERE WE
DIC> @@ PUT THE BCC AND FCC PHASE, RESPECTIVELY. THE FERRITE REGION IS
DIC> @@ ASSUMED INITIALLY TO BE VERY THIN, 1E-9 METERS.
DIC> @@
DIC> enter-region
REGION NAME : ferrite
DIC>
DIC> enter-region
REGION NAME : austenite
ATTACH TO REGION NAMED /FERRITE/:
ATTACHED TO THE RIGHT OF FERRITE /YES/:
DIC> @@
DIC> @@ ENTER GRIDS INTO THE REGIONS
DIC> @@
DIC> enter-grid
REGION NAME: /FERRITE/: ferrite
WIDTH OF REGION /1/: 1e-9
TYPE /LINEAR/: linear
NUMBER OF POINTS /50/: 10
DIC>
DIC> enter-grid austenite
WIDTH OF REGION /1/: 20e-4
TYPE /LINEAR/: geo
NUMBER OF POINTS /50/: 100
VALUE OF R IN THE GEOMETRICAL SERIE : 1.05
DIC>
DIC>
DIC>
DIC> @@
DIC> 00 ENTER active PHASES INTO THE REGIONS
DIC> 00
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: active
REGION NAME : /FERRITE/: ferrite
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: bcc
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: active
REGION NAME : /AUSTENITE/: austenite
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: fcc#1
DIC>
DIC>
DIC>
DIC> @@
DIC> @@ ENTER AN INITIAL COMPOSITION INTO BCC
DIC> @@
DIC> enter-composition
PREGION NAME: /FERRITE/: ferrite
PHASE NAME: /BCC_A2/: bcc
COMPOSITION TYPE /MOLE_FRACTION/: w-p
PROFILE FOR /C/: C
TYPE /LINEAR/: linear
VALUE OF FIRST POINT : 0.01
VALUE OF LAST POINT : /1E-2/: 0.01
DIC> @@
DIC> @@ ENTER AN INITIAL COMPOSITION INTO FCC
DIC> @@
DIC> enter-composition
PREGION NAME: /AUSTENITE/: austenite
PHASE NAME: /FCC_A1/: fcc#1
COMPOSITION TYPE /MOLE_FRACTION/: w-p
PROFILE FOR /C/: C
VALUE OF LAST POINT : 0.15
VALUE OF LAST POINT : /0.15/: 0.15
DIC>
DIC>
DIC> @@
DIC> 00 THE BOUNDARY CONDITION IS A CLOSED SYSTEM AS WE DO NOT SPECIFY
DIC> @@ ANYTHING ELSE
```

```
NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exbla\run.DCM DIC>
DIC>
DIC> @@ exb1a_run.DCM
DIC>
DIC> @@ FILE FOR RUNNING EXAMPLE bla
DIC> @@
DIC>
DIC> @@
\overline{\text{DIC>}} @@ enter the dictra monitor and read the store result file \overline{\text{DIC>}} @@
  TIME STEP AT TIME 0.00000E+00
DIC> read exbla
 OK
DTCS
DIC> @@
DIC> @@ START THE SIMULATION
DIC> 00
DIC> simulate
 Trying old scheme 3
U-FRACTION IN SYSTEM: C = .00698495590385911 FE = 1
TOTAL SIZE OF SYSTEM: .002000001 [m]
U-FRACTION IN SYSTEM: C = .00698495590385911 FE = 1
TOTAL SIZE OF SYSTEM: .002000001 [m]
   4 GRIDPOINT(S) ADDED TO CELL #1 REGION: FERRITE 1 GRIDPOINT(S) ADDED TO CELL #1 REGION: AUSTENITE
                                                                                                                                                                      0.104050479021637
                                            0.115717856446369
                                                                 46369 111.048227048957
3.472489916122559E-002
6.961181207827499E-020 T
 0.115717401092532
                                                                                                                                0 112984276791639
                                                                                                                                                                                                                   9 078830416795058
                                                                                                             1.786881247439455E-003 9.19385891:
TIME = 0.10000000E-06 DT = 0.10000000E-
002 7.040904723184642E-002
006
                   1.857932633733402E-009
006 1.857932633733402E-009 6.961181207827499E-020
06 SUM OF SQUARES = 0.69611812E-19
CELL # 1 VELOCITY AT INTERFACE # 2 IS 9.7160434 AND
POSITION OF INTERFACE FERRITE / AUSTENITE IS 0.97260434E-06
U-FRACTION IN SYSTEM: C = .0069849386866348 FE = 1
TOTAL SIZE OF SYSTEM: .002000001 [m]
11 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: FERRITE
11 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: AUSTENITE
CPU time used in timestep
 4 074137743669682E=013
                                                                                                                                                       7 916095759688517E-019 TIME = 0 7000000E-
                                                                                                        0.39679416E-05
                                                                                                      5.738226457801994E-014
                                                                                                                                                       8.116782232718016E-019
                                                                                                                                                                                                          TIME = 0.15000000E-
                                                                                                         0 39678978E-05
CPU time used in timestep 0 seconds
4.094059438948623E-009 4.053917868450578E-009
05 DT = 0.16000000E-05 SUM OF SQUARES = 0.27939206E-18
CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.39678105E-05 AND
POSITION OF INTERFACE FERRITE / AUSTENITE IS 0.97261625E-
                                                                                                      1.401585421709595E-014
                                                                                                                                                         2.793920640065191E-019
                                                                                                                                                                                                           TIME = 0.31000000E-
 POSITION OF INTERFACE FERRITE / AUSTENTE IS 0.97261625E-06 U-FRACTION IN SYSTEM: C = .00698493868662885 FE = 1
TOTAL SIZE OF SYSTEM: .002000001 [m]
1 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: FERRITE
CPU time used in timestep 0 seconds 4.084396637429527E-009 4.044353044689921E-009 1 05 DT = 0.32000000E-05 SUM OF SQUARES = 0.18151713E-18 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.39676284E-05 AND POSITION OF INTERFACE FERRITE / AUSTENITE IS 0.97262894E-06 U-FRACTION IN SYSTEM: C = .00698493868661436 FE = 1 TOTAL SIZE OF SYSTEM: .002000001 [m] 1 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: FERRITE
   CPU time used in timestep
                                                                                                      0 39676284E-05
 CPU time used in timestep 4.066830175766578E-009
output ignored ...
... output resumed
  32 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: FERRITE
   CPU time used in timestep
 2.857135237040981E-
                                                                                                                         0.28571352E-18
   CPU time used in timestep
                                                                                      seconds
 CPU time used in timestep 0 seconds
5.162392166619635E-006 5.161937365686040E-006 2.879944878831782E-
022 TIME = 0.71258999E+09 DT = 0.10000000E+09 SUM OF SQUARES = 0.28799449E-21
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.16048019E-15 AND -0.16048019E-15
POSITION OF INTERFACE FERRITE / AUSTENITE IS 0.13801372E-02
U-FRACTION IN SYSTEM: C = .00697892692000533 FE = 1
TOTAL SIZE OF SYSTEM: .002000001 [m]
1 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: AUSTENITE
```

```
CPU time used in timestep
                                                                               seconds
 CPU time used in timestep 0 seconds
1.643470810140709E-004 1.643453047522188E-004 3.581749652560398E-
021 TIME = 0.81258999E+09 DT = 0.10000000E+09 SUM OF SQUARES = 0.35817497E-20
CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.47129302E-15 AND 0.47129302E-15
POSITION OF INTERFACE FERRITE / AUSTENITE IS 0.13801843E-02
U-FRACTION IN SYSTEM: C = .00697844632489939 FE = 1
TOTAL SIZE OF SYSTEM: .002000001 [m]
32 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: FERRITE
CPU time used in timestep
  CPU time used in timestep
 CPU time used in timestep 0 seconds
1.107002687003183E-005 1.107169759564005E-005 1.286992003239478E-
022 TIME = 0.10000000E+10 DT = 87410009. SUM OF SQUARES = 0.12869920E-21
CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.40036032E-16 AND 0.40036032E-16
POSITION OF INTERFACE FERRITE / AUSTENITE IS 0.13801753E-02
U-FRACTION IN SYSTEM: 0.02000001 [m]
MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
PLETTING TIME-BECORD FOR TIME 0.0000000
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                     0 0000000
                                                   0.10000000E-06
  DELETING TIME-RECORD FOR TIME
                                                   0.3000000E-06
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                   0.7000000E-06
0.15000000E-05
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                   0.31000000E-05
  DELETING TIME-RECORD FOR TIME
                                                   0.12700000E-04
                                                   0.25500000E-04
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                   0.51100000E-04
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                   0 10230000E=03
  DELETING TIME-RECORD FOR TIME
                                                   0.40950000E-03
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                   0.81910000E-03
                                                   0.16383000E-02
  DELETING TIME-RECORD FOR TIME
                                                   0.32767000E-02
0.65535000E-02
  DELETING TIME-RECORD FOR TIME
  DELETING TIME-RECORD FOR TIME
                                                   0.13107100E-01
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                    0.26214300E-01
                                                   0.52428700E-01
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                   0 10485750
                                                   0.20971510
  DELETING TIME-RECORD FOR TIME
                                                   0.41943030
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                     1.6777215
  DELETING TIME-RECORD FOR TIME
                                                     3.3554431
  DELETING TIME-RECORD FOR TIME
                                                     6.7108863
  DELETING TIME-RECORD FOR TIME
                                                     13 421773
  DELETING TIME-RECORD FOR TIME
  DELETING TIME-RECORD FOR TIME
                                                     53.687091
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                     107.37418
                                                     214.74836
  DELETING TIME-RECORD FOR TIME
                                                     429 49673
  DELETING TIME-RECORD FOR TIME
  DELETING TIME-RECORD FOR TIME
                                                     1717.9869
  DELETING TIME-RECORD FOR TIME
                                                     3435.9738
  DELETING TIME-RECORD FOR TIME
                                                     6871.9477
                                                     13743.895
27487.791
  DELETING TIME-RECORD FOR TIME
  DELETING TIME-RECORD FOR TIME
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                     54975.581
                                                     109951.16
                                                     219902.33
  DELETING TIME-RECORD FOR TIME
                                                     439804.65
  DELETING TIME-RECORD FOR TIME
                                                     1759218.6
  DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                     3518437.2
7036874.4
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                     14073749
  DELETING TIME-RECORD FOR TIME
                                                     56294995.
                                                   0.11258999E+09
  DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                   0.21258999E+09
  DELETING TIME-RECORD FOR TIME
                                                   0.31258999E+09
  DELETING TIME-RECORD FOR TIME
  DELETING TIME-RECORD FOR TIME
                                                   0.51258999E+09
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                   0.61258999E+09
0.71258999E+09
 DELETING TIME-RECORD FOR TIME
                                                  0.81258999E+09
  KEEPING TIME-RECORD FOR TIME
                                                0.91258999E+09
  AND FOR TIME
 WORKSPACE RECLAIMED
 TIMESTEP AT 0.10000000E+10 SELECTED
DTC>
DIC>
DIC> 00
DIC> 00 THE SIMULATION IS FINISHED
DIC> @@
DIC>
DIC> set-inter
  --OK---
DTC>
```

exbla-plot

```
DIC>About
NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exbla\plot.DCM DIC>
DIC>
DIC> @@ exbla_plot.DCM
DIC>
DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE bla
DIC> @@
DIC>
DIC> @@
\overline{\text{DIC}}\text{>} @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE \overline{\text{DIC}}\text{>} @@
DIC> go d-m
TIME STEP AT TIME 1.00000E+09
DIC> read exbla
 OK
DIC>
DIC> @@
DIC> @@ GO TO THE POST PROCESSOR
DIC> @@
DIC> post
  POST PROCESSOR VERSION
                                     1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1:
POST-1: @@
POST-1: 00 PLOT THE CARBON CONCENTRATIONS AT DIFFERENT TIMES
POST-1: @@
POST-1: s-d-a x distance global
   INFO: Distance is set as independent variable
POST-1: s-d-a y w-p c
POST-1: s-p-c time le3,1e5,1e9
POST-1:
POST-1:
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
POST-1: SET_EXP_FILE_FORMAT 10
         0.50
         0.45
         0.40
         0.35
         0.30
      percent
         0.25
      Mass 0.20
         0.15
         0.10
         0.05
         0.00 -
           0.0000
                               0.0005
                                                  0.0010
                                                                      0.0015
                                                                                         0.0020
                                                                                                             0.0025
  Distance
POST-1:
POST-1:0?
POST-1:
POST-1: sel-plot new
POST-1:
POST-1:
POST-1: @@
POST-1: 00 PLOT THE POSITION OF THE BCC/FCC INTERPHASE POST-1: 00
POST-1: s-d-a x time
INFO: Time is set as independent variable
INFO: Time is set as independent variable
POST-1: s-d-a y
VARIABLE : pos
INTERFACE : aus
UPPER OR LOWER INTERFACE OF REGION AUSTENITE#1 /LOWER/: lower
POST-1:
POST-1: set_axis_type
AXIS (X, Y OR Z) : x
AXIS TYPE /LINEAR/: log
POST-1:
POST-1: s-s-s
AXIS (X, Y OR Z) : x
AUTOMATIC SCALING (Y OR N) /N/: n
MIN VALUE : 10
MAX VALUE : 1e9
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
OST-1: SET_EXP_FILE_FORMAT 10
POST-1
POST-1: plot
```


Example exb1b

γ to α transformation in a binary Fe-C alloy: Inactive α

This is the same example as in exb1a but now the problem is with ferrite as an inactive phase adjacent to the initial austenite.

exb1b-setup

```
Thermo-Calc / DICTRA is software package for calculation of phase diagrams,
  simulation of phase transformation kinetics and much more.
  Copyright Foundation for Computational Thermodynamics,
  Stockholm, Sweden
  Software running on Windows 64-bit wordlength
  Compiler: unknown compiler
License library version: 9.7.0.0036
Linked: Fri Oct 18 11:32:56 2024
SYS:SYS:MACRO exb1b\setup.DCM
SYS: @@
SYS: @@ Moving boundary problem.
SYS: @@ Austenite to ferrite transformation in a binary Fe-C alloy
SYS: @@ This is the same example as in exbla but now the problem is with SYS: @@ ferrite as an inactive phase adjacent to the initial austenite.
  NO SUCH COMMAND, USE HELP
SYS: @@ exb1b setup.DCM
SYS: @@
{\bf SYS}\colon 00 START BY GOING TO THE DATABASE MODULE {\bf SYS}\colon 00
SYS: go da
12:55:53,165 [Thread-0] INFO LicenseManager: Initializing user: jenkins.integrationtest@thermocalc.se
12:55:53,179 [Thread-0] INFO LicenseController: Running License Spring in DEV environment.
12:55:54,275 [Thread-0] INFO LicenseManager: There is an activated standalone license for jenkins.integrationtest@thermocalc.se for TC-
Application
   THERMODYNAMIC DATABASE module
  Database folder:
  {\tt C:\jenkins\workspace\dev\_pipeline\generate\_dictra\_console\_examples\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\data
  Current database: Steels/Fe-Alloys v12.0
  VA /- DEFINED
DICTRA_FCC_A1 REJECTED
TDB_TCFE12:
TDB_TCFE12: @@
TDB_TCFE12: @@ USE A THERMODYNAMIC DATABASE TO RETRIEVE DATA
TDB_TCFE12: @@
TDB_TCFE12: sw FEDEMO
  Current database: Iron Demo Database v5.0
                                                     /- DEFINED
TDB_FEDEMO:
TDB_FEDEMO: @@
TDB FEDEMO: 00 DEFINE THE SYSTEM TO WORK WITH TDB FEDEMO: 00
TDB_FEDEMO: def-sys fe c
FE C DEFINED
TDB_FEDEMO: @@
\overline{\text{TDB}} fedemo: 00 exclude the thermodynamic data for the phases that are not needed \overline{\text{TDB}} fedemo: 00
TDB_FEDEMO: rej ph * all
BCC_A2
CUB_A13
                                                        CBCC_A12
                                                                                                              CEMENTITE
                                                       DIAMOND_FCC_A4
                                                                                                              FCC_A1
HCP A3
  GAS:G
KSI_CARBIDE
M23C6
                                                         GRAPHITE
                                                        LAVES_PHASE_C14
                                                                                                               LIQUID:L
                                                        M5C2
                                                                                                              M7C3
      REJECTED
TDB_FEDEMO: res ph fcc bcc
FCC_A1 BC
TDB_FEDEMO:
                                                      BCC_A2 RESTORED
TDB_FEDEMO: @@
TDB FEDEMO: @@ RETRIEVE DATA FROM THE DATABASE FILE TDB FEDEMO: @@
TDB_FEDEMO: get
12:55:55,359 [Thread-0] INFO JavaWrapper: *** Invoking Gibbs Energy System v6 ***
  REINITIATING GES ....
   ELEMENTS ....
  SPECIES .....
  PHASES .....
PARAMETERS ...
  FUNCTIONS ..
  Use the command LIST REFERENCES to see the list of references for assessed data
  -OK-
TDB_FEDEMO: 00
TDB FEDEMO: @@ MOBILITY/DIFFUSIVITY DATA ARE STORED IN A SEPARATE DATABASE FILE.
TDB FEDEMO: @@ SWITCH TO A MOBILITY DATABASE TO RETRIEVE THE DATA.
TDB_FEDEMO: @@
TDB_FEDEMO: app
Use one of these databases
 TCFE12 = Steels/Fe-Alloys v12.0
TCFE9 = Steels/Fe-Alloys v9.3
SSUB6 = SGTE Substances v6.0
FEDEMO = Iron Demo Database v5.0
 FEDEMO = Iron Demo Database v5.0

MOB2 = Alloys Mobility v2.7

MOBFE2 = Steels/Fe-Alloys Mobility v2.0

MOBFE4 = Steels/Fe-Alloys Mobility v4.0

MOBFE7 = Steels/Fe-Alloys Mobility v7.1

MFEDEMO = Fe-Alloys Mobility demo database v4.0

USER = User defined Database
DATABASE NAME /FEDEMO/: MFEDEMO
  Current database: Fe-Alloys Mobility demo database v4.0
  VA DEFINED
APP: def-sys fe c
                                                      C DEFINED
APP: rej ph * all
```

```
FCC A1
                                                           CEMENTITE
 BCC A2
 LIQUID:L REJECTED
APP: res ph fcc bcc
FCC_A1
APP: get
                              BCC_A2 RESTORED
 ELEMENTS
 SPECIES .....
 PHASES .....
 PARAMETERS
 FUNCTIONS ....
 Use the command LIST_REFERENCES to see the list of references for assessed data
 -0K-
APP:
APP: @@
APP: 00 ENTER THE DICTRA MONITOR WHERE THE SYSTEM IS SET UP
APP: @@
APP: go d-m
12:55:55,930 [Thread-0] INFO StandaloneLicenseController: Checking out license for: Diffusion (DICTRA)
 NO TIME STEP DEFINED
DIC>
DIC> @@
DIC> @@ ENTER THE GLOBAL CONDITION T
DIC> @@
DIC> set-cond glob T 0 1050; * N
DIC>
DIC> @@ START BY ENTERING THE REGION austenite WHERE WE PUT THE fcc PHASE
DIC> @@
DIC> enter-region
REGION NAME : austenite
DIC>
DIC> @@
DIC> @@ ENTER THE GRID INTO THE REGION
DIC> @@
DIC> enter-grid
REGION NAME : /AUSTENITE/: austenite
WIDTH OF REGION /1/: 20e-4
TYPE /LINEAR/: GEO
NUMBER OF POINTS /50/: 100
VALUE OF R IN THE GEOMETRICAL SERIE : 1.05
DIC>
DIC> @@
DIC> @@ ENTER THE active PHASES INTO THE REGIONS
DIC> @@ ENTER THE ACTIVE FRANKS TWIG THE .

DIC> @@
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: active
REGION NAME : /AUSTENITE/: austenite
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: fcc#1
DIC>
DIC> @@ ENTER THE inactive PHASES INTO THE REGIONS
DIC> @@
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: inactive
ATTACH TO REGION NAMED /AUSTENITE/: austenite
ATTACHED TO THE RIGHT OF AUSTENITE /YES/: no
PHASE NAME: /NONE/: bcc
REQUIRED DRIVING FORCE FOR PRECIPITATION: /1E-05/: 1e-5
CONDITION TYPE /CLOSED_SYSTEM/: closed
DIC>
DIC> @@ ENTER THE INITIAL COMPOSITION FOR FCC
DIC> @@
DIC> enter-composition
PREGION NAME: /AUSTENITE/: austenite
PHASE NAME: /FCC_A1/: fcc#1
COMPOSITION TYPE /MOLE_FRACTION/: w-p
PROFILE FOR /C/: C
TYPE /LINEAR/: lin
VALUE OF FIRST POINT : 0.15
VALUE OF LAST POINT : /0.15/: 0.15
DIC>
DIC> @@
DIC> @@ THE BOUNDARY CONDITION IS A CLOSED SYSTEM AS WE DO NOT SPECIFY
DIC> @@ ANYTHING ELSE
DIC>
DIC> list-prof,,,,,,
INTERPACE AT GLOBAL COORDINATE X = 0.00000E+00
 REGION AUSTENITE
                   NP(FCC A1)
                                  X(FCC A1.C)
                                                          X(FCC A1.FE)
 COORDINATE
                                       .00693651
                                                           .993063
 8.04898E-07
                                        .00693651
                                                           .993063
 1.65004E-06
2.53744E-06
                                                           .993063
                                        .00693651
                                       .00693651
                                                           .993063
 3.46921E-06
                                        .00693651
                                                           .993063
                                        .00693651
 5.47485E-06
                                        .00693651
                                                           .993063
                                                           .993063
 6.55349E-06
                                        .00693651
  7.68606E-06
                                        .00693651
                                                           .993063
 8.87526E-06
                                        .00693651
                                                           .993063
  1.01239E-05
 1.1435E-05
                                        .00693651
                                                           .993063
 1.28117E-05
1.42572E-05
                                                           .993063
                                        .00693651
                                        .00693651
                                                           .993063
 1.57749E-05
                                        .00693651
                                                           .993063
 1.90419E-05
                                        .00693651
                                                           .993063
 2.07989E-05
2.26437E-05
                                                           .993063
                                        .00693651
                                        .00693651
                                                           .993063
 2.45808E-05
                                        .00693651
                                                           .993063
  2.66147E-05
 2.87504E-05
                                        .00693651
                                                           .993063
 3.09928E-05
3.33473E-05
                                                           .993063
                                        .00693651
                                        .00693651
                                                           .993063
 3.58196E-05
                                        .00693651
                                                           .993063
 3.84155E-05
 4.11411E-05
                                        .00693651
                                                           .993063
```

```
4.40031E-05
                                      .00693651
                                                          .993063
                                                          .993063
 4.70081E-05
                                       .00693651
 5.01634E-05
                                      .00693651
 5.34765E-05
                                       .00693651
                                                          .993063
 5.69552E-05
                                       .00693651
 6.06079E-05
                                       .00693651
                                                          .993063
 6.44432E-05
                                       00693651
                                                          .993063
                                                          .993063
 6.84703E-05
                                      .00693651
 7 26987E-05
                                       00693651
                                                          993063
 8.18003E-05
                                       .00693651
                                                          .993063
 8 66952E-05
                                       .00693651
                                                          .993063
 9.18349E-05
                                      .00693651
                                                          .993063
 9 72315E-05
                                       00693651
                                                          993063
 1.08848E-04
                                       .00693651
                                                          .993063
 1 15095E-04
                                       .00693651
                                                           .993063
 1.21655E-04
                                      .00693651
                                                          .993063
 1 28542E-04
                                       00693651
                                                          993063
 1.43368E-04
                                       .00693651
                                                          .993063
 1.51341E-04
1.59713E-04
                                       .00693651
                                                           993063
                                      .00693651
                                                          .993063
 1 68504E-04
                                       00693651
                                                          993063
 1.87426E-04
                                       .00693651
                                                          .993063
 1 97602E-04
                                       .00693651
                                                           .993063
 2.08287E-04
                                      .00693651
                                                          .993063
 2 19506E-04
                                       00693651
                                                          993063
 2.43655E-04
                                       .00693651
                                                          .993063
                                                          .993063
 2.56643E-04
                                       .00693651
 2.7028E-04
                                       .00693651
                                                          .993063
 2 84599E-04
                                       .00693651
                                                          993063
                                                          .993063
                                       .00693651
 3.1542E-04
                                       .00693651
                                                          .993063
 3.31996E-04
                                       .00693651
                                                          .993063
 3.49401E-04
                                       .00693651
                                                          .993063
 3 67676E-04
                                       .00693651
                                                          .993063
                                                          .993063
                                       .00693651
 4.07013E-04
                                       .00693651
                                                          .993063
 4.50382E-04
                                       .00693651
                                                          .993063
 4.73706E-04
                                       .00693651
                                                          .993063
 4.98196E-04
                                                          .993063
                                       .00693651
 5.2391E-04
                                       .00693651
                                                          .993063
 5.50911E-04
                                                          .993063
                                       .00693651
 5.79261E-04
                                                          .993063
 6.09029E-04
                                       .00693651
                                                          .993063
 6.40286E-04
                                       .00693651
                                                          .993063
 6.73105E-04
                                       .00693651
                                                          .993063
 7.43748E-04
                                       .00693651
                                                          .993063
 7.8174E-04
                                       .00693651
                                                          .993063
 8.21632E-04
                                       .00693651
                                                          .993063
 8 63519E-04
                                       00693651
                                                          993063
 9.5368E-04
                                       .00693651
                                                          .993063
  .00100217
                                       .00693651
                                                          .993063
                                      .00693651
 .00105308
                                                          .993063
 00110654
                                       00693651
                                                          993063
 .00122161
                                       .00693651
                                                          .993063
  .0012835
                                       .00693651
                                                          .993063
 .00134848
                                       .00693651
                                                          .993063
 00141671
                                       00693651
                                                          993063
  .00148835
 .00156357
                                       .00693651
                                                          .993063
  00164255
                                       00693651
                                                           993063
 .00172548
                                       .00693651
                                                          .993063
 00181256
                                       00693651
                                                          993063
  .002
                                       .00693651
                                                          .993063
 INTERFACE AT GLOBAL COORDINATE X = 2.00000E-03
DIC>
DIC> @@
DIC> @@ SET THE SIMULATION TIME
DIC> @@
DIC> set-simulation-time
END TIME FOR INTEGRATION /.1/: 1e9
AUTOMATIC TIMESTEP CONTROL /YES/:
MAX THESTEP DURING INTEGRATION /10000000/:
INITIAL TIMESTEP: /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP: /1E-07/:
DTC>
DIC>
DTC>
DIC> @@
DIC> 00 IMPLICIT (1) TIME INTEGRATION IS USED INSTEAD OF THE MORE ACCURATE DIC> 00 (BUT LESS STABLE) TRAPETZOIDAL METHOD WHICH IS THE DEFAULT.
DIC> s-s-c
NS01A PRINT CONTROL : /0/:
FLUX CORRECTION FACTOR: /1/:
NUMBER OF DELTA TIMESTEPS IN CALLING MULDIF: /2/:
CHECK INTERFACE POSITION /AUTO/: VARY POTENTIALS OR ACTIVITIES OR LNAC : /ACTIVITIES/:
ALLOW AUTOMATIC SWITCHING OF VARYING ELEMENT: /YES/:
SAVE WORKSPACE ON FILE (YES,NO,0-999) /YES/:
DEGREE OF IMPLICITY WHEN INTEGRATING PDES (AUTO, 0 -> 0.5 -> 1): /AUTO/: 1.0 MAX TIMESTEP CHANGE PER TIMESTEP : /2/:
    FORCED STARTING VALUES IN EQUILIBRIUM CALCULATION /AUTO/:
ALWAYS CALCULATE STIFFNES MATRIX IN MULDIF /YES/: CALCULATE RESIDUAL FOR DEPENDENT COMPONENT /NO/:
DIC> @@
DIC> @@ SAVE THE SET UP TO A NEW STORE FILE AND EXIT
DIC> @@
DIC> save exb1b Y
DIC>
DIC> set-inter
  --OK---
DIC>
```

```
NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exb1b\run.DCM DIC>
DIC>
DIC> @@ exb1b_run.DCM
DIC>
DIC> @@ FILE FOR RUNNING EXAMPLE b1b
DIC> @@
DIC>
\overline{\text{DIC>}} @@ enter the dictra monitor and read the store result file \overline{\text{DIC>}} @@
  TIME STEP AT TIME 0.00000E+00
DIC> read exb1b
 OK
DTCS
DIC> @@
DIC> @@ START THE SIMULATION
DIC> @@
 U-FRACTION IN SYSTEM: C = .00698495916383108 FE = 1 TOTAL SIZE OF SYSTEM: .002 [m]
 U-FRACTION IN SYSTEM: C = .00698495916383108 FE = 1
TOTAL SIZE OF SYSTEM: .002 [m]
1 GRIDPOINT(S) ADDED TO CELL #1 REGION: AUSTENITE
INFO: PHASE BCC A2 IS SCHEDULED TO APPEAR
1 GRIDPOINT(S) ADDED TO CELL #1 REGION: AUSTENITE
REGION STATUS CHANGE, ITERATING: TIME= 0.50000000E-07
1 GRIDPOINT(S) ADDED TO CELL #1 REGION: AUSTENITE
REGION STATUS CHANGE, ITERATING: TIME= 0.25000000E-07
TIME = 0.25000000E-07 DT = 0.25000000E-07
TIME = 0.25000000E-07 DT = 0.25000000E-07
TOTAL SIZE OF SYSTEM: C = .00698495916383108 FE = 1
TOTAL SIZE OF SYSTEM: .002 [m]
MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
  RECLAIMING WORKSPACE
  KEEPING TIME-RECORD FOR TIME 0.0000000
AND FOR TIME 0.25000000E-07
 AND FOR TIME
WORKSPACE RECLAIMED
  Trying old scheme 3
START VALUE(S) FOR INTERFACE #2 R_BCC_A2/AUSTENITE, CELL #1
   11 GRIDPOINT(S) REMOVED FROM CELL #1
                                                                       REGION: AUSTENITE
Trying old scheme 3
U-FRACTION IN SYSTEM: C = .00698156310125388 FE = 1
TOTAL SIZE OF SYSTEM: .002 [m]
U-FRACTION IN SYSTEM: C = .00698156310125388 FE = 1
TOTAL SIZE OF SYSTEM: .002 [m]
1 GRIDPOINT(S) ADDED TO CELL #1 REGION: R_BCC_A2
0.11712767116296 0.117128128916191 114.061414554258 0.114375906495099 0.105392175
002 7.158223425194700E-002 3.558703799368233E-002 2.021962344783487E-003 1.121278826
005 1.860868025616069E-009 2.256092380280181E-017 TIME = 0.12500000E-06 DT = 0.10000000E-
06 SUM OF SOUARES = 0.22560924E-16
                                                                                                                                                                                                                            9 205187129929521
                                                                                                                                                                                 1.121278826080358E-
005 SUM OF SQUARES = 0.22560924E-16
CELL # 1 VELOCITY AT INTERFACE # 2 IS 9.7403076 AND 9.7403076
POSITION OF INTERFACE R BCC A2 / AUSTENITE IS 0.19740308E-05
U-FRACTION IN SYSTEM: C = 700698153921639083 FE = 1
TOTAL SIZE OF SYSTEM: .002 [m]
  CPU time used in timestep 1 seconds 8 GRIDPOINT(S) ADDED TO CELL #1 REGION: R BCC A2 3.652284725189946E-003 3.653015065433610E-003
                                                                                                          1.677079944016108E-009
                                                                                                                                                               1.228084622293129E-009
                                                                                                                                                                                                                   1.389993134483879E-
                  015
                                                                                                                                                                                7.348303612434650E-
1.189358796820148E-017
                                                                                                                                                             TIME = 0.11789820E-03 DT = 0.78515467E-
TOTAL SIZE OF SYSTEM: .002 [m]

CPU time used in timestep 0 seconds
1.345442012049659E-008 1.330048750117228E-008 1.69516663602548
03 SUM OF SQUARES = 0.16951666E-17

CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.83746772E-05 AND 0.83746772E-05
POSITION OF INTERFACE R BCC A2 / AUSTENITE IS 0.19763838E-05
U-FRACTION IN SYSTEM: C = .00698153902148981 FE = 1
TOTAL SIZE OF SYSTEM: .002 [m]
                                                                                                          1.695166636025482E-018
                                                                                                                                                            TIME = 0.27492913E-03 DT = 0.15703093E-
output ignored ...
... output resumed
 U-FRACTION IN SYSTEM: C = .00698157462623608 FE = 1 TOTAL SIZE OF SYSTEM: .002 [m]
        GRIDPOINT(S) REMOVED FROM CELL #1 REGION: R_BCC_A2
   CPU time used in timestep
CPU time used in timestep 1.350425355123420E-003
                                                                                   0 seconds
```

1.661527465599188E-

1.350486059745406E-003

```
D25 TIME = 0.77265734E+09 DT = 0.10000000E+09 SUM OF SQUARES = 0.16
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.13968626E-15 AND -0.13968626E-15
POSITION OF INTERFACE R BCC_A2 / AUSTENITE IS 0.13798670E-02
U-FRACTION IN SYSTEM: C = .00698167492951646 FE = 1
TOTAL SIZE OF SYSTEM: .002 [m]
   TOTAL SIZE OF SYSTEM: .002 [m]

1 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: AUSTENITE
   CPU time used in timestep
O seconds
3.448265292765822E-005
3.448593190930922E-005
2.473994942960656E-
022
TIME = 0.87265734E+09 DT = 0.10000000E+09 SUM OF SQUARES = 0.24739949E-21
CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.15103406E-15 AND 0.15103406E-15
POSITION OF INTERFACE R_BCC_A2 / AUSTENITE IS 0.1379882IE-02
U-FRACTION IN SYSTEM: C = .00698152091436651 FE = 1
TOTAL SIZE OF SYSTEM: .002 [m]
                                                                                                seconds
         GRIDPOINT(S) REMOVED FROM CELL #1 REGION: R_BCC_A2
   0 seconds
 CPU time used in timestep 0 seconds
4.041394345259142E-005 4.041778163291770E-005 8.212628118198100E-
019 TIME = 0.97265734E+09 DT = 0.10000000E+09 SUM OF SQUARES = 0.82126281E-18
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.16369403E-15 AND -0.16369403E-15
POSITION OF INTERFACE R_BCC_A2 / AUSTENITE IS 0.13798658E-02
U-FRACTION IN SYSTEM: C = .00698168783937385 FE = 1
TOTAL SIZE OF SYSTEM: .002 [m]
019
   1 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: AUSTENITE
 CPU time used in timestep 0 seconds 2.619718449745630E-005 1.833020171535089E-019 TIME = 0.10000000E+10 DT = 27342662. SUM OF SQUARES = 0.18330202E-18 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.90526284E-16 AND 0.90526284E-16 POSITION OF INTERFACE R_BCC A2 / AUSTENITE IS 0.13798682E-02 U-FRACTION IN SYSTEM: C = .00698166259852017 FE = 1 TOTAL SIZE OF SYSTEM: .002 [m] MUST SAVE WORKSPACE ON FILE WORKSPACE SAVED ON FILE RECLAIMING WORKSPACE DELETING TIME-RECORD FOR TIME 0.0000000
   CPU time used in timestep
                                                                                                seconds
  DELETING TIME-RECORD FOR TIME
                                                               0.0000000
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                             0.25000000E-07
0.12500000E-06
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                              0.39382734E-04
                                                              0.11789820E-03
  DELETING TIME-RECORD FOR TIME
                                                              0.27492913E-03
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                              0.12171147E-02
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                              0.24733622E-02
                                                              0.49858572E-02
  DELETING TIME-RECORD FOR TIME
                                                              0.10010847E-01
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                              0.20060827E-01
                                                              0.40160786E-01
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                              0.80360705E-01
                                                              0.16076054
  DELETING TIME-RECORD FOR TIME
                                                              0.32156022
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                               1.2863583
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                2.5727557
                                                                5.1455505
  DELETING TIME-RECORD FOR TIME
                                                                10 291140
  DELETING TIME-RECORD FOR TIME
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                41.164678
                                                                82.329395
                                                                164.65883
  DELETING TIME-RECORD FOR TIME
                                                                329 31770
  DELETING TIME-RECORD FOR TIME
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                1317.2709
                                                                2634.5419
                                                                5269.0838
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                                10538.168
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                                42152.670
                                                                84305.341
                                                                168610.68
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                                337221.36
674442.73
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                1348885.5
                                                                2697770.9
5395541.8
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                                10791084
  DELETING TIME-RECORD FOR TIME
                                                                43164334.
  DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                              86328669.
0.17265734E+09
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                              0.27265734E+09
  DELETING TIME-RECORD FOR TIME
                                                              0.47265734E+09
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                             0.57265734E+09
0.67265734E+09
  DELETING TIME-RECORD FOR TIME
                                                             0 77265734E+09
                                                            0.7720373.L
0.87265734E+09
  DELETING TIME-RECORD FOR TIME
  KEEPING TIME-RECORD FOR TIME 0.97265734E+09
 AND FOR TIME
                                                           0.10000000E+10
  WORKSPACE RECLAIMED
 TIMESTEP AT 0.10000000E+10 SELECTED
DIC>
DIC>
DIC>
DIC>
DIC> @@
DIC> @@ THE SIMULATION IS FINISHED
DIC> @@
DIC> set-inter
```

0.16615275E-24

exb1b-plot

```
DIC>About
NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exb1b\plot.DCM DIC>
DIC>
DIC> @@ exb1b_plot.DCM
DIC>
\overline{\text{DIC}}\text{>}\ \mbox{\tt $0$} Generating graphical output for example blb \overline{\text{DIC}}\text{>}\ \mbox{\tt $0$}
DIC>
DIC> @@
\overline{\text{DIC}}\text{>} @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE \overline{\text{DIC}}\text{>} @@
DIC> go d-m
TIME STEP AT TIME 1.00000E+09
DIC> read exb1b
 OK
DIC>
DIC> @@
DIC> @@ GO TO THE POST PROCESSOR
DIC> @@
DIC> post
  POST PROCESSOR VERSION
                                     1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1:
POST-1: @@
POST-1: 00 PLOT THE CARBON CONCENTRATIONS AT DIFFERENT TIMES
POST-1: @@
POST-1: s-d-a y w-p c
POST-1: s-d-a x dist glob
INFO: Distance is set as independent variable
POST-1: s-p-c time 1e3,1e5,1e9
POST-1:
POST-1:
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
POST-1: SET_EXP_FILE_FORMAT 10
         0.50
         0.45
         0.40
         0.35
     percent C
         0.30
         0.25
     Mass 0.20
         0.15
         0.10
         0.05
         0.00 -
           0.0000
                               0.0005
                                                  0.0010
                                                                      0.0015
                                                                                          0.0020
                                                                                                              0.0025
  Distance
POST-1:
POST-1:
POST-1:Hit RETURN to continue
POST-1:
POST-1: sel-plot new
POST-1: 00
POST-1: @@ PLOT THE POSITION OF THE BCC/FCC INTERPHASE
POST-1: @@
POST-1: s-d-a x time
INFO: Time is set as independent variable
POST-1: s-d-a y
VARIABLE: pos
INTERFACE: aus
UPPER OR LOWER INTERFACE OF REGION AUSTENITE#1 /LOWER/: lower
POST-1:
POST-1: set_axis_type
AXIS (X, Y OR Z) : x
AXIS TYPE /LINEAR/: log
POST-1:
POST-1: s-s-s
AXIS (X, Y OR Z) : x
AUTOMATIC SCALING (Y OR N) /N/: n
MIN VALUE : 10
MAX VALUE : 1e9
POST-1:
POST-1: SET_EXP_FILE FORMAT 5
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
ORKING ... POST-1:
                            OST-1: SET_EXP_FILE_FORMAT 10
POST-1: plot
```


Example exb1c

γ to α transformation in a binary Fe-C alloy: Gradual cool down to $1050\ K$

This is the same example as in exb1a and exb1b but now the simulation starts at a higher temperature and assumes a gradual cooling down to 1050 K. When 1050 K is reached, the temperature is kept constant and thus has an isothermal transformation. As in exb1b, ferrite is in an inactive phase adjacent to the initial austenite.

DATABASE NAME /FEDEMO/: MFEDEMO

Current database: Fe-Alloys Mobility demo database v4.0

```
Thermo-Calc / DICTRA is software package for calculation of phase diagrams,
  simulation of phase transformation kinetics and much more.
  Copyright Foundation for Computational Thermodynamics,
  Stockholm, Sweden
  Software running on Windows 64-bit wordlength
  Compiler: unknown compiler
License library version: 9.7.0.0036
Linked: Fri Oct 18 11:32:56 2024
SYS:SYS:MACRO exblc\setup.DCM
SYS: @@
SYS: @@ Moving boundary problem.
SYS: @@ Austenite to ferrite transformation in a binary Fe-C alloy
SYS: @@ This is the same example as in exbla and exblb but now the
SYS: @@ simulation starts at a higher temperature and assumes a gradual cooling
SYS: @@
SYS: 00 When 1050 K is reached, the temperature is kept constant and thus has an
{\bf SYS}\colon 00 isothermal transformation. As in exb1b ferrite is an inactive {\bf SYS}\colon 00 phase adjacent to the initial austenite.
SYS: -
  NO SUCH COMMAND, USE HELP
SYS .
SYS: @@ exb1c_setup.DCM
SYS: 00
SYS: @@ START BY GOING TO THE DATABASE MODULE
SYS: @@
SYS: go da
12:58:52,584 [Thread-0] INFO LicenseManager: Initializing user: jenkins.integrationtest@thermocalc.se
12:58:52,596 [Thread-0] INFO LicenseController: Running License Spring in DEV environment.
12:58:53,725 [Thread-0] INFO LicenseManager: There is an activated standalone license for jenkins.integrationtest@thermocalc.se for TC-
Application
   THERMODYNAMIC DATABASE module
  Database folder:
  {\tt C:\jenkins\workspace\dev\_pipeline\generate\_dictra\_console\_examples\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\data
  Current database: Steels/Fe-Alloys v12.0
VA /- DEFINED
DICTRA_FCC_A1 REJECTED
TDB_TCFE12:
TDB_TCFE12: @@
TDB_TCFE12: @@
TDB_TCFE12: @@ USE A THERMODYNAMIC DATABASE TO RETRIEVE DATA TDB_TCFE12: @@
TDB TCFE12: SW FEDEMO
  Current database: Iron Demo Database v5.0
  VA
                                                     /- DEFINED
TDB FEDEMO:
TDB FEDEMO: @@
TDB FEDEMO: @@ DEFINE THE SYSTEM TO WORK WITH
TDB_FEDEMO: @@
TDB_FEDEMO: def-sys fe c
  FΕ
                                                     C DEFINED
TDB FEDEMO:
TDB_FEDEMO: @@

TDB_FEDEMO: @@ EXCLUDE THE THERMODYNAMIC DATA FOR THE PHASES THAT ARE NOT NEEDED

TDB_FEDEMO: @@
TDB_FEDEMO: rej ph * all
BCC_A2
CUB_A13
                                                      CBCC_A12
DIAMOND FCC A4
                                                                                                           CEMENTITE
                                                                                                          FCC_A1
HCP_A3
LIQUID:L
  GAS:G
                                                      GRAPHITE
                                                       LAVES_PHASE_C14
  KSI_CARBIDE
M23C6
                                                      M5C2
                                                                                                          м7С3
      REJECTED
TDB FEDEMO: res ph fcc bcc
FCC_A1
TDB_FEDEMO:
                                                    BCC A2 RESTORED
TDB FEDEMO: 00 TDB FEDEMO: 00 RETRIEVE DATA FROM THE DATABASE FILE
TDB_FEDEMO: @@
TDB_FEDEMO: get
12:58:54,798
  12:58:54,798 [Thread-0] INFO JavaWrapper: *** Invoking Gibbs Energy System v6 *** REINITIATING GES .....
  ELEMENTS ....
   SPECIES .....
  PHASES ......
PARAMETERS ...
  FUNCTIONS ....
  Use the command LIST_REFERENCES to see the list of references for assessed data
TDB_FEDEMO: 00
TDB FEDEMO: @@ MOBILITY/DIFFUSIVITY DATA ARE STORED IN A SEPARATE DATABASE FILE.
TDB_FEDEMO: @@ SWITCH TO A MOBILITY DATABASE TO RETRIEVE DATA
TDB_FEDEMO: @@
TDB_FEDEMO: app
  Use one of these databases
  TCFE12 = Steels/Fe-Alloys v12.0
TCFE9 = Steels/Fe-Alloys v9.3
SSUB6 = SGTE Substances v6.0
 SSUB6 = SGTE Substances v6.0

FEDEMO = Iron Demo Database v5.0

MOB2 = Alloys Mobility v2.7

MOBFE2 = Steels/Fe-Alloys Mobility v4.0

MOBFF4 = Steels/Fe-Alloys Mobility v4.0

MOBFF7 = Steels/Fe-Alloys Mobility v7.1
  MFEDEMO = Fe-Alloys Mobility demo database v4.0 USER = User defined Database
```

```
VA DEFINED
APP: def-sys fe c
 FE
                                   C DEFINED
APP: rej ph * all
 BCC A2
                                   FCC A1
                                                                     CEMENTITE
 LIQUID:L REJECTED
APP: res ph fcc bcc
FCC_A1
APP: get
                                   BCC_A2 RESTORED
 ELEMENTS ....
 SPECIES .....
 PHASES .....
PARAMETERS ...
 FUNCTIONS ....
 Use the command LIST REFERENCES to see the list of references for assessed data
APP:
APP: @@
\ensuremath{\mathbf{APP}}\xspace @@ enter the dictra monitor where the system is set up \ensuremath{\mathbf{APP}}\xspace @@
APP: go d-m
12:58:55,379 [Thread-0] INFO StandaloneLicenseController: Checking out license for: Diffusion (DICTRA)
NO TIME STEP DEFINED DIC>
DTC> 00
DIC> @@ ENTER GLOBAL CONDITION T
DIC> @@
DIC> @@ ASSUME THAT THE COOLING RATE IS 10K/MINUTE DOWN TO 1050K
DIC> @@
DIC> set-cond
GLOBAL OR BOUNDARY CONDITION /GLOBAL/: glob
VARIABLE : T
LOW TIME LIMIT /0/: 0
T(TIME,X) = 1173-time*0.1667;

HIGH TIME LIMIT /*/: 738

ANY MORE RANGES /N/: y

T(TIME,X) = 1050;
HIGH TIME LIMIT /*/: *
ANY MORE RANGES /N/: N
DIC>
DIC> @@
DIC> @@ START BY ENTERING THE REGION austenite WHERE WE PUT THE fcc PHASE
DIC> @@
DIC> enter-region
REGION NAME : austenite
DIC> @@
DIC> @@ ENTER THE GRID INTO THE REGION
DIC> 00
DIC> enter-grid
REGION NAME : /AUSTENITE/: austenite
WIDTH OF REGION /1/: 20e-4
TYPE /LINEAR/: AUTO DIC>
DIC> @@
DIC> @@ ENTER THE active PHASES INTO THE REGIONS
DIC> 00
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /AUSTENITE/: austenite
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: fcc#1
DIC> 00
DIC> 00 ENTER THE inactive PHASES INTO THE REGIONS
DIC> 00
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: inact
ATTACH TO REGION NAMED /AUSTENITE/: austenite
ATTACHED TO THE RIGHT OF AUSTENITE /YES/: no PHASE NAME: /NONE/: bcc
REQUIRED DRIVING FORCE FOR PRECIPITATION: /1E-05/: 1e-5
CONDITION TYPE /CLOSED_SYSTEM/: closed
DIC>
DIC> @@
DIC> @@ ENTER THE INITIAL COMPOSITION FOR FCC DIC> @@
DIC> enter-composition
PREGION NAME: /AUSTENITE/: austenite
PHASE NAME: /FCC_A1/: fcc#1
COMPOSITION TYPE /MOLE_FRACTION/: w-p
PROFILE FOR /C/: C
TYPE /LINEAR/: lin
VALUE OF FIRST POINT : 0.15
VALUE OF LAST POINT : /0.15/: 0.15
DIC>
DIC> @@
DIC> @@ THE BOUNDARY CONDITION IS A CLOSED SYSTEM AS WE DO NOT SPECIFY
DIC> @@ ANYTHING ELSE.
DIC> @@
DIC>
DIC> @@
DIC> @@ SET THE SIMULATION TIME
DIC> @@
DIC> set-simulation-time
END TIME FOR INTEGRATION /.1/: 738
AUTOMATIC TIMESTEP CONTROL /YES/:
MAX TIMESTEP DURING INTEGRATION /73.8/:
INITIAL TIMESTEP : /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DIC>
DIC>
DIC> @@
DIC> 00 IMPLICIT (1) TIME INTEGRATION IS USED INSTEAD OF THE MORE ACCURATE
DIC> @@ (BUT LESS STABLE) TRAPETZOIDAL METHOD WHICH IS THE DEFAULT. DIC> @@
DIC> s-s-c
NS01A PRINT CONTROL : /0/:
```

```
FLUX CORRECTION FACTOR: /1/:
NUMBER OF DELTA TIMESTEPS IN CALLING MULDIF: /2/:
CHECK INTERFACE POSITION /AUTO/:
VARY POTENTIALS OR ACTIVITIES OR LNAC: /ACTIVITIES/:
ALLOW AUTOMATIC SWITCHING OF VARYING ELEMENT: /YES/:
SAVE WORKSPACE ON FILE (YES,NO,0-999) /YES/:
DEGREE OF IMPLICITY WHEN INTEGRATING PDES (AUTO, 0 -> 0.5 -> 1): /AUTO/: 1.0
MAX TIMESTEP CHANGE PER TIMESTEP: /2/:
USE FORCED STARTING VALUES IN EQUILIBRIUM CALCULATION /AUTO/:
ALWAYS CALCULATE STIFFNES MATRIX IN MULDIF /YES/:
CALCULATE RESIDUAL FOR DEPENDENT COMPONENT /NO/:
DIC> @@
DIC> @@ SAVE THE SET UP TO A NEW STORE FILE AND EXIT
DIC> @
DIC> save exblc Y
DIC>
DIC> set-inter
--OK---
DIC>
```

```
NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exblc\run.DCM DIC>
DIC>
DIC> @@ exb1c_run.DCM
DIC>
DIC> @@ FILE FOR RUNNING EXAMPLE exb1c
DIC> @@
DIC> go d-m
 TIME STEP AT TIME 0.00000E+00
DIC> read exb1c
 OK
DTC>
DIC> @@
DIC> @@ START THE SIMULATION
DIC> 00
DIC> sim
 Region: AUSTENITE
 geometric 1.27617 dense at 0.00000 95 points
U-FRACTION IN SYSTEM: C = .00698495916383109 FE = 1
TOTAL SIZE OF SYSTEM: .002 [m]
U-FRACTION IN SYSTEM: C = .00698495916383109 FE = 1
TOTAL SIZE OF SYSTEM: .002 [m]
TIME = 0.100000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.0000000
 U-FRACTION IN SYSTEM: C = .00698495916383109 FE = 1
TOTAL SIZE OF SYSTEM: .002 [m]
CPU time used in timestep 0 seconds
TIME = 0.49553997E-03 DT = 0.49543997E-03 SUM OF SQUARES =
U-FRACTION IN SYSTEM: C = .00698495916383109 FE = 1
TOTAL SIZE OF SYSTEM: .002 [m]
                                                                          0 0000000
 0.0000000
 CPU time used in timestep 0 seconds
TIME = 0.34681798E-02 DT = 0.19817599E-02 SUM OF SQUARES =
U-FRACTION IN SYSTEM: C = .00698495916383109 FE = 1
TOTAL SIZE OF SYSTEM: .002 [m]
CPU time used in timestep 0 seconds
TIME = 0.74316996E-02 DT = 0.39635198E-02 SUM OF SQUARES =
                                                                           0.0000000
                                                                           0.0000000
 U-FRACTION IN SYSTEM: C = .00698495916383109 FE = 1
TOTAL SIZE OF SYSTEM: .002 [m]
 0.0000000
 0.0000000
 CPU time used in timestep 0 seconds
TIME = 0.12633729 DT = 0.63416316E-01 SUM OF SQUARES =
U-FRACTION IN SYSTEM: C = .00698495916383109 FE = 1
TOTAL SIZE OF SYSTEM: .002 [m]
                                                                           0.0000000
 0 seconds
                                                     SUM OF SOUARES =
                                                                           0 0000000
 CPU time used in timestep 1 seconds
TIME = 0.50683519 DT = 0.25366527 SUM OF SQUARES =
U-FRACTION IN SYSTEM: C = .00698495916383109 FE = 1
TOTAL SIZE OF SYSTEM: .002 [m]
                                                                           0.0000000
 0.0000000
                                                                           0.0000000
 0 0000000
 0.0000000
 0.0000000
 0.0000000
 0.0000000
                                                                          0.0000000
 CPU time used in timestep 0 sector of time = 212.53781 DT = 36.900000 SUM OF SQI U-FRACTION IN SYSTEM: C = .00698495916383108 FE = 1 TOTAL SIZE OF SYSTEM: .002 [m]
                                                    0 seconds
SUM OF SQUARES =
```

```
CPU time used in timestep
                                                                                             seconds
 CPU time used in timestep U sector TIME = 249.43781 DT = 36.900000 SUM OF SQI U-FRACTION IN SYSTEM: C = .00698495916383108 FE = 1
                                                                             SUM OF SQUARES = 0.0000000
                                           .002 [m]
  TOTAL SIZE OF SYSTEM:
 0 seconds
SUM OF SQUARES = 0.0000000
  CPU time used in timestep
INFO: PHASE BCC_A2 IS SCHEDULED TO APPEAR
INFO: BACKTRACING WITH SMALLER TIMESTEP
                                                                                       0 seconds
                                                                             9.2250
  INFO: PHASE BCC A2 IS SCHEDULED TO APPEAR REGION STATUS CHANGE, ITERATING: TIME=
     REGION STATUS CHANGE, ITERATING: TIME=
REGION STATUS CHANGE, ITERATING: TIME=
                                                                                288.64406
289.79719
     REGION STATUS CHANGE, ITERATING: TIME=
REGION STATUS CHANGE, ITERATING: TIME=
REGION STATUS CHANGE, ITERATING: TIME=
                                                                                289.22063
                                                                                288.93234
output ignored...
... output resumed
TIME = 0.44460949E+09 DT = 0.10000000E+09 SUM OF SQUARES = 0.42672657E-20 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.99771874E-16 AND 0.99771874E-16 POSITION OF INTERFACE R BCC A2 / AUSTENITE IS 0.13792031E-02 U-FRACTION IN SYSTEM: \overline{C} = -0.0698844524809282 FE = 1 TOTAL SIZE OF SYSTEM: .002 [m]
    9 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: R_BCC_A2
 CPU time used in timestep 0 seconds
6.300181379980967E-005 6.300497946320894E-005 4.491936266715634E-
227 TIME = 0.54460949E+09 DT = 0.10000000E+09 SUM OF SQUARES = 0.44919363E-26
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.29141025E-15 AND -0.29141025E-15
POSITION OF INTERFACE R BCC A2 / AUSTENITE IS 0.13791740E-02
U-FRACTION IN SYSTEM: C = .00698874241016547 FE = 1
TOTAL SIZE OF SYSTEM: .002 [m]
1 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: AUSTENITE
 CPU time used in timestep
 11 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: R BCC A2
   CPU time used in timestep
 CPU time used in timestep 0 seconds 
1.604064290660115E-005 1.604266596376776E-005 1.298441436334128E-

27 TIME = 0.84460949E+09 DT = 0.10000000E+09 SUM OF SQUARES = 0.12984414E-26

CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.72545164E-16 AND -0.72545164E-16

POSITION OF INTERFACE R BCC A2 / AUSTENITE IS 0.13791740E-02

U-FRACTION IN SYSTEM: C = .00698874180702061 FE = 1

TOTAL SIZE OF SYSTEM: .002 [m]

1 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: AUSTENITE
 CPU time used in timestep 0 seconds
2.797201818780974E-006 2.797686843430792E-006 7.359769241521117E-
023 TIME = 0.94460949E+09 DT = 0.10000000E+09 SUM OF SQUARES = 0.73597692E-22
CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.10911310E-16 AND 0.10911310E-16
POSITION OF INTERFACE R_BCC_A2 / AUSTENITE IS 0.13791751E-02
U-FRACTION IN SYSTEM: C = .00698873068034426 FE = 1
TOTAL SIZE OF SYSTEM: .002 [m]
1 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: R_BCC_A2
   CPU time used in timestep
                                                    U SECONDO 2.871128724184850E-006 3.651360553371141E-
E+10 DT = 55390509. SUM OF SQUARES = 0.36513606E-16
  2.871867831218063E-006
 MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
  RECLAIMING WORKSPACE
  DELETING TIME-RECORD FOR TIME
                                                              738.00000
                                                              755.23871
789.71613
  DELETING TIME-RECORD FOR TIME
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                              858.67096
  DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                              996.58063
                                                              1272.4000
  DELETING TIME-RECORD FOR TIME
                                                              1824.0387
 DELETING TIME-RECORD FOR TIME
                                                              5133.8707
                                                              9546.9802
                                                              18373.199
  DELETING TIME-RECORD FOR TIME
                                                              36025.637
  DELETING TIME-RECORD FOR TIME
  DELETING TIME-RECORD FOR TIME
                                                              141940.26
  DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                              283159.77
                                                              565598.7
  DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                              1130476.8
  DELETING TIME-RECORD FOR TIME
                                                              4519744.8
  DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                              9038768 0
                                                              18076817.
  DELETING TIME-RECORD FOR TIME
                                                              36152913.
  DELETING TIME-RECORD FOR TIME
                                                            0.14460949E+09
  DELETING TIME-RECORD FOR TIME
  DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                            0.24460949E+09
                                                            0.34460949E+09
  DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                            0.44460949E+09
```

exb1c-plot

```
DIC>About
NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exb1c\plot.DCM DIC>
DIC>
DIC> @@ exb1c_plot.DCM
DIC>
\overline{\text{DIC}}\text{>}\ \mbox{\for} Generating graphical output for example blo \overline{\text{DIC}}\text{>}\ \mbox{\for}
DIC>
DIC> @@
DIC> 00 GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> 00 DIC> go d-m
TIME STEP AT TIME 1.00000E+09
DIC> read exblc
 OK
DIC>
DIC> @@
DIC> @@ GO TO THE POST PROCESSOR
DIC> @@
DIC> post
  POST PROCESSOR VERSION
                                     1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1:
POST-1: @@
POST-1: @@ PLOT TEMPERATURE VS. TIME
POST-1: @@
POST-1: s-d-a y t
POST-1: s-d-a x time
   INFO: Time is set as independent variable
INFO: Time is set as independent POST-1: s-p-c
CONDITION /TIME/: interface
INTERFACE : austenite
UPPER OR LOWER INTERFACE OF REGION AUSTENITE#1 /LOWER/: lower
POST-1: s-s-s x n 0 1000
POST-1:
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
ORKING ... OST-1: SET_EXP_FILE_FORMAT 10
POST-1: plot
         1180
         1160
         1140
         1120
         1100
         1080
         1060
         1040
                                200
                                          300
                                                              500
                                                                                 700
                                                                                                              1000
                                                             Time
  POST-1:
POST-1:
POST-1:
POST-1:
POST-1:@?<Hit_return_to_continue>
POST-1: @@
POST-1: @@ PLOT VS. LOG TIME
POST-1: @@
POST-1: set-axis-type x log
POST-1: s-s-s x n 10 1e9
POST-1:
POST-1:
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
POST-1: SET_EXP_FILE_FORMAT 10
```

```
1180
           1160
           1140
           1120
           1100
           1080
           1060
                          10<sup>2</sup>
                                                                                                                      108
           1040
                                         10<sup>3</sup>
                                                                                                       10<sup>7</sup>
                                                                                        10<sup>6</sup>
                                                          104
                                                                             10<sup>5</sup>
                  10¹
  Time
POST-1:
POST-1:
POST-1:@?<Hit_return_to_continue>
POST-1:
\ensuremath{\textbf{POST-1:}} @@ PLOT THE POSITION OF THE BCC/FCC INTERPHASE \ensuremath{\textbf{POST-1:}} @@
POST-1: ee
POST-1: s-d-a
AXIS (X, Y OR Z) : y
VARIABLE : position
INTERFACE : austenite
UPPER OR LOWER INTERFACE OF REGION AUSTENITE#1 /LOWER/: lower
POST-1:
POST-1:
POST-1:
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
ORKING ... OST-1: SET_EXP_FILE_FORMAT 10
           0.00140
           0.00120
           0.00100
      Position of interface
           0.00080
           0.00060
           0.00040
           0.00020
                                                          104
           0.00000
                              10<sup>2</sup>
                                                   10<sup>3</sup>
                                                                                 105
                                                                                                10<sup>6</sup>
                                                                                                               10<sup>7</sup>
                                                                                                                              108
                                                                                                                                             109
                                                                               Time
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:@?<Hit_return_to_continue>
POST-1: 00
POST-1: @@ PLOT THE CARBON CONCENTRATION VS. DISTANCE
POST-1: @@
POST-1: 00

POST-1: s-d-a y w-p c

POST-1: s-d-a x dis glob

INFO: Distance is set as independent variable

POST-1: s-p-c time 500,700,1200,2000

POST-1: set-axis-type x lin

POST-1: c c-c y p 0 3e-4
\textbf{POST-1:} \quad \texttt{s-s-s} \quad \texttt{x} \quad \texttt{n} \quad \texttt{0} \quad \texttt{3e-4}
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
ORKING ...OST-1: SET_EXP_FILE_FORMAT 10
POST-1:
POST-1: plot
```


POST-1:
POST-1:
POST-1:
POST-1:
POST-1:@?<Hit_return_to_continue>
POST-1: set-inter
--OK--POST-1:

Example exb2

Cementite dissolution in an Fe-Cr-C alloy

This example calculates the dissolution of a spherical cementite particle in an austenite matrix. This case is from Z.-K. Liu, L. Höglund, B. Jönsson and J. Ågren (Metall. Trans.A, v.22A, 1991, pp. 1745-1752). In order to achieve the correct average composition in the calculation it is necessary to take into account the fact that the calculation is set up using the volume fraction of the phases. To calculate the initial state at the heat treatment temperature we need first to determine the state at the normalizing temperature. To calculate the volume fraction of the phases we need to enter a number of functions that calculate these quantities.

exb2-setup

```
Thermo-Calc / DICTRA is software package for calculation of phase diagrams, simulation of phase transformation kinetics and much more.
 Copyright Foundation for Computational Thermodynamics,
 Stockholm, Sweden
 Software running on Windows 64-bit wordlength
 Compiler: unknown compiler
License library version: 9.7.0.0036
Linked: Fri Oct 18 11:32:56 2024
SYS:SYS:MACRO exb2\setup.DCM
SYS: SET_GES_VERSION
USE GES VERSION 5 OR 6 /6/: 5
SYS: GO DA
13:01:53,100 [Thread-0] INFO LicenseManager: Initializing user: jenkins.integrationtest@thermocalc.se
13:01:53,115 [Thread-0] INFO LicenseController: Running License Spring in DEV environment.
13:01:54,224 [Thread-0] INFO LicenseManager: There is an activated standalone license for jenkins.integrationtest@thermocalc.se for TC-
Application
THERMODYNAMIC DATABASE module
 Database folder:
 C:\jenkins\workspace\dev pipeline\generate dictra console examples\databases\da
 Current database: Steels/Fe-Alloys v12.0
VA /- DEFINED DICTRA_FCC_A1 REJECTED TDB_TCFE12: SW FEDEMO Current dat .
 Current database: Iron Demo Database v5.0
                                 /- DEFINED
TDB_FEDEMO: DE-E FE CR C
 FE DEFINED
                                  CR
DEFINED
TDB_FEDEMO: REJ PH *
BCC_A2
CHI_A12
FCC_A1
HCP_A3
                                  CBCC_A12
                                                                  CEMENTITE
                                  CUB_A13
                                                                  DIAMOND FCC A4
                                 GAS:G
KSI_CARBIDE
M23C6
                                                                   GRAPHITE
                                                                   LAVES_PHASE_C14
 LIQUID:L
M5C2
                                                                  мзс2
                               M7C3
                                                                  SIGMA
   REJECTED
TDB_FEDEMO: RES PH FCC_A1 CEMENTITE
FCC_A1
TDB_FEDEMO: GET
                                CEMENTITE RESTORED
 REINITIATING GES .....
 ELEMENTS ....
 SPECIES .....
 PHASES .....
Creating a new composition set FCC_A1#2
 PARAMETERS ...
 FUNCTIONS ....
 Use the command LIST_REFERENCES to see the list of references for assessed data
 -OK-
TDB_FEDEMO: APP MFEDEMO
 Current database: Fe-Alloys Mobility demo database v4.0
 VA DEFINED
APP: DE-E FE CR C
                                 CR
 FE
   DEFINED
APP: REJ PH *
 BCC A2
                                 FCC_A1
                                                                 CEMENTITE
 LIQUID:L REJECTED
APP: RES PH FCC_A1 CEMENTITE FCC_A1 CEMENTAPP: GET
                                 CEMENTITE RESTORED
 ELEMENTS .....
 SPECIES .....
 PHASES ......
Creating a new composition set FCC_A1#3
 PARAMETERS ...
 FUNCTIONS ....
 Use the command LIST_REFERENCES to see the list of references for assessed data
 -OK-
APP: GO D-M
13:01:55,173 [Thread-0] INFO StandaloneLicenseController: Checking out license for: Diffusion (DICTRA)
 NO TIME STEP DEFINED
DIC> SET_CONDITION GLOBAL T 0 1183; * N
DIC> ENTER_REGION
REGION NAME : CARB
REGION NAME : AUS
ATTACH TO REGION NAMED /CARB/: CARB
ATTACHED TO THE RIGHT OF CARB /YES/: YES
DIC> ,
DIC> ,
DIC> ENTER GRID
REGION NAME : /CARB/: CARB
WIDTH OF REGION /1/: 5.255E-7
TYPE /LINEAR/: AUTO
DIC> ,
DIC> ,
DIC> ,
DIC> ENTER_GRID
REGION NAME: /AUS/: AUS
WIDTH OF REGION /1/: 5.3924863E-7
TYPE /LINEAR/: AUTO
DIC> ,
DIC> ,
DIC> ENTER PHASE
ACTIVE OR INACTIVE PHASE /ACTIVE/: ACTIVE
REGION NAME : /CARB/: CARB
PHASE TYPE /MATRIX/: MATRIX
```

```
Thermo-Calc / DICTRA is software package for calculation of phase diagrams,
  simulation of phase transformation kinetics and much more.
  Copyright Foundation for Computational Thermodynamics.
 Stockholm, Sweden
  Software running on Windows 64-bit wordlength
 Compiler: unknown compiler
License library version: 9.7.0.0036
 Linked: Fri Oct 18 11:32:56 2024
SYS:SYS:MACRO exb2\run.DCM SYS:
SYS:
SYS: @@ exb2_run.DCM
SYS:
SYS: @@
SYS: 00 READ THE SET UP FROM FILE AND START THE SIMULATION
SYS: @@
SYS:
13:02:50,596 [Thread-0] INFO StandaloneLicenseController: Checking out license for: Diffusion (DICTRA) TIME STEP AT TIME 0.00000E+00
DIC> read exb2
OK
DIC> sim
  geometric 0.863418 dense at 0.525500E-06 89 points Region: AUS
                                                             0.00000
  geometric
                       1.05932
                                           dense at
                                                                                      77 points
   DEGREE OF IMPLICITY SET TO TRAPEZOIDAL RULE
   Trying old scheme
Trying old scheme 4

GENERATING STARTING VALUES FOR CELL # 1 INTERFACE # 2

DETERMINING INITIAL EQUILIBRIUM VALUES

CALCULATING STARTING VALUES: 9 EQUILIBRIUM CALCUI
                                                           9 EQUILIBRIUM CALCULATIONS
                                                                                                                                   *** ERROR 1611 IN QTHISS: TOO MANY ITERATIONS
  Give the command INFO TROUBLE for help
DONE 6 OUT OF 9
                                                                                                                                      DONE 9 OUT OF
 04

U-FRACTION IN SYSTEM: C = .0406910188248198 CR = .0212231529163473

FE = .97877684721416

TOTAL SIZE OF SYSTEM: 5.05626560299E-18 [m^3]

U-FRACTION IN SYSTEM: C = .0406910188248198 CR = .0212231529163473

FE = .97877684721416
 FE = .97877684721416
TOTAL SIZE OF SYSTEM: 5.05626560299E-18 [m^3]
0.174822717043676 0.1748638376120
005 4.225962411887480E-006
007 9.395228943647151E-008
                                            0.174863837612061
                                                                                        0.174822771086727
                                                                                                                                   2.939400104982828E-003
                                                                                                                                                                                       7.696884354800250E-
                                                                                                                 2.590564756771282E-007
9.389398638366630E-008
9.330573159708859E-008
                                                                      7.656587621861788E-007
9.382517841505027E-008
                                                                                                                                                                              2.348148112734887E-
9.400589727934374E-
                   9.357681914045472E-008
9.294475213757037E-008
                                                                      9.348651968420604E-008
9.222441942374784E-008
\cap \cap \aleph
                                                                                                                                                                              9.426358202409885E-
                                                                                                                          9.079026418008753E-008
                                                                                                                                                                              9.174093735752857E-
008
008
                   8.794822416905559E-008
                                                                      8.237139194169516E-008
                                                                                                                           7.166242566737878E-008
                                                                                                                                                                              7.255844999865708E-
 5.213969419673716E-008
1.371431124655254E-018
014
 TOTAL SIZE OF SYSTEM: 5.05626560299E-18 [m^3]

CPU time used in timestep 0 seconds
5.514933385228125E-005 5.516153468651187E-005 5.514938159541911E-005 1.136420092484870E-007 9.218164484133925E-

008 5.597898588726280E-008 2.406298821136314E-008 4.685533549623942E-012 5.734137919518977E-

016 5.396694224780842E-019 TIME = 0.30000000E-06 DT = 0.20000000E-06 SUM OF SQUARES = 0.18699240E-18

CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.18416544E-03 AND -0.18416544E-03

POSITION OF INTERFACE CARB / AUS IS 0.52519340E-06

U-FRACTION IN SYSTEM: C = .0407166662839749 CR = .0212232252013087

FE = .978776774929198

TOTAL SIZE OF SYSTEM: 5.05626560299E-18 [m^3]

CPU time used in timestep 0 seconds
008
TOTAL SIZE OF SYSTEM: 5.05626560299E-18 [m^3]

CPU time used in timestep

0 seconds

1.4388532416880551E-006

1.438824451051302E-006

1.4388901269197E-006

1.368039299432932E-006

006

1.295548565872077E-006

1.195687998709032E-006

1.19564142960763E-006

1.011439800288802E-006

006

6.864779768666986E-007

2.285005172906121E-007

5.40406655339766E-011

1.525748519234987E-015

4.232122551495736E-019

TIME = 0.70000000E-06 DT = 0.40000000E-06 SUM OF SQUARES = 0.11431872E-18

CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.13849267E-03 AND -0.13849267E-03

POSITION OF INTERFACE CARB / AUS IS 0.52513800E-06

U-FRACTION IN SYSTEM: C = .0407166334238572 CR = .0212232371896216

FE = .978776762940886

TOTAL SIZE OF SYSTEM: 5.05626560299E-18 [m^3]
                                                                                                                                                                                                                1.344280446388578E-
output ignored ...
5.999886001935909E-008 2.365830515028872E-008 3.355564225533292E-012
016 TIME = 6035.9209 DT = 1000.0000 SUM OF SQUARES = 0.29949941E-16
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.14805943E-10 AND -0.14805943E-10
POSITION OF INTERFACE CARE / AUS IS 0.26810926E-06
U-FRACTION IN SYSTEM: C = .0407464748437476 CR = .0212228243988234
FE = .978777175731684
TOTAL SIZE OF SYSTEM: 5.05626560299E-18 [m^3]
                                                                                                                                                          1.944450955620792E-
   CPU time used in timestep
                                                                                  1 seconds
CPU time used in timestep 2 sec 5.225209238433798E-008 5.240492700616315E-008
                                                                                        seconds
2.121750331796429E-008
                                                                                                                                                                                                                9.585949013895591E-
```

```
FE = .978777179588534
TOTAL SIZE OF SYSTEM: 5.05626560299E-18 [m^3]
CPU time used in timestep 1 sec
2.026205430686269E-008 2.034121653237753E-008
                                                                                                                                                    1.012909882398464E-008
                                                                                                                                                                                                    5.233950919097625E-
TOTAL SIZE OF SYSTEM: 5.05626560299E-18 [m^3]
CPU time used in timestep 1 seconds
1.455653723700638E-008 1.454807449291241E-008 1.450007706644325E-008
009 1.022107285456354E-014 8.998524401118482E-
017 TIME 10000.000 DT = 964.07913 SUM OF SQUARES = 0.89949661E-16
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.10215839E-10 AND -0.10215839E-10
POSITION OF INTERFACE CARB / AUS IS 0.22271090E-06
U-FRACTION IN SYSTEM: C = .0407467174738084 CR = .0212228185233998
FE = .978777181607107
                                                                                                                                                     8.387586322423751E-009
                                                                                                                                                                                                       4.531346365416658E-
009
 FE = .978777181607107

TOTAL SIZE OF SYSTEM: 5.05626560299E-18 [m^3]

MUST SAVE WORKSPACE ON FILE

WORKSPACE SAVED ON FILE

RECLAIMING WORKSPACE
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                       0 0000000
                                                   0.1000000E-06
  DELETING TIME-RECORD FOR TIME
                                                      0.3000000E-06
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                      0.7000000E-06
0.15000000E-05
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                      0.31000000E-05
  DELETING TIME-RECORD FOR TIME
                                                      0.12700000E-04
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                      0.25500000E-04
                                                      0.51100000E-04
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                      0.10029595E-03
0.18748734E-03
  DELETING TIME-RECORD FOR TIME
                                                      0.33543544E-03
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                      0.57835846E-03
                                                      0.95749442E-03
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                      0.15304571E-02
0.23679917E-02
  DELETING TIME-RECORD FOR TIME
                                                      0.35511488E-02
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                      0.73237753E-02
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                      0 10103564E-01
                                                      0.13647423E-01
  DELETING TIME-RECORD FOR TIME
                                                      0.18227586E-01
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                      0.24220302E-01
                                                      0.32222097E-01
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                      0.43283483E-01
                                                      0.59469160E-01
  DELETING TIME-RECORD FOR TIME
                                                      0.85515267E-01
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                      0.13484423
                                                      0.23350215
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                      0.42032578
                                                      0.75799508
  DELETING TIME-RECORD FOR TIME
                                                        1 3381135
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                        4.0419404
                                                        6.9712858
                                                        12.031708
  DELETING TIME-RECORD FOR TIME
                                                        21 055606
  DELETING TIME-RECORD FOR TIME
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                        69.974366
                                                        134.37080
                                                        263.16367
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                        520.74940
1035.9209
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                        2035.9209
                                                        3035.9209
                                                        4035.9209
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                        5035.9209
6035.9209
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                        7035.9209
  KEEPING TIME-RECORD FOR TIME
                                                   9035 9209
 WORKSPACE RECLAIMED
 TIMESTEP AT 10000.0000 SELECTED
DIC> .
DIC>
DIC> go sys
```

13:04:48,366 [Thread-0] INFO StandaloneLicenseController: Releasing license for: Diffusion (DICTRA)

SYS: set-inter

exb2-plot

```
SYS: About
```

```
\label{thm:calc} Thermo-Calc \ / \ DICTRA \ is \ software \ package \ for \ calculation \ of \ phase \ diagrams, \\ simulation \ of \ phase \ transformation \ kinetics \ and \ much \ more.
 Copyright Foundation for Computational Thermodynamics,
 Stockholm, Sweden
 Software running on Windows 64-bit wordlength
 Compiler: unknown compiler
License library version: 9.7.0.0036
Linked: Fri Oct 18 11:32:56 2024
SYS:SYS:MACRO exb2\plot.DCM SYS:
SYS:
SYS: @@ exb2_plot.DCM
SYS:
SYS: 00
SYS: 00 FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE b2
SYS: @@
SYS:
SYS: @@
SYS: @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE
SYS: go d-m
13:05:43,444 [Thread-0] INFO StandaloneLicenseController: Checking out license for: Diffusion (DICTRA)
TIME STEP AT TIME 1.00000E+04
DIC> read exb2
 OK
DIC> @@
DIC> @@ GO TO THE POST PROCESSOR
DIC> @@
DIC> post
  POST PROCESSOR VERSION 1.7
Implemented by Bjorn Jonsson
POST-1: @@
POST-1: @@ LET US PLOT CHROMIUM CONCENTRATION PROFILES
POST-1: @@ WE THEN SET THE DISTANCE AS X-AXIS (NOTE THAT DISTANCE IS AUTOMATICALLY POST-1: @@ SET AS THE INDEPENDENT VARIABLE) AND U-FRACTION CARBON AS Y-AXIS POST-1: @@ REMEMBER THAT THE PLOT CONDITION ALSO MUST BE SET.
POST-1: 00 NOTICE THAT ALL DISTANCES IN THE DATA FILE ARE GIVEN RELATIVE TO THE
POST-1: @@ CEM/FCC INTERFACE. FOR THIS REASON AN OFFSET MUST BE GIVEN TO THE
POST-1: @@ DATA ACCORDING TO THE ACTUAL PARTICLE RADIUS AT THE SPECIFIED TIME.
POST-1: enter-symb
Function or table /FUNCTION/: func
NAME: rdist
FUNCTION: gd-poi(carb,u);
POST-1:
POST-1: s-d-a x rdist
POST-1:
POST-1: s-i-v
VARIABLE /TIME/: dist
DISTANCE : /GLOBAL/: glo
POST-1:
POST-1: s-d-a y uf(cr)
POST-1:
POST-1: s-p-c time 10
POST-1: 00
POST-1: 00 SET THE TITLE ON THE PLOT
POST-1: @@
POST-1: set-title Figure b2.1
POST-1:
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: MAKE c:\[\]jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
POST-1: SET_EXP_FILE_FORMAT 10
POST-1:
POST-1: plot
```

Figure b2.1


```
POST-1:
POST-1:
POST-1:
POST-1:@?<_hit_return_to_continue_>
POST-1:
POST-1: @@
POST-1: @@ INCLUDE EXPERIMENTAL DATA POINTS ON THE PLOT FOR COMPARISION
POST-1: @@ FIRST LIST DATASETS
POST-1: @@
POST-1: 00

POST-1: app y exb2.exp

PROLOGUE NUMBER: /0/: 0

DATASET NUMBER(s): /-1/: -1

DATASET 1 CONCENTRATION PROFILE T=10S

DATASET 2 CONCENTRATION PROFILE T=100S

DATASET 3 CONCENTRATION PROFILE T=1000S

DATASET 4 CONCENTRATION PROFILE T=1000S

DATASET 5 VOLUME FRACTION CEMENTITE VS. TIME

DATASET 6 MEAN PARTICLE DIAMETER VS. TIME

POST-1:
POST-1: 00
POST-1: 00 SELECT THE PROPER DATASET POST-1: 00
POST-1: app y exb2.exp
PROLOGUE NUMBER: /0/: 0
DATASET NUMBER(s): /-1/: 1
POST-1:
POST-1: set-title Figure b2.2
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: SET_EXP_FILE_FORMAT 10
POST-1:
POST-1: plot
```

Figure b2.2


```
POST-1:
POST-1
```

```
0.50
   0.45
    0.40
                                                                   fter 100 s
    0.35
    0.30
O.25
0.25
    0.20
                                                           $ Y
    0.10
    0.05
    0.00
                           -4
                                              -2
         -6
                                                                0
                                                             RDIST
                                                                                                                 ×10<sup>-7</sup>
```

```
POST-1:
POST-1
```

Figure b2.4


```
POST-1:
S-p-c time 10000
POST-1:
POST-1: app y exb2.exp
PROLOGUE NUMBER: /0/: 0
DATASET NUMBER(s): /-1/: 4
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
SET_EXP_FILE_FORMAT 5
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: SET_EXP_FILE_FORMAT 10
POST-1: SET_EXP_FILE_FORMAT 10
POST-1: POST-1: POST-1:
POST-1: plot
```

```
0.25
                                  ⊕

₹
                                       φ
<u>Χ</u>σ
                      Φ
    0.20
                                                                     After 10000 s
                          X
                 Δ
    0.15
UF(CR)
    0.10
    0.05
    0.00
                          -2
                                           0
                                                                                                                               10
                                                                                              6
                                                                                                               8
                                                                 RDIST
                                                                                                                         ×10<sup>-7</sup>
```

```
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1: 08
PO
```

Figure b2.6


```
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1: @?<hit_return_to_continue>
POST-1: @@
POST-1: @@
POST-1: @@
POST-1: @@
POST-1: @@
POST-1: enter func diam=2*poi(carb,u);
POST-1: s-d-a y diam
POST-1:
POST-1: s-p-c interface carb upper
POST-1: app y exb2.exp
PROLOGUE NUMBER: /0/: 0
```


POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
Set-inter
--OK--POST-1:

Example exb3

Dissolution of 23-carbide in an austenitic matrix

This example calculates the dissolution of an M23C6 particle in an austenite matrix. A film of ferrite is allowed to nucleate around the carbide during the precipitation.


```
Thermo-Calc / DICTRA is software package for calculation of phase diagrams,
  simulation of phase transformation kinetics and much more.
  Copyright Foundation for Computational Thermodynamics,
  Stockholm, Sweden
  Software running on Windows 64-bit wordlength
  Compiler: unknown compiler
License library version: 9.7.0.0036
Linked: Fri Oct 18 11:32:56 2024
SYS:SYS:MACRO exb3\setup.DCM
SYS:
SYS: @@ Moving boundary example.
SYS: @@ Dissolution of 23-carbide in an austenitic matrix
SYS: 00 This example calculates the dissolution of an M23C6 particle in an SYS: 00 austenite matrix. A film of ferrite is allowed to nucleate around the
SYS: @@ carbide during the precipitation.
SYS: -
  NO SUCH COMMAND, USE HELP
SYS:
SYS: @@ RETRIEVE DATA FROM THE DATABASES
SYS: @@
SYS: go da
13:06:49,488 [Thread-0] INFO LicenseManager: Initializing user: jenkins.integrationtest@thermocalc.se
13:06:49,510 [Thread-0] INFO LicenseController: Running License Spring in DEV environment.
13:06:50,585 [Thread-0] INFO LicenseManager: There is an activated standalone license for jenkins.integrationtest@thermocalc.se for TC-
Application
   THERMODYNAMIC DATABASE module
  C:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples\databases\da
  Current database: Steels/Fe-Alloys v12.0
  ... /- DEFINED
DICTRA_FCC_A1 REJECTED
TDB_TCFF1?.
TDB_TCFE12:
TDB_TCFE12: @@
TDB_TCFE12: @@ USE A DATABASE FOR THERMODYNAMIC DATA
TDB_TCFE12: @@
TDB_TCFE12: sw fedemo
  Current database: Iron Demo Database v5.0
                                                       /- DEFINED
  VA
TDB_FEDEMO: def-sys fe c cr
                                                                                                         CR
  FE
     DEFINED
DEFINED TDB_FEDEMO: rej ph *
BCC_A2
CHI_A12
FCC_A1
HCP_A3
LIQUID:L
                                                     CBCC_A12
CUB_A13
                                                                                                          CEMENTITE
                                                                                                          DIAMOND_FCC_A4
                                                      GAS:G
KSI_CARBIDE
M23C6
                                                                                                          GRAPHITE
                                                                                                          LAVES_PHASE_C14
                                                                                                          M3C2
  M5C2
                                                      M7C3
                                                                                                          SIGMA
      REJECTED
TDB_FEDEMO: res ph fcc bcc m23
FCC_A1 BCC_A
                                                                                                          M23C6
                                                      BCC_A2
      RESTORED
RESIDED RESIDE RESIDED RESIDED
   SPECIES .....
  Creating a new composition set FCC_A1#2 PARAMETERS ...
  FUNCTIONS ....
  Use the command LIST_REFERENCES to see the list of references for assessed data
   -OK-
TDB_FEDEMO: @@
TDB FEDEMO: @@ SWITCH TO A MOBILITY DATABASE TO RETRIEVE THE MOBILITY DATA
TDB_FEDEMO: @@
TDB FEDEMO: app mfedemo
  Current database: Fe-Alloys Mobility demo database v4.0
  VA DEFINED
APP: def-sys c cr fe
  С
                                                     CR
                                                                                                        FE
      DEFINED
APP: rej ph *
BCC_A2
                                                    FCC_A1
                                                                                                         CEMENTITE
  LIQUID:L REJECTED
APP: res ph fcc bcc
FCC_A1
APP: get
                                                     BCC_A2 RESTORED
  ELEMENTS ....
  SPECIES .....
   Creating a new composition set FCC_A1#3
   PARAMETERS ...
  FUNCTIONS ....
  Use the command LIST REFERENCES to see the list of references for assessed data
  -OK-
APP:
APP: @@
APP: @@ ENTER THE DICTRA MONITOR
APP: @@
APP: go d-m
13:06:52,235 [Thread-0] INFO StandaloneLicenseController: Checking out license for: Diffusion (DICTRA)
NO TIME STEP DEFINED
*** ENTERING M23C6 AS A DIFFUSION NONE PHASE
DIC>
```

```
DIC>
DIC> @@ THE MOBILITY DATABASE LACKS KINETIC DATA FOR THE M23-CARBIDE
DIC> @@ SO AN ESTIMATE FOR THE MOBILITIES IN THIS PHASE ARE ENTERED.
DIC> ent-mob-est M23 c
M[M23,C](T) = 0;
DIC>
DIC> ent-mob-est M23 cr
M[M23,CR](T)= 3e-11*exp(-278000/8.3145/T);
DIC> ent-mob-est M23 fe
M[M23,FE](T) = 1e-11*exp(-275000/8.3145/T);
DIC> @@
DIC> @@ ENTER GLOBAL CONDITION T
DIC> @@
DIC> set-cond glob T 0 1273; * N
DIC> @@
DIC> @@ ENTER THE REGIONS carbide AND matrix
DIC> @@
DIC> enter-region carbide
DIC> enter-region matrix
ATTACH TO REGION NAMED /CARBIDE/:
ATTACHED TO THE RIGHT OF CARBIDE /YES/:
DIC> @@
DIC> @@ ASSUME SOME REASONABLE SIZE OF THE CARBIDE PARTICLE
DIC> @@
DIC> enter-grid carbide 5.00000000E-7 AUTO
DIC> @@
DIC> 00 THE SIZE OF THE FCC REGION WE CAN CALCULATE FROM A MASS BALANCE DIC> 00 AFTER ESTIMATING THE INITIAL COMPOSITIONS IN THE TWO PHASES.
DIC> enter-grid matrix 5.55859755E-7 AUTO
DIC> @@
DIC> 00 ENTER PHASES INTO THE REGION MATRIX, BOUNDARY CONDITIONS ARE GIVEN DIC> 00 IF THE INACTIVE PHASE bcc IS NUCLEATED
DIC> @@
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /CARBIDE/: matrix
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: fcc#1
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: inact
ATTACH TO REGION NAMED /MATRIX/: matrix
ATTACHED TO THE RIGHT OF MATRIX /YES/: no
PHASE NAME: /NONE/: bcc#1
DEPENDENT COMPONENT ? /FE/: fe
REQUIRED DRIVING FORCE FOR PRECIPITATION: /1E-05/: CONDITION TYPE /CLOSED_SYSTEM/: closed
DIC> 00
DIC> 00 ENTER THE PHASE INTO THE REGION carbide DIC> 00
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /CARBIDE/: carbide
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: m23c6
DTC>
DIC> @@
\ensuremath{\mathsf{DIC}}\xspace @0 enter compositions into the phases \ensuremath{\mathsf{DIC}}\xspace 00
DIC> enter-composition
REGION NAME: /CARBIDE/: carbide
PHASE NAME: /M23C6/: m23c6
DEPENDENT COMPONENT ? /FE/: fe
COMPOSITION TYPE /MOLE_FRACTION/: mole-fraction
PROFILE FOR /CR/: cr lin 0.55079807 0.55079807
DIC>
DIC> enter-composition
REGION NAME : /MATRIX/: matrix
PHASE NAME: /FCC_A1#1/: fcc#1
DEPENDENT COMPONENT? /FE/: fe

COMPOSITION TYPE /MOLE FRACTION/: mole-fraction

PROFILE FOR /C/: cr lin 8.5203899E-2 8.5203899E-2

PROFILE FOR /CR/: c lin 1.8072433E-4 1.8072433E-4
DIC>
DIC> @@
DIC> 00 SET TO A SPHERICAL GEOMETRY
DIC> 00
DIC> enter-geo
GEOMETRICAL EXPONENT /0/: 2
DIC> @@
DIC> 00 SET THE SIMULATION TIME AND OTHER SIMULATION PARAMETERS
DIC> @@
DIC> set-simulation-time
END TIME FOR INTEGRATION /.1/: 8000
AUTOMATIC TIMESTEP CONTROL /YES/:
MAX TIMESTEP DURING INTEGRATION /800/: INITIAL TIMESTEP: /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DTC> @@
DIC> @@ SAVE THE SET UP TO A NEW STORE FILE AND EXIT
DIC> @@
DIC> save exb3 Y
DTC>
DIC>
DTC>
DIC> set-inter
```

```
NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exb3\run.DCM DIC>
DIC>
DIC> @@ exb3_run.DCM
DIC>
DIC> @@ FILE FOR RUNNING EXAMPLE b3
DIC> @@
DIC>
DIC> @@
DIC> @@ ENTER THE DICTRA MONITOR AND READ THE SET UP FROM FILE
DIC> @@
  TIME STEP AT TIME 0.00000E+00
DIC> read exb3
 OK
DTC>
DIC> @@
DIC> 00 WHEN THE FERRITE NUCLEATES WE USE DEFAULT VALUES
DIC> @@ AS STARTING VALUES FOR THE WIDTH OF THE NEW REGION
DIC> @@ AND THE VELOCITY OF THE INTERFACES
DIC> @@
DIC>
DIC> @@
DIC> @@ START THE SIMULATION
DIC> @@
DIC> sim yes
 Region: CARBIDE
  geometric
                       0.951339
                                            dense at 0.500000E-06 77 points
 Region: MATRIX
                        1.05169
  geometric
                                              dense at
  DEGREE OF IMPLICITY SET TO TRAPEZOIDAL RULE
    Trying old scheme
 Trying oid scheme 4
GENERATING STARTING VALUES FOR CELL # 1 INTERFACE # 2
GEMERATING STARTING VALUES FOR CELL # 1 INTERFACE # 2
DETERMINING INITIAL EQUILIBRIUM VALUES

CALCULATING STARTING VALUES: 9 EQUILIBRIUM CALCULATIONS

U-FRACTION IN SYSTEM: C = .0278637912207471 CR = .149918318671311

FE = .850081681459196

U-FRACTION IN SYSTEM: C = .0278637912207471 CR = .149918318671311

FE = .850081681459196

TOTAL SIZE OF SYSTEM: C = .0278637912207471 CR = .149918318671311
                                                                                                                                        DONE 6 OUT OF
 TOTAL SIZE OF SYSTEM: 4.93068569406E-18 [m^3] 0.563752609069994 0.563886381801045
0.56375260906994 0.563886381801045 0.563753419684951 1.010018006844779E-002 2.7808135980529
004 1.635894637965996E-005 2.440981321434799E-006 1.172555947057629E-006 1.044792964976161E-
006 3.760898454198118E-008 3.342218624125184E-008 2.629923475732254E-008 3.034711864167112E-
008 2.004518858259055E-008 1.009871947004566E-008 3.416640135483140E-010 2.489505896789105E-
 TOTAL SIZE OF SYSTEM: 4.93068569406E-18 [m^3]
CPU time used in timestep 6 seconds
3.091422033659211E-005 3.092050575384746E-005 3.09137753520550
09 1.391159927091919E-013 3.099374147112224E-019 TIME =
06 SUM OF SQUARES = 0.11438838E-24
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.76187577E-04 AND -0.76187577E-04
POSITION OF INTERFACE CARBIDE / MATRIX IS 0.49988936E-06
U-FRACTION IN SYSTEM: C = .0278707747843359 CR = .149918434415919
FE = .850081565714588
TOTAL SIZE OF SYSTEM: 4.93068569406E-18 [m^3]
CPU fime used in timestep 1 seconds
                                                                                          seconds
005 3.091377535205507E-005
                                                                                                                                                           4.589585444380703E-008
                                                                                                                                                                                                                   2.465668827679773E-
                                                                                                                           TIME = 0.30000000E-06 DT = 0.20000000E-
1.742120613995579E-
CPU time used in timestep 1 seconds
2.733933653436332E-006 2.734994742537779E-006 2.733627730264119E-006 7.812754924423405E-0
010 1.150208381607498E-014 1.326827369940729E-019 TIME = 0.15000000E-05 DT = 0.80000000E-
06 SUM OF SQUARES = 0.50845866E-21
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.36264148E-04 AND -0.36264148E-04
POSITION OF INTERFACE CARBIDE / MATRIX IS 0.49983789E-06
                                                                                         seconds
-006 2.733627730264119E-006
                                                                                                                                                                 7.812754924423405E-008
                                                                                                                                                                                                                      8.217982627279895E-
output ignored...
... output resumed
 SUM OF SQUARES = 0.57858246E-20
        GRIDPOINT(S) REMOVED FROM CELL #1 REGION: MATRIX
CPU time used in timestep 1 seconds
7.074492777311735E-008 7.076558198024483E-008 7.067455474730985E-008 4.48
008 1.826839039672797E-008 7.326529197427166E-010 1.127210479588651E-015
020 TIME = 6214.0440 DT = 800.00000 SUM OF SQUARES = 0.26038926E-19
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.30174470E-12 AND -0.30174470E-12
POSITION OF INTERFACE CARBIDE / MATRIX IS 0.39292084E-06
U-FRACTION IN SYSTEM: C = .0277946082551446 CR = .149744699030401
FE = .850255301100106

TOTAL SIZE OF SYSTEM: 4.93068569406E-18 [m^3]

1 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: MATRIX
                                                                                                                                                                 4.486201921988812E-008
                                                                                                                                                                                                                      3.525643246477608E-
                                                                                                                                                                                  2.611008031666860E-
   1 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: MATRIX
CPU time used in timestep 1 seconds
2.405855489176618E-008 2.406353003440865E-008 2.401645372839490E-008 1.5
008 1.154009764476587E-008 6.948497823183423E-009 6.943517519327478E-009
009 3.567404147438633E-016 3.410122322972613E-
000 TIME = 7014.0440 DT = 800.00000 SUM OF SQUARES = 0.34082180E-19
                                                                                          seconds
008 2.401645372839490E-008
                                                                                                                                                                1.580345707638346E-008
                                                                                                                                                                                                                      1.454204197734934E-
                                                                                                                                                                                   1.110460413301649E-
 020 TIME = 7014.0440 DT = 800.00000 SUM OF
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.57991657E-13 AND
                                                                                                           -0.57991657E-13
```

```
POSITION OF INTERFACE CARBIDE / MATRIX IS
                                                                  0.39287444E-06
 U-FRACTION IN SYSTEM: C = .0277946106453739 CR = .149744699168333 FE = .850255300962174

TOTAL SIZE OF SYSTEM: 4.93068569406E-18 [m^3]
   1 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: MATRIX
CPU time used in timestep 2 seconds 8.116675096638794E-009 8.117228710356137E-009 8.091633720786405E-009 5.253059272457056E-009 5.176613838896075E-009 4.956826873996181E-009 4.595987155851478E-009 4.593911157356757E-009 3.855841350083578E-009 2.619303792106272E-009 8.493378448306802E-010 1.346961182970850E-013 8.901441933572719E-019 TIME = 7814.0440 DT = 800.00000 SUM OF SQUARES = 0.88664377E-18 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.88119329E-13 AND 0.81119329E-13 POSITION OF INTERFACE CARBIDE / MATRIX IS 0.39293934E-06 U-FRACTION IN SYSTEM: C = .0277946087826722 CR = .149744699170268 FE = .850255300960239

TOTAL SIZE OF SYSTEM: 4.93068569406E-18 [m^3] 30 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: CARBIDE
009
019
CPU time used in timestep
                                                                             seconds
                                                                                                                                                                                      2.701316892278625E-
  RECLAIMING WORKSPACE
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                    71.866744
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                   71.866754
  DELETING TIME-RECORD FOR TIME
                                                    71.866814
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                    71.867054
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                    71.867374
  DELETING TIME-RECORD FOR TIME
                                                    71.869294
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                    71.876974
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                    71.887214
  DELETING TIME-RECORD FOR TIME
                                                    71.948654
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                    72.194414
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                    72.522094
  DELETING TIME-RECORD FOR TIME
                                                    74.488174
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                    82.352494
  DELETING TIME-RECORD FOR TIME
                                                    92.838254
  DELETING TIME-RECORD FOR TIME
                                                    113.80977
  DELETING TIME-RECORD FOR TIME
                                                    155 75281
  DELETING TIME-RECORD FOR TIME
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                    407.41105
                                                    742.95537
  DELETING TIME-RECORD FOR TIME
                                                    1414.0440
  DELETING TIME-RECORD FOR TIME
                                                    2214 0440
  DELETING TIME-RECORD FOR TIME
  DELETING TIME-RECORD FOR TIME
                                                    3814.0440
  DELETING TIME-RECORD FOR TIME
                                                    4614.0440
  DELETING TIME-RECORD FOR TIME
                                                    5414.0440
  DELETING TIME-RECORD FOR TIME
                                                   6214 0440
  DELETING TIME-RECORD FOR TIME
  KEEPING TIME-RECORD FOR TIME
                                               7814.0440
 AND FOR TIME
                                                 8000.0000
 WORKSPACE RECLAIMED
                        8000.00000
 TIMESTEP AT
                                            SELECTED
DIC> set-inter
   --OK---
DIC>
```

```
DIC>About
NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exb3\plot.DCM DIC>
DIC>
DIC> @@ exb3_plot.DCM
DIC>
DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE b3
DIC> @@
DIC>
DIC> @@
\overline{\text{DIC}}\text{>} 00 enter the dictra module and specify the store result file \overline{\text{DIC}}\text{>} 00
DIC> go d-m
TIME STEP AT TIME 8.00000E+03
DIC> read exb3
 OK
DIC>
DIC> @@
DIC> @@ ENTER THE DICTRA POST PROCESSOR
DIC> @@
DIC> post
  POST PROCESSOR VERSION
                                    1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1: @@
POST-1: 00 LET US SEE HOW THE AMOUNT OF FERRITE VARIED DURING THE POST-1: 00 SIMULATION
POST-1: @@
POST-1: s-d-a y iww(bcc)
POST-1: s-d-a x time
INFO: Time is set as independent variable
POST-1: s-ax-typ x log
POST-1: s-s-s x n 1E-5 1E3
POST-1: s-s-s y n 0 0.1
POST-1:
POST-1: set-tit Figure b3.1
POST-1:
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5

POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
ORKING ... OST-1: SET_EXP_FILE_FORMAT 10
ORKING ... POST-1:
POST-1: plot
                                                  Figure b3.1
        0.10
        0.09
        0.08
        0.07
        0.06
     IWW(BCC)
        0.05
        0.04
        0.03
        0.02
        0.01
        0.00
                        10-4
                                    10-3
                                                            10-1
                                                10-2
                                                                        100
                                                                                    101
                                                                                                            103
 Time
POST-1:
POST-1:
POST-1:@?< hit return to continue >
POST-1: @@
```

```
POST-1: @?<_hit_return_to_continue_>
POST-1: @?<-hit_return_to_continue_>
POST-1: @@
POST-1: @@
POST-1: @@ NOW LOOK AT THE ALLOYING ELEMENTS AT THE UPPER BOUND OF THE SYSTEM
POST-1: s-d-a y w(c)
POST-1: s-d-a y w(c)
POST-1: s-s-s x n 1E-3 1E4
POST-1: s-p-c interface last
POST-1: s-p-c interface last
POST-1: set-tit Figure b3.2
POST-1: Set-tit Figure b3.2
POST-1: Set-tit Figure b3.2
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: SET_EXP_FILE_FORMAT 10
POST-1: DOST-1: SET_EXP_FILE_FORMAT 10
POST-1: P
```

```
Figure b3.2
                                                      0.0035
                                                      0.0030
                                                      0.0025
                                                      0.0020
                               W(C)
                                                      0.0015
                                                      0.0010
                                                      0.0005
                                                                                                                                             10-2
                                                    0.0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             10<sup>3</sup>
                                                                                                                                                                                                                                                                  10-1
                                                                                                                                                                                                                                                                                                                                                                                                                                       10¹
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           10<sup>2</sup>
                                                                                                                                                                                                                                                                                                                                                      10º
                                                                                                                                                                                                                                                                                                                                                                                    Time
POST-1:
POST-1
 POST-1:
POST-1: set-tit Figure b3.3
 POST-1:
POST-1:
 POST-1: SET_EXP_FILE FORMAT 5
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
```

Figure b3.3

OST-1: SET_EXP_FILE_FORMAT 10

ORKING ... POST-1:

POST-1: plot

```
0.120
        0.100
        0.080
   W(CR)
        0.040
        0.020
        0.000
                               10-2
                                                10-1
                                                                 10º
                                                                                  10¹
                                                                                                   10<sup>2</sup>
                                                                                                                    10<sup>3</sup>
                                                                                                                                     104
               10<sup>-3</sup>
                                                                       Time
```

```
POST-1:
POST-1:@?<hit_return_to_continue_>
POST-1:@?<hit_return_to_continue_>
POST-1: @@
POST-1: @@
POST-1: @@ AND FINALLY LOOK AT THE CHANGE OF RADIUS OF THE M23-CARBIDE
POST-1: @@
POST-1: s-d-a y position carbide upper
POST-1: s-s-s x n 1E-4 1E4
POST-1: s-s-s x n 1E-4 1E4
POST-1: set-tit Figure b3.4
POST-1: set-tit Figure b3.4
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
ORKING ... OST-1: SET_EXP_FILE_FORMAT 10
POST-1: plot
```


POST-1:
POST-1:
POST-1:@?<_hit_return_to_continue_>
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:

Example exb4a

Solidification path of a Fe-18%Cr-8%Ni alloy: Eutectic reaction

This example demonstrates the solidification path of an Fe-18%Cr-8%Ni alloy. A eutectic reaction is assumed, LIQUID -> BCC + FCC. Hence the BCC and FCC regions should be on separate sides of the liquid region. Comparison is made with both a Scheil-Gulliver simulation and equilibrium solidification conditions, both made with Thermo-Calc.

▼ 1E-4

```
Thermo-Calc / DICTRA is software package for calculation of phase diagrams, simulation of phase transformation kinetics and much more.
 Copyright Foundation for Computational Thermodynamics,
 Stockholm, Sweden
 Software running on Windows 64-bit wordlength
 Compiler: unknown compiler
License library version: 9.7.0.0036
Linked: Fri Oct 18 11:32:56 2024
SYS:SYS:MACRO exb4a\setup.DCM
SYS: @@
SYS: @@ Moving boundary problem.
SYS: 00 Solidification path of an Fe-18%Cr-8%Ni alloy: Eutectic reaction
SYS: 00 This example demonstrates the solidification path of an Fe-18%Cr-8%Ni SYS: 00 alloy. A eutectic reaction is assumed, LIQUID -> BCC + FCC. Hence the
       @@ BCC and FCC regions should be on separate sides of the liquid region.
{\tt SYS}: @@ Comparison is made with both a Scheil-Gulliver simulation and equilibrium {\tt SYS}: @@ solidification conditions, both done in Thermo-Calc.
SYS: --
 NO SUCH COMMAND, USE HELP
SYS:
SYS: @@ exb4a_setup.DCM
SYS:
SYS: @@
SYS: 00 START BY GOING TO THE DATABASE MODULE
SYS: @@
SYS: go da

13:15:02,325 [Thread-0] INFO LicenseManager: Initializing user: jenkins.integrationtest@thermocalc.se

13:15:02,342 [Thread-0] INFO LicenseController: Running License Spring in DEV environment.

13:15:03,512 [Thread-0] INFO LicenseManager: There is an activated standalone license for jenkins.integrationtest@thermocalc.se for TC-
Application
 THERMODYNAMIC DATABASE module
 Database folder:
 C:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples\databases\da
 Current database: Steels/Fe-Alloys v12.0
 VA /- DEFINED DICTRA_FCC_A1 REJECTED PDB TCFF12.
TDB TCFE12:
TDB TCFE12: @@ USE A THERMODYNAMIC DATABASE TO RETRIEVE DATA
TDB_TCFE12: sw tcfe9
 Current database: Steels/Fe-Alloys v9.3
                                    /- DEFINED
                                   B2 BCC
 L12 FCC
                                                                    DICTRA FCC A1
   REJECTED
TDB_TCFE9:
TDB_TCFE9: @@ DEFINE THE SYSTEM TO WORK WITH
TDB_TCFE9: def-sys fe ni cr
 FE
                                                                     CR
   DEFINED
TDB_TCFE9:
TDB_TCFE9: @@ EXCLUDE THE THERMODYNAMIC DATA FOR THE PHASES THAT ARE NOT NEEDED
TDB_TCFE9: rej ph /all
                                   BCC_A2
CBCC_A12
CHI_A12
 LIQUID:L
 HCP A3
                                                                      CIIR A13
                                                                      LAVES_PHASE_C14
 CR3SI
                                   NBNI3
                                                                     NI3TI
 CRZN17
                                    מידים ב
                                                                      CAMMA
 AL5FE4
                                                                     CENI5
   REJECTED
TDB_TCFE9: res ph fcc liq bcc
 FCC_A1
RESTORED
                                                                     BCC_A2
                                   LIQUID:L
TDB_TCFS:
TDB_TCFS:
@@ RETRIEVE DATA FROM THE DATABASE FILE
TDB_TCFE9: get
13:15:05,150 [Thread-0] INFO JavaWrapper: *** Invoking Gibbs Energy System v6 ***
 REINITIATING GES ....
 ELEMENTS .....
 PHASES ......
PARAMETERS ...
 FUNCTIONS ....
 Use the command LIST_REFERENCES to see the list of references for assessed data
 -OK-
TDB_TCFE9: @@
TDE TCFE9: 00 MOBILITY/DIFFUSIVITY DATA ARE STORED IN A SEPARATE DATABASE FILE. TDB_TCFE9: 00 SWITCH TO A MOBILITY DATABASE AND APPEND THE DATA
TDB_TCFE9: @@
TDB_TCFE9: app
 Use one of these databases
 TCFE12 = Steels/Fe-Alloys v12.0
 TCFE12 = Steels/Fe-Alloys v12.0
TCFE9 = Steels/Fe-Alloys v9.3
SSUB6 = SGTE Substances v6.0
FEDEMO = Iron Demo Database v5.0
MOB2 = Alloys Mobility v2.7
MOBFE2 = Steels/Fe-Alloys Mobility v2.0
MOBFE4 = Steels/Fe-Alloys Mobility v4.0
MOBFF7 = Steels/Fe-Alloys Mobility v7.1
MFEDEMO = Fe-Alloys Mobility v7.1
MFEDEMO = User defined Database
DATABASE NAME /TCFE9/: mobfe4
 Current database: Steels/Fe-Alloys Mobility v4.0
 VA DEFINED
 B2_BCC
            REJECTED
APP: def-sys fe ni cr
                                   ΝT
                                                                     CR
```

```
DEFINED
APP: rej ph /all
BCC_A2
                                                                         HCP A3
                                      FCC A1
 LIQUID:L REJECTED
APP: res ph fcc liq bcc FCC_A1
                                      T.TOUTD • I.
                                                                         BCC A2
    RESTORED
APP: get
 ELEMENTS ....
 SPECIES .....
PHASES .....
PARAMETERS ...
 FUNCTIONS ....
 Use the command LIST REFERENCES to see the list of references for assessed data
 -OK-
APP: @@
APP: @@ ENTER THE DICTRA MONITOR WHERE THE SYSTEM IS SET UP
APP: @@
APP: go d-m

13:15:07,470 [Thread-0] INFO StandaloneLicenseController: Checking out license for: Diffusion (DICTRA)

NO TIME STEP DEFINED

DIC>
DIC> @@
DIC> @@ ENTER GLOBAL CONDITION T
DIC> @@
DIC> @@ LOWER THE TEMPERATURE TO A RATE OF 1 K/s
DIC> @@
DIC> set-cond glob T 0 1900-1*TIME; * N
DIC>
DIC> @@
DIC> @@ ENTER A REGION CALLED smalta
DIC> @@
DIC> enter-region smalta
DIC>
DIC> @@
\ensuremath{\mathsf{DIC}}\xspace @@ enter a double geometric grid into the region \ensuremath{\mathsf{DIC}}\xspace @@
DIC> enter-grid
REGION NAME : /SMALTA/: smalta
WIDTH OF REGION /1/: 1e-4
TYPE /LINEAR/: AUTO
DIC>
DIC>
DIC> @@
DIC> @@ ENTER active PHASES INTO THE REGION
DIC> @@
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME: /SMALTA/: smalta
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: liq
DIC>
DIC> @@
DIC> @@ ENTER inactive PHASES INTO THE REGION: ONE PHASE ON EACH SIDE OF THE LIQUID
DIC> 00
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: inact
ATTACH TO REGION NAMED /SMALTA/: smalta
ATTACHED TO THE RIGHT OF SMALTA /YES/: no
PHASE NAME: /NONE/: fcc#1
DEPENDENT COMPONENT ? /NI/: fe
REQUIRED DRIVING FORCE FOR PRECIPITATION: /1E-05/: 1e-5
CONDITION TYPE /CLOSED SYSTEM/: closed
DTC>
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: inact
ATTACH TO REGION NAMED /SMALTA/: smalta
ATTACHED TO THE RIGHT OF SMALTA /YES/: yes
PHASE NAME: /NONE/: bcc#1
DEPENDENT COMPONENT ? /NI/: fe
REQUIRED DRIVING FORCE FOR PRECIPITATION: /1E-05/: 1e-5
CONDITION TYPE /CLOSED_SYSTEM/: closed
DIC>
DIC> @@ ENTER A START COMPOSITION FOR THE LIQUID
DIC> 00 ENTER A START COMPOSIT:
DIC> 00
DIC> enter-composition
REGION NAME : /SMALTA/: smalta
PHASE NAME: /LIQUID/: liq
DEPENDENT COMPONENT ? /NI/: fe
COMPOSITION TYPE /MOLE_FRACTION/: w-p
PROFILE FOR /CR/: cr lin 18 18
PROFILE FOR /NI/: ni lin 8
DIC> @@
\overline{\text{DIC}}> 00 THE BOUNDARY CONDITION IS A CLOSED SYSTEM (THE DEFAULT) AS WE DO NOT SPECIFY \overline{\text{DIC}}> 00 Anything else.
DIC> @@
DIC> @@
DIC> @@ SET THE SIMULATION TIME
DIC> @@
DIC> set-simulation-time
END TIME FOR INTEGRATION /.1/: 200
AUTOMATIC TIMESTEP CONTROL /YES/:
MAX TIMESTEP DURING INTEGRATION /20/:
INITIAL TIMESTEP : /1E-07/: SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DTC>
DIC>
DIC> 00
DIC> 00 CHECK THE INTERFACE POSITION. THIS IS TO MAKE SURE THAT THE
DIC> @@ LIQUID REGION DOES NOT SHRINK TOO MUCH DURING A TIMESTEP.
DIC> @@ IN ADDITION THE TIMESTEP IS CONTROLLED BY THE PHASE INTERFACE
DIC> 00 DISPLACEMENT DURING THE SIMULATION. DIC> 00
NS01A PRINT CONTROL : /0/:
```

```
FLUX CORRECTION FACTOR: /1/:

NUMBER OF DELTA TIMESTEPS IN CALLING MULDIF: /2/:
CHECK INTERFACE POSITION /AUTO/: AUTO
VARY POTENTIALS OR ACTIVITIES OR LNAC: /ACTIVITIES/:
ALLOW AUTOMATIC SWITCHING OF VARYING ELEMENT: /YES/:
SAVE WORKSPACE ON FILE (YES,NO,O-999) /YES/:
DEGREE OF IMPLICITY WHEN INTEGRATING PDES (AUTO, 0 -> 0.5 -> 1): /AUTO/:
MAX TIMESTEP CHANGE PER TIMESTEP: /2/:
USE FORCED STARTING VALUES IN EQUILIBRIUM CALCULATION /AUTO/:
ALWAYS CALCULATE STIFFNES MATRIX IN MULDIF /YES/:
CALCULATE RESIDUAL FOR DEPENDENT COMPONENT /NO/:
DIC> @@
DIC> @@ SAVE THE SET UP TO A NEW STORE FILE AND EXIT
DIC> @
DIC> save exb4a Y
DIC>
DIC> set-inter
--OK---
DIC>
```

exb4a-run

```
NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exb4a\run.DCM DIC>
DIC>
DIC> @@ exb4a_run.DCM
DIC>
DIC> @@ FILE FOR RUNNING EXAMPLE b4a
DIC> @@
DIC>
DIC> @@
\overline{\text{DIC}}\text{>} @@ ENTER THE DICTRA MONITOR AND READ THE SET UP FROM FILE \overline{\text{DIC}}\text{>} @@
  TIME STEP AT TIME 0.00000E+00
DIC> read exb4a
 OK
DTC>
DIC> @@
DIC> @@ START THE SIMULATION
DIC> 00
DIC> sim yes
 Region: SMALTA
  Region: Grand
geometric 1.13113
motric 0.884075
                       1.13113 dense at 0.00000 53 points
0.884075 dense at 0.100000E-03 54 points
 geometric 1...
geometric 0.884075 dense at 0.100000E-03 0...
DEGREE OF IMPLICITY SET TO TRAPEZOIDAL RULE
INFO: TIMESTEP IS CONTROLLED BY INTERFACE POSITION
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219291
NI = .0754116207882254
  TOTAL SIZE OF SYSTEM: 1E-04 [m]
 U-FRACTION IN SYSTEM: CF .191520367992483 FE = .733068011219291 NI = .0754116207882254
  NI = .0754116207882254
                                                                                                                                           TOTAL SIZE OF SYSTEM: 1E-04 [m]
  CPU time used in timestep 2 seconds 
 {\tt TIME} = 0.75536897E-06 DT = 0.65536897E-06 SUM OF SQUARES = 0.000 
 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219291
                                                                                                           0 0000000
                                                                                                                                                            NI = .0754116207882254
                                                                                                                                           TOTAL SIZE OF SYSTEM: 1E-04 [m]
 CPU time used in timestep 0 seconds 
 TIME = 0.20661069E-05 DT = 0.13107379E-05 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219291
                                                                                                                                           NI = .0754116207882254
TOTAL SIZE OF SYSTEM: 1E-04 [m]
 CPU time used in timestep 0 seconds TIME = 0.46875828E-05 DT = 0.26214759E-05 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219291
                                                                                                                                           NI = .0754116207882254
TOTAL SIZE OF SYSTEM: 1E-04 [m]
 CPU time used in timestep 0 seconds TIME = 0.99305345E-05 DT = 0.52429517E-05 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219291
                                                                                                                                           NI = .0754116207882254
TOTAL SIZE OF SYSTEM: 1E-04 [m]
 CPU time used in timestep 0 seconds TIME = 0.20416438E-04 DT = 0.10485903E-04 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219291
                                                                                                                                           NI = .0754116207882254
TOTAL SIZE OF SYSTEM: 1E-04 [m]
 NI = .0754116207882254
TOTAL SIZE OF SYSTEM: 1E-04 [m]
 CPU time used in timestep 0 seconds  
TIME = 0.83331859E-04 DT = 0.41943614E-04 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219291
                                                                                                                                           NI = .0754116207882254
TOTAL SIZE OF SYSTEM: 1E-04 [m]
 CPU time used in timestep 0 seconds TIME = 0.16721909E-03 DT = 0.83887228E-04 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219291
                                                                                                                                           NI = .0754116207882254
TOTAL SIZE OF SYSTEM: 1E-04 [m]
 CPU time used in timestep 0 seconds TIME = 0.33499354E-03 DT = 0.16777446E-03 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219291
                                                                                                                                           NI = .0754116207882254
TOTAL SIZE OF SYSTEM: 1E-04 [m]
 CPU time used in timestep 0 seconds TIME = 0.67054245E-03 DT = 0.33554891E-03 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219291
                                                                                                                                           NI = .0754116207882254
TOTAL SIZE OF SYSTEM: 1E-04 [m]
 CPU time used in timestep 0 seconds TIME = 0.13416403E-02 DT = 0.67109782E-03 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219291
                                                                                                                                           NI = .0754116207882254
TOTAL SIZE OF SYSTEM: 1E-04 [m]
  CPU time used in timestep 0 seconds TIME = 0.26838359E-02 DT = 0.13421956E-02 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219291
                                                                                                                                           NI = .0754116207882254
TOTAL SIZE OF SYSTEM: 1E-04 [m]
  CPU time used in timestep 0 seconds TIME = 0.53682272E-02 DT = 0.26843913E-02 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219291
                                                                                                                                                            NI = .0754116207882254
                                                                                                                                           TOTAL SIZE OF SYSTEM: 1E-04 [m]
  CPU time used in timestep 0.53687826E-02 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
                                                                                                                                                            NI = .0754116207882253
                                                                                                                                           TOTAL SIZE OF SYSTEM: 1E-04 [m]
```

```
TOTAL SIZE OF SYSTEM: 1E-0.2 1E-0.2
  TOTAL SIZE OF SYSTEM: 1E-04 [m]
  output ignored...
 5.514020082822429E-006 5.514911388132715E-006 5.510290592157270E-006 7.037616795618768E-010
013 4.290884673935608E-018 TIME = 178.37675 DT = 1.3107200 SUM OF SQUARES = 0.42892806E-17
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.59586298E-07 AND -0.59586298E-07
POSITION OF INTERFACE R FCC A1 / R BCC A2 IS 0.70733312E-05
U-FRACTION IN SYSTEM: CR = .191500140553765 FE = .733101749908671
NI = .0753981095375642
TOTAL SIZE OF SYSTEM: 1E-04 [m]
1 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: R_BCC_A2
 ... output resumed
                                                                                                                                                                                                                                                                                                                                   4.755837981267047E-
CPU time used in timestep
                                                                                                                                                                                                                                               3.719115206553259E-007
                                                                                                                                                                                                                                                                                                                                    3.455230208942483E-
     2 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: R BCC A2
    CPU time used in timestep 7.952743903473148E-006
                                                                                                                                         seconds
CPU time used in timestep 2 seconds 7.952600143322148E-006 7.952743903473148E-006 7.9492632157582 007 1.409168481699029E-012 9.369477747928810E-017 TIME = 186.24107 DT = 5.2428800 SUM OF SQUARES = 0.92 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.17541386E-07 AND -0.17541386E-07 POSITION OF INTERFACE R_FCC_A1 / R_BCC_A2 IS 0.68668650E-05 U-FRACTION IN SYSTEM: CR = .191500140397143 FE = .733101750328692 NI = .0753981092741656 TOTAL SIZE OF SYSTEM: 1E-04 [m]
                                                                                                                                                                 7.949263215758215E-006
                                                                                                                                                                                                                                                9.909657496450635E-007
                                                                                                                                                                                                                                                                                                                               1 840177300178130E-
                                                                                                                                          SUM OF SQUARES = 0.92185218E-16
     1 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: R_BCC_A2
    CPU time used in timestep
CPU time used in timestep 1 seconds
5.746576534691800E-006 5.746728479242748E-006 5.745076598210180E-006 2.36
006 3.829962161134910E-007 4.339238583290681E-011 4.703447843004499E-015
019 TIME = 196.72683 DT = 10.485760 SUM OF SQUARES = 0.50954620E-18
CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.21895465E-07 AND 0.21895465E-07
POSITION OF INTERFACE R_FCC_A1 /R_BCC_A2 IS 0.70964556E-05
U-FRACTION IN SYSTEM: CR = .191500140395396 FE = .733101750358394
NI = .0753981092462106
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep 2 seconds
                                                                                                                                                                                                                                                             7.577169620638083E-
6.367717166966128E-
                                                                                                                                                                                                                                                   2.360343713990736E-006
TOTAL SIZE OF SYSTEM: 1E-04 [m]

CPU time used in timestep 2 seconds
1.321138207086155E-005 1.321159776785756E-005 1.320626573830183E-005 7.851089475818431E-008

011 7.867668154367367E-017 TIME = 200.00000 DT = 3.2731716 SUM OF SQUARES = 0.13982197E-16

CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.13968010E-07 AND 0.13968010E-07

POSITION OF INTERFACE R FCC A1 / R BCC A2 IS 0.71421753E-05

U-FRACTION IN SYSTEM: CR = .191500140391685 FE = .733101750377513

NI = .0753981092308021

TOTAL SIZE OF SYSTEM: 1E-04 [m]

MUST SAVE WORKSPACE ON FILE

WORKSPACE SAVED ON FILE

RECLAIMING WORKSPACE
                                                                                                                                                                                                                                                                                                                                   2.076707210837201E-
   RECLAIMING WORKSPACE
                                                                                      175.56687
   DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                                          175.75532
   DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                                                           175.75533
175.75535
  DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                                           175.75539
                                                                                           175.75563
   DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                                                           175.75595
175.75659
   DELETING TIME-RECORD FOR TIME
                                                                                           175.75787
   DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                                            175.76555
   DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                                                           175.77579
175.79627
   DELETING TIME-RECORD FOR TIME
                                                                                           175.83723
   DELETING TIME-RECORD FOR TIME
   DELETING TIME-RECORD FOR TIME
                                                                                            176.08299
   DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                                            177.06603
   DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                                                           178.37675
   DELETING TIME-RECORD FOR TIME
                                                                                           186.24107
  KEEPING TIME-RECORD FOR TIME 196.72683
AND FOR TIME 200.00000
  AND FOR TIME
WORKSPACE RECLAIMED
                                         200.000000 SELECTED
  TIMESTEP AT
 DTC>
DIC>
DIC>
 DIC>
 DIC>
DIC>
DIC>
DIC>
```

DIC> @@

DIC> 00 THE SIMULATION IS FINISHED

DIC> @@
DIC>
DIC> set-inter
--OK--DIC>

exb4a-plot

```
DIC>About
NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exb4a\plot.DCM DIC>
DIC>
DIC> @@ exb4a_plot.DCM
DIC>
DIC> 00 FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE b4a DIC> 00
DIC>
DIC> @@
DIC> 00 GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> 00 DIC> go d-m
TIME STEP AT TIME 2.00000E+02
DIC> read exb4a
 OK
DIC>
DIC> @@
DIC> @@ GO TO THE POST PROCESSOR
DIC> @@
DIC> post
   POST PROCESSOR VERSION
                                         1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1: set-title Fe-18%Cr-8%Ni
POST-1: @@
POST-1: @@ PLOT THE FRACTION OF SOLID AND COMPARE WITH A SCHEIL-GULLIVER SIMULATION POST-1: @@ AND EQUILIBRIUM SOLIDIFICATION (DATA ON FILE exb4.exp)
POST-1: @@
POST-1: enter function fs=1-ivv(liquid);
POST-1: s-d-a x fs
POST-1: s-s-s x n 0 1
POST-1: S-S-S X N 0 1
POST-1: set-axis-text
AXIS (X, Y OR Z) : X
AUTOMATIC AXIS TEXT (Y OR N) /N/: n
AXIS TEXT : Fraction Solid
AXIS TEXT : Fraction Solid
POST-1:
POST-1: s-d-a y t-c
POST-1: s-s-s y n 1420 1480
POST-1:
POST-1: s-p-c interface smalta lower
POST-1:
POST-1: app y exb4a.exp 0; 1
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: DALE_EAF_FILE_FUNCMAI 3

POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y

ORKING ... OST-1: SET_EXP_FILE_FORMAT 10

POST-1:
POST-1: plot
```

Fe-18%Cr-8%Ni

POST-1:
POST-1:
POST-1: set-inter
--OK--POST-1:

Example exb4b

Solidification path of an Fe-18%Cr-8%Ni alloy: Peritectic reaction

This example is the same as exb4a but now a peritectic reaction is assumed, LIQUID + BCC -> FCC. Hence the FCC region should appear in between the LIQUID and the BCC. Comparison is made with both a Scheil-Gulliver simulation and equilibrium solidification conditions, both made with Thermo-Calc.

exb4b-setup

```
Thermo-Calc / DICTRA is software package for calculation of phase diagrams, simulation of phase transformation kinetics and much more.
 Copyright Foundation for Computational Thermodynamics,
 Stockholm, Sweden
 Software running on Windows 64-bit wordlength
 Compiler: unknown compiler
License library version: 9.7.0.0036
Linked: Fri Oct 18 11:32:56 2024
SYS:SYS:MACRO exb4b\setup.DCM
SYS: @@
SYS: @@ Moving boundary problem.
SYS: @@ Solidification path of an Fe-18%Cr-8%Ni alloy: Peritectic reaction
SYS: 00 This example is the same as exb4a but now a peritectic reaction is assumed:
SYS: 00 LIQUID + BCC -> FCC. Hence the FCC region should appear in between the LIQUID
SYS: @@ and the BCC. Comparison is made with both a Scheil-Gulliver simulation and
SYS: 00 equilibrium solidification conditions, both done in Thermo-Calc.
 NO SUCH COMMAND, USE HELP
SYS: @@ exb4b setup.DCM
SYS:
SYS: 00 START BY GOING TO THE DATABASE MODULE
SYS: @@
SYS: go da
13:20:30,482 [Thread-0] INFO LicenseManager: Initializing user: jenkins.integrationtest@thermocalc.se
13:20:30,493 [Thread-0] INFO LicenseController: Running License Spring in DEV environment.
13:20:31,591 [Thread-0] INFO LicenseManager: There is an activated standalone license for jenkins.integrationtest@thermocalc.se for TC-
Application
  THERMODYNAMIC DATABASE module
  Database folder:
 C:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples\databases\da
 Current database: Steels/Fe-Alloys v12.0
                                   /- DEFINED
DICTRA_FCC_A1 REJECTED
TDB_TCFE12:
TDB_TCFE12: @@ USE A THERMODYNAMIC DATABASE TO RETRIEVE DATA
TDB_TCFE12: sw fedemo
 Current database: Iron Demo Database v5.0
                                  /- DEFINED
 VA
TDB_FEDEMO:
TDB_FEDEMO: @@ DEFINE THE SYSTEM TO WORK WITH
TDB_FEDEMO: def-sys fe ni cr
 FE
                                                                    CR
    DEFINED
TDB_FEDEMO:
TDB FEDEMO: @@ EXCLUDE THE THERMODYNAMIC DATA FOR THE PHASES THAT ARE NOT NEEDED
TDB FEDEMO: rej ph /all
BCC_A2
CUB_A13
HCP_A3
SIGMA REJECTED
                                                  CHI_A12
                                   CBCC A12
                                         A1
                                   LAVES_PHASE_C14
                                                                     LIQUID:L
TDB_FEDEMO: res ph fcc liq bcc FCC_A1 LIQUI
   CC_A1
RESTORED
                                   LIQUID:L
                                                                     BCC_A2
TDB FEDEMO:
TDB_FEDEMO: @@ RETRIEVE DATA FROM THE DATABASE FILE
TDB FEDEMO: get 13:20:32,676 [Thread-0] INFO JavaWrapper: *** Invoking Gibbs Energy System v6 *** REINITIATING GES .....
  ELEMENTS ....
  SPECIES ....
 PARAMETERS ...
 Use the command LIST_REFERENCES to see the list of references for assessed data
 -OK-
TDB_FEDEMO:
TDB FEDEMO: @@
TDB_FEDEMO: @@ MOBILITY/DIFFUSIVITY DATA ARE STORED IN A SEPARATE DATABASE FILE.
TDB_FEDEMO: @@ SWITCH TO A MOBILITY DATABASE AND APPEND THE DATA.
TDB_FEDEMO: @@
TDB_FEDEMO: app
Use one of these databases
 TCFE12 = Steels/Fe-Alloys v12.0
 TCFE12 = Steels/Fe-Alloys v12.0
TCFE9 = Steels/Fe-Alloys v9.3
SSUB6 = SGTE Substances v6.0
FEDEMO = Iron Demo Database v5.0
MOB2 = Alloys Mobility v2.7
MOBFE2 = Steels/Fe-Alloys Mobility v2.0
MOBFE4 = Steels/Fe-Alloys Mobility v4.0
MOBFE7 = Steels/Fe-Alloys Mobility v7.1
MFEDEMO = Fe-Alloys Mobility demo database v4.0
USER = User defined Database
DATABASE NAME /FEDEMO/: mobfe4
 Current database: Steels/Fe-Alloys Mobility v4.0
 VA DEFINED
B2_BCC REJECTED

APP: def-sys fe ni cr
                                                                      CR
 FE
    DEFINED
APP: rej ph /all
 BCC A2
                                   FCC_A1
                                                                     HCP_A3
LIQUID:L REJECTED

APP: res ph fcc liq bcc
```

```
LIQUID:L
 FCC A1
                                                                        BCC A2
    RESTORED
APP: get
  ELEMENTS ....
  SPECIES .....
 PHASES ......
PARAMETERS ...
 FUNCTIONS ....
 Use the command LIST_REFERENCES to see the list of references for assessed data
 -OK-
APP:
APP: @@
APP: @@ ENTER THE DICTRA MONITOR WHERE THE SYSTEM IS SET UP
APP: @@
APP: go d-m
13:20:33,514 [Thread-0] INFO StandaloneLicenseController: Checking out license for: Diffusion (DICTRA)
 NO TIME STEP DEFINED
DIC>
DIC> @@
DIC> @@ ENTER GLOBAL CONDITION T
DIC> @@
DIC> 00 LOWER THE TEMPERATURE TO A RATE OF 1 K/s
DIC> 00
DIC> set-cond glob T 0 1900-1*TIME; * N
DIC>
DIC> @@
DIC> 00 ENTER A REGION CALLED smalta
DIC> 00
DIC> enter-region smalta
DIC>
DIC> 00
DIC> 00 ENTER A GEOMETRIC GRID INTO THE REGION
DIC> @@
DIC> enter-grid
REGION NAME : /SMALTA/: smalta
WIDTH OF REGION /1/: 1e-4
TYPE /LINEAR/: AUTO
DTC>
DIC> @@
\ensuremath{\mathsf{DIC}}\xspace @0 ENTER active PHASES INTO THE REGION \ensuremath{\mathsf{DIC}}\xspace 00
DIC> enter-phase
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /SMALTA/: smalta
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: liq
DIC>
DIC> @@
DIC> @@ ENTER inactive PHASES INTO THE REGION, WITH BOTH PHASES ON THE SAME
DIC> @@ SIDE OF THE LIQUID REGION IN ORDER TO GET A PERITECTIC REACTION.
DIC> @@
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: inact
ATTACH TO REGION NAMED /SMALTA/: smalta
ATTACHED TO THE RIGHT OF SMALTA /YES/: yes
PHASE NAME: /NONE/: fcc#1
DEPENDENT COMPONENT ? /NI/: fe
REQUIRED DRIVING FORCE FOR PRECIPITATION: /1E-05/: 1e-5
CONDITION TYPE /CLOSED_SYSTEM/: closed
DIC>
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: inact
ATTACH TO REGION NAMED /SMALTA/: smalta
ATTACHED TO THE RIGHT OF SMALTA /YES/: yes
PHASE NAME: /NONE/: bcc#1
DEPENDENT COMPONENT ? /NI/: fe
REQUIRED DRIVING FORCE FOR PRECIPITATION: /1E-05/: 1e-5
CONDITION TYPE /CLOSED_SYSTEM/: closed
DIC>
DIC> @@
DIC> @@ ENTER THE START COMPOSITION FOR THE LIQUID
DIC> @@
DIC> enter-composition
PHASE NAME: /SMALTA/: smalta
PHASE NAME: /LIQUID/: liq
DEPENDENT COMPONENT ? /NI/: fe
COMPOSITION TYPE /MOLE_FRACTION/: w-p PROFILE FOR /CR/: cr lin 18 18
PROFILE FOR /NI/: ni lin 8 8
DIC> @@
DIC> @@ THE BOUNDARY CONDITION IS A CLOSED SYSTEM (DEFAULT) AS WE DO NOT SPECIFY
DIC> @@ ANYTHING ELSE.
DIC> @@
DIC>
DIC> @@
DIC> @@ SET THE SIMULATION TIME
DIC> @@
DIC> set-simulation-time
END TIME FOR INTEGRATION /.1/: 200 AUTOMATIC TIMESTEP CONTROL /YES/:
MAX TIMESTEP DURING INTEGRATION /20/: INITIAL TIMESTEP: /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DIC>
DIC>
DIC>
DIC> 00 CHECK THE INTERFACE POSITION. THIS IS TO MAKE SURE THAT THE LIQUID REGION
DIC> 00 DOES NOT SHRINK TOO MUCH DURING A TIMESTEP. IN ADDITION, THE TIMESTEP IS DIC> 00 CONTROLLED BY THE PHASE INTERFACE DISPLACEMENT DURING THE SIMULATION.
DIC> @@
DIC> s-s-c
NS01A PRINT CONTROL : /0/:
NSULA PRINT CONTROL : /0/:
FLUX CORRECTION FACTOR : /1/:
NUMBER OF DELTA TIMESTEPS IN CALLING MULDIF: /2/:
CHECK INTERFACE POSITION /AUTO/: yes
VARY POTENTIALS OR ACTIVITIES OR LNAC : /ACTIVITIES/:
```

```
ALLOW AUTOMATIC SWITCHING OF VARYING ELEMENT : /YES/:
SAVE WORKSPACE ON FILE (YES,NO,0-999) /YES/:
DEGREE OF IMPLICITY WHEN INTEGRATING PDES (AUTO, 0 -> 0.5 -> 1): /AUTO/:
MAX TIMESTEP CHANGE PER TIMESTEP : /2/:
USE FORCED STARTING VALUES IN EQUILIBRIUM CALCULATION /AUTO/:
ALWAYS CALCULATE STIFFNES MATRIX IN MULDIF /YES/:
CALCULATE RESIDUAL FOR DEPENDENT COMPONENT /NO/: @@
DIC> @@ SAVE THE SET UP TO A NEW STORE FILE AND EXIT
DIC> @@
DIC> save exb4b Y
DIC>
DIC> set-inter
--OK---
DIC>
```

DIC>About

```
NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exb4b\run.DCM DIC>
DIC> @@ exb4b run.DCM
DIC>
DTC> @@
DIC> 00 FILE FOR RUNNING EXAMPLE b4b
DIC> @@
DIC>
DIC> @@
DIC> @@ ENTER THE DICTRA MONITOR AND READ THE SET UP FROM FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 0.00000E+00
DIC> read exb4b
 OK
DIC>
DIC> @@
DIC> @@ START THE SIMULATION
DIC> 00
DIC> sim yes
TOTAL SIZE OF SYSTEM: 1E-04 [m]
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219291
NI = .0754116207882255
 TOTAL SIZE OF SYSTEM: 1E-04 [m]
TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.00
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
                                                                                          0.0000000
                                                                                                                                  NI = .0754116207882255
                                                                                                                   TOTAL SIZE OF SYSTEM: 1E-04 [m]
 CPU time used in timestep 1 seconds

TIME = 0.94776182E-06 DT = 0.84776182E-06 SUM OF SQUARES = 0.00

U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
                                                                                          0.0000000
                                                                                                                                  NI = .0754116207882255
                                                                                                                   TOTAL SIZE OF SYSTEM: 1E-04 [m]
 CPU time used in timestep 0 seconds

TIME = 0.26432855E-05 DT = 0.16955236E-05 SUM OF SQUARES = 0.00

U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219291
                                                                                       0.0000000
                                                                                                                                  NI = .0754116207882255
                                                                                                                   TOTAL SIZE OF SYSTEM: 1E-04 [m]
 0 0000000
                                                                                                                                  NI = .0754116207882255
                                                                                                                   TOTAL SIZE OF SYSTEM: 1E-04 [m]
 CPU time used in timestep 0 seconds
TIME = 0.12816427E-04 DT = 0.67820946E-05 SUM OF SQUARES = 0.0000000
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
                                                                                                                                  NI = .0754116207882255
                                                                                                                   TOTAL SIZE OF SYSTEM: 1E-04 [m]
 CPU time used in timestep 0.13564189E-04 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
                                                                                                                                  NI = .0754116207882255
                                                                                                                   TOTAL SIZE OF SYSTEM: 1E-04 [m]
 CPU time used in timestep 0 seconds
TIME = 0.53508995E-04 DT = 0.27128378E-04 SUM OF SQUARES = 0.0000000
U-FRACTION IN SYSTEM: CR = .191520367992482 FE = .733068011219292
                                                                                                                                  NI = .0754116207882255
                                                                                                                   TOTAL SIZE OF SYSTEM: 1E-04 [m]
 CPU time used in timestep 0.54256757E-04 SUM OF SQUARES = 0.00000000 U-FRACTION IN SYSTEM: CR = .191520367992482 FE = .733068011219292
                                                                                                                                  NT = 0.754116207882255
                                                                                                                   TOTAL SIZE OF SYSTEM: 1E-04 [m]
 CPU time used in timestep 0.10851351E-03 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992482 FE = .733068011219292
                                                                                                                                  NT = 0.754116207882255
                                                                                                                   TOTAL SIZE OF SYSTEM: 1E-04 [m]
 CPU time used in timestep 0.21702703E-03 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992482 FE = .733068011219292
                                                                                                                                  NT = 0.754116207882255
                                                                                                                   TOTAL SIZE OF SYSTEM: 1E-04 [m]
 NI = .0754116207882255
                                                                                                                   TOTAL SIZE OF SYSTEM: 1E-04 [m]
 CPU time used in timestep 0 seconds TIME = 0.17354684E-02 DT = 0.86810811E-03 SUM OF SQUARES = 0.000 U-FRACTION IN SYSTEM: CR = .191520367992482 FE = .733068011219292
                                                                                         0.0000000
                                                                                                                                  NI = .0754116207882255
                                                                                                                   TOTAL SIZE OF SYSTEM: 1E-04 [m]
 CPU time used in timestep 0.34716847E-02 DT = 0.17362162E-02 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992482 FE = .733068011219292
                                                                                                                                  NI = .0754116207882255
                                                                                                                   TOTAL SIZE OF SYSTEM: 1E-04 [m]
 CPU time used in timestep 0.34724324E-02 SUM OF SQUARES = 0.00 U-FRACTION IN SYSTEM: CR = .191520367992482 FE = .733068011219292
                                                                                         0.0000000
                                                                                                                   NI = .0754116207882255
TOTAL SIZE OF SYSTEM: 1E-04 [m]
 CPU time used in timestep 0.69448648E-02 SUM OF SQUARES = 0.00 U-FRACTION IN SYSTEM: CR = .191520367992482 FE = .733068011219292
                                                                                         0.0000000
                                                                                                                                  NI = .0754116207882255
                                                                                                                    TOTAL SIZE OF SYSTEM: 1E-04 [m]
 CPU time used in timestep 0 seconds TIME = 0.27778712E-01 DT = 0.13889730E-01 SUM OF SQUARES = 0.000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219291
                                                                                         0.0000000
                                                                                                                                  NI = .0754116207882257
                                                                                                                   TOTAL SIZE OF SYSTEM: 1E-04 [m]
 CPU time used in timestep 0 seconds 
  \mbox{TIME = 0.55558171E-01 DT = 0.27779459E-01 SUM OF SQUARES = 0.0000000 }
```

```
U-FRACTION IN SYSTEM: CR = .191520367992482 FE = .733068011219292
                                                        NI = .0754116207882254
1E-04 [m]
  TOTAL SIZE OF SYSTEM:
  CPU time used in timestep 0 seconds
TIME = 0.22223493 DT = 0.11111784 SUM OF SQUARES = 0.00
U-FRACTION IN SYSTEM: CR = .19152036799248 FE = .733068011219295
NI = .0754116207882249

TOTAL SIZE OF SYSTEM: 1E-04 [m]
                                                                                                                                                      0.0000000
   TOTAL SIZE OF SYSTEM:
  output ignored...
 ... output resumed
    1 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: R BCC A2
CPU time used in timestep 2 seconds
5.139565407027669E-008 5.140798655414667E-008 5.100322508121547E-008 2.85
009 2.318513389013127E-009 1.711478567270615E-009 1.706278419027410E-009
010 7.491643237007726E-013 1.153552695658592E-
018 TIME = 198.43707 DT = 0.65536000 SUM OF SQUARES = 0.11486045E-17
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.26044384E-08 AND -0.26044384E-08
POSITION OF INTERFACE R_FCC_A1 / R_BCC_A2 IS 0.10556331E-04
U-FRACTION IN SYSTEM: CR = .19111014993086 FE = .733547209684841
NI = .0753426403842982
TOTAL SIZE OF SYSTEM: 1E-04 [m]
1 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: R_BCC_A2
                                                                                                                                                                                                                                              2.851224761501404E-009
     1 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: R_BCC_A2
    CPU time used in timestep
                                                                                                                         seconds
CPU time used in timestep 2 Seconds 1.304182173387704E=007 1.304255357083201E=007 1.306083691992910E=007 1.230192701597723E=007 07 1.214349182789879E=007 1.193032692179761E=007 1.192993044981165E=007 1.151292873099127E=007 1.0696834151799910E=007 9.156880683330858E=008 9.157798616109581E=008 6.430879629455531E=008 0.0696834151799910E=007 0.069683415179910E=007 0.069683415179910
                                                                                                                                                                                                                                                                                            1.224896417598367E-
 29 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: R_FCC_A1
CPU time used in timestep
                                                                                                                      seconds
   RECLAIMING WORKSPACE
   DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                               193.98930
                                                                                197.12636
   DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                                                197.12637
197.12639
  DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                                 197.12643
                                                                                 197.12651
                                                                                 197.12667
   DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                                                197.12699
197.12763
  DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                                 197.12891
                                                                                 197.13659
   DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                                                197.14683
197.16731
   DELETING TIME-RECORD FOR TIME
                                                                                 197.20827
   DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                                197.29019
197.45403
   DELETING TIME-RECORD FOR TIME
                                                                                197 78171
   DELETING TIME-RECORD FOR TIME
                                                                                 198.43707
  KEEPING TIME-RECORD FOR TIME AND FOR TIME
                                                                             200.00000
  WORKSPACE RECLAIMED
  TIMESTEP AT
                                      200.000000
                                                                      SELECTED
DIC>
 DIC>
DIC>
DIC>
 DIC>
DIC>
 DIC>
 DICS
 DIC>
 DIC>
DIC>
DIC>
DIC>
 DIC>
DTC>
 DIC> @@
DIC> 00 THE SIMULATION IS FINISHED DIC> 00
DTC>
DIC> set-inter
```

--OK---

exb4b-plot

```
DIC>About
NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exb4b\plot.DCM DIC>
DIC>
DIC> @@ exb4b_plot.DCM
DIC>
DIC> 00 FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE b4b DIC> 00
DIC>
DIC> @@
DIC> 00 GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> 00 DIC> go d-m
TIME STEP AT TIME 2.00000E+02
DIC> read exb4b
 OK
DIC>
POST PROCESSOR VERSION
                                    1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1: set-title Fe-18%Cr-8%Ni
POST-1: Set-title Fe-18%CF-8%NI
POST-1: POST-1: 00
POST-1: 00 PLOT THE FRACTION OF SOLID AND COMPARE WITH A SCHEIL-GULLIVER
POST-1: 00 SIMULATION AND EQUILIBRIUM SOLIDIFICATION (DATA ON FILE exb4.exp)
POST-1: @@
POST-1: enter func fs=1-ivv(liquid);
POST-1: s-d-a x fs
POST-1: s-s-s x n 0 1
POST-1: s-ax-te x n Fraction Solid
POST-1:
POST-1: s-d-a y t-c POST-1: s-s-s y n 1420 1480
POST-1:
POST-1: s-p-c interf smalta lower
POST-1:
POST-1: app y exb4b.exp 0; 1
POST-1:
POST-1: SET EXP FILE FORMAT 5
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
ORKING ...orking ... OST-1: SET_EXP_FILE_FORMAT 10
ORKING ...orking ...
POST-1:
POST-1: plot
```

Fe-18%Cr-8%Ni

POST-1:
POST-1:
POST-1:
POST-1: set-inter
--OK--POST-1:

Example exb4c

Solidification path of an Fe-18%Cr-8%Ni alloy: Peritectic reaction, homogeneous liquid

This example is the same as exb4b but now the diffusivity data is amended for the LIQUID and a very high value for the diffusivity is used in order to simulate a case where we assume that the composition in the LIQUID is always homogeneous. This case should be considered less realistic than exb4b. Comparison is made with both a Scheil-Gulliver simulation and equilibrium solidification conditions, both made with Thermo-Calc.

▼ 1E-4

ΝT

CR

```
Thermo-Calc / DICTRA is software package for calculation of phase diagrams, simulation of phase transformation kinetics and much more.
 Copyright Foundation for Computational Thermodynamics,
 Stockholm, Sweden
 Software running on Windows 64-bit wordlength
 Compiler: unknown compiler
License library version: 9.7.0.0036
Linked: Fri Oct 18 11:32:56 2024
SYS:SYS:MACRO exb4c\setup.DCM
SYS: @@
SYS: @@ Moving boundary problem.
SYS: @@ Solidification path of an Fe-18%Cr-8%Ni alloy
SYS: 00 This example is the same as exb4b but now the diffusivity data is amended SYS: 00 for the LIQUID and a high value for the diffusivity is used to simulate a SYS: 00 case where it is assumed that the composition in the LIQUID is always
SYS: @@ homogeneous. This example is less realistic than exb4b.
SYS: @@ Comparison is made with both a Scheil-Gulliver simulation and equilibrium
SYS: @@ solidification conditions, both done in Thermo-Calc.
 NO SUCH COMMAND, USE HELP
SYS:
SYS: @@ exb4c setup.DCM
SYS: @@
SYS: 00 START BY GOING TO THE DATABASE MODULE
SYS: @@
SYS: go da 13:27:12,659 [Thread-0] INFO LicenseManager: Initializing user: jenkins.integrationtest@thermocalc.se
13:27:12,674 [Thread-0] INFO LicenseController: Running License Spring in DEV environment.
13:27:13,803 [Thread-0] INFO LicenseManager: There is an activated standalone license for jenkins.integrationtest@thermocalc.se for TC-
Application
 THERMODYNAMIC DATABASE module
 Database folder:
 C:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples\databases\da
 Current database: Steels/Fe-Alloys v12.0
 VA /- DEFINED DICTRA_FCC_A1 REJECTED TOPB TCFF12.
TDB TCFE12:
TDB TCFE12: @@ USE A THERMODYNAMIC DATABASE TO RETRIEVE DATA
TDB_TCFE12: sw tcfe9
 Current database: Steels/Fe-Alloys v9.3
                                   /- DEFINED
                                  B2 BCC
 L12 FCC
                                                                   DICTRA FCC A1
REJECTED
TDB_TCFE9:
TDB_TCFE9: @@ DEFINE THE SYSTEM TO WORK WITH
TDB_TCFE9: def-sys fe ni cr
 FE
   DEFINED
TDB_TCFE9:
TDB_TCFE9: @@ EXCLUDE THE THERMODYNAMIC DATA FOR THE PHASES THAT ARE NOT NEEDED
TDB_TCFE9: rej ph /all
                                   BCC_A2
CBCC_A12
CHI_A12
 LIQUID:L
 HCP A3
                                                                     CIIR A13
                                                                     LAVES_PHASE_C14
 CR3SI
                                   NBNI3
                                                                    NI3TI
 CRZN17
                                   מידים ב
                                                                     CAMMA
 AL5FE4
                                                                    CENI5
   REJECTED
TDB_TCFE9: res ph fcc liq bcc
 FCC_A1
RESTORED
                                                                    BCC_A2
                                   LIQUID:L
TDB_TCFS:
TDB_TCFS:
@@ RETRIEVE DATA FROM THE DATABASE FILE
TDB_TCFE9: get 13:27:15,248 [Thread-0] INFO JavaWrapper: *** Invoking Gibbs Energy System v6 ***
 REINITIATING GES ....
 ELEMENTS .....
 PHASES ......
PARAMETERS ...
 FUNCTIONS ....
 Use the command LIST_REFERENCES to see the list of references for assessed data
 -OK-
TDB_TCFE9: @@
TDE TCFE9: 00 MOBILITY/DIFFUSIVITY DATA ARE STORED IN A SEPARATE DATABASE FILE. TDB_TCFE9: 00 SWITCH TO A MOBILITY DATABASE AND APPEND THE DATA.
TDB_TCFE9: @@
TDB_TCFE9: app
 Use one of these databases
 TCFE12 = Steels/Fe-Alloys v12.0
 TCFE12 = Steels/Fe-Alloys v12.0
TCFE9 = Steels/Fe-Alloys v9.3
SSUB6 = SGTE Substances v6.0
FEDEMO = Iron Demo Database v5.0
MOB2 = Alloys Mobility v2.7
MOBFE2 = Steels/Fe-Alloys Mobility v2.0
MOBFE4 = Steels/Fe-Alloys Mobility v4.0
MOBFF7 = Steels/Fe-Alloys Mobility v7.1
MFEDEMO = Fe-Alloys Mobility v7.1
MFEDEMO = User defined Database
DATABASE NAME /TCFE9/: mobfe4
 Current database: Steels/Fe-Alloys Mobility v4.0
 VA DEFINED
 B2_BCC
            REJECTED
APP: def-sys fe ni cr
```

```
DEFINED
APP: rej ph /all
BCC_A2
                                                             HCP A3
                               FCC A1
 LIQUID:L REJECTED
APP: res ph fcc liq bcc FCC_A1
                               T.TOUTD • I.
                                                            BCC A2
    RESTORED
APP: get
 ELEMENTS .....
 SPECIES .....
 FUNCTIONS ....
 Use the command LIST REFERENCES to see the list of references for assessed data
 -OK-
APP: @@
APP: @@ ENTER THE DICTRA MONITOR WHERE THE SYSTEM IS SET UP
APP: @@
APP: go d-m
13:27:17,523 [Thread-0] INFO StandaloneLicenseController: Checking out license for: Diffusion (DICTRA)
DIC>
DIC> @@
DIC> @@ LIST THE MOBILITIES IN THE LIQUID
DIC> @@
DIC> list-mobility-data
 Sorry, LIST-DATA disabled for this database
DIC>
DIC> liquid
 NO SUCH COMMAND, USE HELP
DIC>
DIC>
DIC> @@
DIC> @@ AMEND THE DIFFUSIVITY DATA IN THE LIQUID
DIC> @@
DIC> @@ CHANGE TO A DIFFUSIVITY THAT IS 1000 TIMES HIGHER THAN THE
DIC> @@ VALUE IN THE MOBILITY DATABASE. THIS SHOULD BE ENOUGH IN ORDER TO DIC> @@ ASSUME THAT THE COMPOSITION IN THE LIQUID IS AT ALL TIMES HOMOGENEOUS.
DIC> @@
DIC> amend_mobility_data
PARAMETER .
  *** ERROR, PLEASE RE-ENTER EACH PART SEPARATELY
IDENTIFIER: dq
PHASE NAME: liquid&cr
CONSTITUENT: cr

INTERACTING CONSTITUENT:

DQ(LIQUID&CR#1,CR;0) = Sorry, database encrypted

Do you want to change the number of ranges /NO/: yes
 Reenter ranges
DQ(LIQUID&CR#1,CR;0)
LOW TEMPERATURE LIMIT /298.15/: 298.15
FUNCTION: +R*T*LN(1E-06);
HIGH TEMPERATURE LIMIT /6000/: 6000
ANY MORE RANGES /N/: no
 *** WARNING, NO MAGNETIC CONTRIBUTION DEFINED
13:27:18,586 [Thread-0] INFO Database: Preparing system for use: MOBFE4_MODIFIED_172925803791016
DIC> amend_mobility_data
PARAMETER: dq(liquid&cr,fe;0)
   DQ(LIQUID&CR#1,FE;0) = Sorry, database encrypted
Do you want to change the number of ranges /NO/: y
 Reenter ranges
 DO(LIOUID&CR#1,FE;0)
LOW TEMPERATURE LIMIT /298.15/: 298.15 +R*T*LN(1E-06); 6000 n
 *** WARNING, NO MAGNETIC CONTRIBUTION DEFINED
DIC> am-mob dq(liquid&cr,ni;0)
DQ(LIQUID&CR#1,NI;0) = Sorry, database encrypted Do you want to change the number of ranges /NO/: y
 Reenter ranges
 DO(LIOUID&CR#1,NI;0)
LOW TEMPERATURE LIMIT /298.15/: 298.15 +R*T*LN(1E-06); 6000 n
 *** WARNING, NO MAGNETIC CONTRIBUTION DEFINED
DIC> am-mob dq(liquid&ni,cr;0)
DQ(LIQUID&NI#1,CR;0) = Sorry, database encrypted Do you want to change the number of ranges /NO/: y
 Reenter ranges
 DQ(LIQUID&NI#1,CR;0)
LOW TEMPERATURE LIMIT /298.15/: 298.15 +R*T*LN(1E-06); 6000 n
 *** WARNING, NO MAGNETIC CONTRIBUTION DEFINED
DIC> am-mob dq(liquid&ni,fe;0)
DQ(LIQUID&NI#1,FE;0) = Sorry, database encrypted Do you want to change the number of ranges /NO/: y
 Reenter ranges
DQ(LIQUIDANI#1,FE;0) = LOW TEMPERATURE LIMIT /298.15/: 298.15 +R*T*LN(1E-06); 6000 n
 *** WARNING, NO MAGNETIC CONTRIBUTION DEFINED
DIC> am-mob dq(liquid&ni,ni;0)
DQ(LIQUID&NI#1,NI;0) = Sorry, database encrypted Do you want to change the number of ranges /NO/: y
 Reenter ranges
```

```
LOW TEMPERATURE LIMIT /298.15/: 298.15 +R*T*LN(1E-06); 6000 n
  *** WARNING, NO MAGNETIC CONTRIBUTION DEFINED
DIC> am-mob dg(liguid&fe,cr;0)
DQ(LIQUID&FE#1,CR;0) = Sorry, database encrypted Do you want to change the number of ranges /NO/: y
Reenter ranges
DQ(LIQUID&FE#1,CR;0) =
LOW TEMPERATURE LIMIT /298.15/: 298.15 +R*T*LN(1E-06); 6000 n
 *** WARNING, NO MAGNETIC CONTRIBUTION DEFINED
DIC>
DIC> am-mob dq(liquid&fe,fe;0)
DQ(LIQUID&FE#1,FE;0) = Sorry, database encrypted
Do you want to change the number of ranges /NO/: y
  Reenter ranges
DQ(LIQUID&FE#1,FE;0)
LOW TEMPERATURE LIMIT /298.15/: 298.15 +R*T*LN(1E-06); 6000 n
 *** WARNING, NO MAGNETIC CONTRIBUTION DEFINED
DIC> am-mob dg(liguid&fe,ni;0)
DQ(LIQUID&FE#1,NI;0) = Sorry, database encrypted Do you want to change the number of ranges /NO/: y
  Reenter ranges
DQ(LIQUID&FE#1,NI;0)
LOW TEMPERATURE LIMIT /298.15/: 298.15 +R*T*LN(1E-06); 6000 n
 *** WARNING, NO MAGNETIC CONTRIBUTION DEFINED
DIC>
DIC> li-mob
  AMBIGUOUS COMMAND, USE HELP
DIC>
DIC>
DIC> liquid
NO SUCH COMMAND, USE HELP
DIC>
DIC>
DIC> @@
DIC> @@ ENTER THE GLOBAL CONDITION T
DIC> @@
DIC> @@ LOWER THE TEMPERATURE TO A RATE OF 1 K/s
DIC> set-cond glob T 0 1900-1*TIME; * N
DIC>
DIC> @@
DIC> @@ ENTER A REGION CALLED smalta
DIC> @@
DIC> enter-region smalta
DIC>
DIC> @@
DIC> @@ ENTER A GEOMETRIC GRID INTO THE REGION
DIC> @@
DIC> enter-grid
REGION NAME : /SMALTA/: smalta
WIDTH OF REGION /1/: 1e-4
TYPE /LINEAR/: AUTO DIC> DIC> @@
DIC> @@ ENTER active PHASES INTO THE REGION
DIC> 00
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /SMALTA/: smalta
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: liq
DIC> @@
DIC> 00 ENTER inactive PHASES INTO THE REGION, BOTH PHASES ON THE SAME SIDE DIC> 00 OF THE LIQUID REGION IN ORDER TO GET A PERITECTIC REACTION.
DIC> @@
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: inact
ATTACH TO REGION NAMED /SMALTA/: smalta
ATTACHED TO THE RIGHT OF SMALTA /YES/: yes
PHASE NAME: /NONE/: fcc#1
DEPENDENT COMPONENT ? /NI/: fe
 REQUIRED DRIVING FORCE FOR PRECIPITATION: /1E-05/: 1e-5
CONDITION TYPE /CLOSED SYSTEM/: closed
DIC>
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: inact
ATTACH TO REGION NAMED /SMALTA/: smalta
ATTACHED TO THE RIGHT OF SMALTA /YES/: yes
ATTACHED TO THE RIGHT OF SMALTA /TES/: yes
PHASE NAME: /NONE/: bcc#1
DEPENDENT COMPONENT ? /NI/: fe
REQUIRED DRIVING FORCE FOR PRECIPITATION: /1E-05/: 1e-5
CONDITION TYPE /CLOSED_SYSTEM/: closed
DIC>
DIC> @@
DIC> 00 ENTER THE START COMPOSITION FOR THE LIQUID
DIC> @@
DIC> enter-composition
PHASE NAME: /SMALTA/: smalta
PHASE NAME: /LIQUID/: liq
DEPENDENT COMPONENT ? /NI/: fe
COMPOSITION TYPE /MOLE_FRACTION/: w-p
PROFILE FOR /CR/: cr lin 18 18 PROFILE FOR /NI/: ni lin 8 8
13:27:20,346 [Thread-0] INFO Phase: Preparing phase for use: LIQUID
DIC> @@
```

DO(LIOUID&NI#1,NI;0)

```
DIC> @@ THE BOUNDARY CONDITION IS A CLOSED SYSTEM (DEFAULT) AS WE DO NOT SPECIFY
DIC> @@ ANYTHING ELSE
DIC> @@
 DIC> @@
 DIC> @@ SET THE SIMULATION TIME
 DIC> 00
DIC> set-simulation-time
 END TIME FOR INTEGRATION /.1/: 200
AUTOMATIC TIMESTEP CONTROL /YES/: yes
MAX TIMESTEP DURING INTEGRATION /20/: 1
INITIAL TIMESTEP : /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
 DIC>
 DIC>
 DIC>
 DIC>
 DIC> 00 DIC> 00 CHECK THE INTERFACE POSITION. THIS IS TO MAKE SURE THAT THE LIQUID
 DIC> 00 REGION DOES NOT SHRINK TOO MUCH DURING A TIMESTEP. IN ADDITION THE TIMESTEP DIC> 00 IS CONTROLLED BY THE PHASE INTERFACE DISPLACEMENT DURING THE SIMULATION.
 DIC> @@
DIC> s-s-c
DIC> s-s-c
NS01A PRINT CONTROL : /0/:
FLUX CORRECTION FACTOR : /1/:
NUMBER OF DELTA TIMESTEPS IN CALLING MULDIF: /2/:
CHECK INTERFACE POSITION /AUTO/: yes
VARY POTENTIALS OR ACTIVITIES OR LNAC : /ACTIVITIES/:
ALLOW AUTOMATIC SWITCHING OF VARYING ELEMENT : /YES/:
SAVE WORKSPACE ON FILE (YES,NO,0-999) /YES/:
DEGREE OF IMPLICITY WHEN INTEGRATING PDES (AUTO, 0 -> 0.5 -> 1): /AUTO/:
MAX TIMESTEP CHANGE PER TIMESTEP : /2/:
USE FORCED STARTING VALUES IN EQUILIBRIUM CALCULATION /AUTO/:
ALWAYS CALCULATE STIFFNES MATRIX IN MULDIF /YES/:
CALCULATE RESIDUAL FOR DEPENDENT COMPONENT /NO/: @@
DIC> @@ SAVE THE SET UP TO A NEW STORE FILE AND EXIT
DIC> @@

 DIC> @@
DIC> save exb4c Y
 DIC>
 DIC> set-inter
 --OK---
```

```
DIC>About
 NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exb4c\run.DCM DIC>
DIC> @@ exb4c_run.DCM
DIC>
DIC> @@
 DIC> @@ FILE FOR RUNNING EXAMPLE b4b
DIC> @@
DIC>
DIC> @@
DIC> @@ ENTER THE DICTRA MONITOR AND READ THE SET UP FROM FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 0.00000E+00
DIC> read exb4c
 OK
DIC>
DIC> @@
DIC> @@ START THE SIMULATION
DIC> @@
DIC> sim yes
 Region: SMALTA
geometric 0.866196 dense at 0.100000E-U3 05 2...

DEGREE OF IMPLICITY SET TO TRAPEZOIDAL RULE
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219291

NI = .0754116207882255
U-FRACTION IN SISTEM:

NI = .0754116207882255

TOTAL SIZE OF SYSTEM: 1E-04 [m]

U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219291

NI = .0754116207882255

TOTAL SIZE OF SYSTEM: 1E-04 [m]

13:28:16,632 [Thread-0] INFO Phase: Preparing phase for use: BCC_A2
13:28:17,266 [Thread-0] INFO Phase: Preparing phase for use: FCC_A1

TIME = 0.100000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.0000000

U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292

NI = .0754116207882255

TOTAL SIZE OF SYSTEM: 1E-04 [m]

4 seconds
                                    N1 = .0/5411620/082255

TOTAL SIZE OF SYSTEM: 1E-04 [m]

CPU time used in timestep 4 seconds

TIME = 0.30000000E-06 DT = 0.20000000E-06 SUM OF SQUARES = 0.00000

U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
                                                                                                                                                   0.0000000
                                    NI = .07541162U/882ZDD
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep 0 seconds
TIME = 0.70000000E-06 DT = 0.40000000E-06 SUM OF SQUARES = 0.00000
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219291
NI = .0754116207882255
                                                                                                                                                   0.0000000
                                    NI = .0/5411620/882255

TOTAL SIZE OF SYSTEM: 1E-04 [m]

CPU time used in timestep 0 seconds

TIME = 0.15000000E-05 DT = 0.80000000E-06 SUM OF SQUARES = 0.00000

U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292

NI = .0754116207882255
                                                                                                                                                   0.0000000
                                    0.0000000
                                                                                                                                                   0.0000000
                                    NI = .0754116207882255
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep
TIME = 0.12700000E-04 DT = 0.000000
                                                                                                                                          seconds
                                         0.0000000
                                    0 0000000
                                    NI = .0754116207882254

TOTAL SIZE OF SYSTEM: 1E-04 [m]

CPU time used in timestep

TIME = 0.5110000000-04 rm = 2 2
                                                                                                                                          seconds
                                         ME = 0.51100000E-04 DT = 0.25600000E-04 SUM OF SQUARES = 0.00000

U-FRACTION IN SYSTEM: CR = .191520367992482 FE = .733068011219292

NI = .0754116207882255
                                                                                                                                                   0 0000000
                                    NI = .0754116207882255

TOTAL SIZE OF SYSTEM: 1E-04 [m]

CPU time used in timestep

TIME = 0.10230000E-03 rm = 2.2.
                                                                                                                                         seconds
                                         ME = 0.10230000E-03 DT = 0.51200000E-04 SUM OF SQUARES = 0.00000

U-FRACTION IN SYSTEM: CR = .191520367992482 FE = .733068011219292

NI = .0754116207882255
                                                                                                                                                   0 0000000
                                    NI = .0754116207882255

TOTAL SIZE OF SYSTEM: 1E-04 [m]

TIME = 0.20470000E-03 rm - 1
                                                                                                                                         seconds
                                         ME = 0.20470000E-03 DT = 0.10240000E-03 SUM OF SQUARES = 0.00000

U-FRACTION IN SYSTEM: CR = .191520367992484 FE = .733068011219291

NI = .075411620788225
                                                                                                                                                   0 0000000
                                    seconds
                                         ME = 0.40950000E-03 DT = 0.20480000E-03 SUM OF SQUARES = 0.00000

U-FRACTION IN SYSTEM: CR = .191520367992484 FE = .733068011219292

NI = .0754116207882248
                                                                                                                                                   0 0000000
                                    seconds
                                         ME = 0.81910000E-03 DT = 0.40960000E-03 SUM OF SQUARES = 0.00000

U-FRACTION IN SYSTEM: CR = .191520367992482 FE = .733068011219292

NI = .0754116207882257
                                                                                                                                                   0 0000000
                                                                        TOTAL SIZE OF SYSTEM: 1E-04 [m]
                                     CPU time used in timestep
TIME = 0.16383000P 00 --
                                                                                                                                         seconds
                                         The used in timestep 0 seconds

ME = 0.16383000E-02 DT = 0.81920000E-03 SUM OF SQUARES = 0.00000

U-FRACTION IN SYSTEM: CR = .191520367992479 FE = .733068011219297

NI = .075411620788224
                                                                                                                                                   0 0000000
                                                                       TOTAL SIZE OF SYSTEM: 1E-04 [m]
    CPU time used in timestep
                                                                                           seconds
  TIME = 0.32767000E-02 DT = 0.16384000E-02 SUM OF SQUARES = 0.0000000
 U-FRACTION IN SYSTEM: CR = .191520367992469 FE = .7330680112193 NI = .0754116207882307 TOTAL SIZE OF SYSTEM: 1E-04 [m]
```

```
CPU time used in timestep
                                                                                   seconds
 TIME = 0.13107100E-01 DT = 0.65536000E-02 SUM OF SQUARES = 0.00 U-FRACTION IN SYSTEM: CR = .191520367992459 FE = .733068011219317 NI = .0754116207882242
                                                                                                       0.0000000
 TOTAL SIZE OF SYSTEM: 1E-04 [m]

CPU time used in timestep

CPU time used in timestep

O seconds

TIME = 0.26214300E-01 DT = 0.13107200E-01 SUM OF SQUARES = 0.001

U-FRACTION IN SYSTEM: CR = .191520367992559 FE = .733068011219251

NI = .07541162078819

TOTAL SIZE OF SYSTEM: 1E-04 [m]
                                                                                                       0 0000000
 0 0000000
output ignored...
... output resumed
CPU time used in timestep 16 seconds 4.509651198700606E-006 4.511260885404113E-006 4.509651887737562E-006 4.507366005391236E-006 006 1.004336069264140E-006 1.052123826763307E-007 3.875379970159113E-008 4.424547553276597E-008 4.595926357264435E-009 5.073323317415209E-009 4.576715692224007E-009 4.583146950301550E-009 6.359913201032690E-010 1.438326148310476E-010 6.666994662417487E-012 7.328043382444014E-
                 1.044307780792139E-014
4.494204505827981E-015
                                                                1.739706625579858E-014
1.180738388783807E-015
014
                                                                                                                   7 014781421083336E-014
                                                                                                                                                                     2.565754961527261E-
                                                                                                                                                                                                       DT = 0.88751250E-
RECLAIMING WORKSPACE
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                       170.48353
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                       170.48353
                                                        170.48353
  DELETING TIME-RECORD FOR TIME
                                                        170.48353
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                        170.48353
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                        170.48353
                                                        170.48354
  DELETING TIME-RECORD FOR TIME
                                                        170.48355
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                        170.48363
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                        170.48373
                                                        170.48394
  DELETING TIME-RECORD FOR TIME
                                                        170 48435
  DELETING TIME-RECORD FOR TIME
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                        170.48680
                                                        170.49008
                                                        170.49663
  DELETING TIME-RECORD FOR TIME
                                                        170 50974
  DELETING TIME-RECORD FOR TIME
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                        170.58838
                                                        170.69324
                                                        170.90296
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                       171.32239
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                       173.16125
                                                        175.16125
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                       176.16125
177.16125
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                       178.16125
                                                        180.16125
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                       181.16125
182.16125
  DELETING TIME-RECORD FOR TIME
                                                       183.16125
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                        185.16125
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                       186.16125
187.16125
  DELETING TIME-RECORD FOR TIME
                                                       188.16125
  DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                        190.16125
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                       191.16125
192.16125
  DELETING TIME-RECORD FOR TIME
                                                       193.16125
  DELETING TIME-RECORD FOR TIME
  DELETING TIME-RECORD FOR TIME
                                                        195.16125
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                        196.41125
  DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                       196.91125
197.91125
 DELETING TIME-RECORD FOR TIME
                                                       198.91125
                                                  199.91125
 KEEPING TIME-RECORD FOR TIME
 AND FOR TIME
WORKSPACE RECLAIMED
                                                    200.00000
                         200.000000 SELECTED
 TIMESTEP AT
DTCS
```

exb4c-plot

```
DIC>About
NO SUCH COMMAND, USE HELP
  DIC>DIC>MACRO exb4c\plot.DCM DIC>
DIC>
 DIC> @@ exb4c_plot.DCM
 DIC>
\overline{\text{DIC}}\text{>}\ \mbox{\for} GeV file for generating graphical output for example b4c \overline{\text{DIC}}\text{>}\ \mbox{\for}
DIC>
DIC> 00 GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> 00 DIC> go d-m
TIME STEP AT TIME 2.00000E+02
DIC> read exb4c
   OK
DIC>
DIC> @@
DIC> @@ GO TO THE POST PROCESSOR
DIC> @@
DIC> post
       POST PROCESSOR VERSION
                                                                                                       1.7
  Implemented by Bjorn Jonsson
  POST-1:
  POST-1: set-title Fe-18%Cr-8%Ni
 POST-1: @@
POST-1: 00

 POST-1: s-d-a x fs POST-1: s-s-s x n 0 1
 POST-1: s-ax-te x n Fraction solid
POST-1:
 POST-1: s-d-a y t-c
POST-1: s-s-s y n 1420 1480
POST-1:
  POST-1: s-p-c interf smalta lower
POST-1: POST-1: app y exb4c.exp 0; 1
 POST-1: SET_EXP_FILE_FORMAT 5
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
ORKING ... POST-1:
                                                                             OST-1: SET_EXP_FILE_FORMAT 10
  POST-1: plot
```

Fe-18%Cr-8%Ni

POST-1:
POST-1:
POST-1:
POST-1: set-inter
--OK--POST-1:

Example exb4d

Solidification path of an Fe-18%Cr-8%Ni alloy: Peritectic reaction, heat-flux controls the temperature

This example is the same as exb4b but instead of controlling the temperature the amount heat extracted is given. Comparison is made with both a Scheil-Gulliver simulation and equilibrium solidification conditions, both made with Thermo-Calc.

Time > 0

exb4d-setup

```
Thermo-Calc / DICTRA is software package for calculation of phase diagrams, simulation of phase transformation kinetics and much more.
  Copyright Foundation for Computational Thermodynamics,
  Stockholm, Sweden
  Software running on Windows 64-bit wordlength
  Compiler: unknown compiler
License library version: 9.7.0.0036
Linked: Fri Oct 18 11:32:56 2024
SYS:SYS:MACRO exb4d\setup.DCM
SYS: @@
SYS: @@ Moving boundary problem.
SYS: 00 Moving boundary problem.

SYS: 00 Solidification path of an Fe-18%Cr-8%Ni alloy

SYS: 00 This example is the same as exb4b but instead of controlling the temperature

SYS: 00 the amount of heat extracted is given. Comparison is made with both a

SYS: 00 Scheil-Gulliver simulation and equilibrium solidification conditions,
SYS: @@ Schell-Gullivel James | SYS: @@ both done in Thermo-Calc.
  NO SUCH COMMAND, USE HELP
SYS: @@ exb4d_setup.DCM
SYS: @@
SYS: @@ START BY GOING TO THE DATABASE MODULE
SYS: @@
SYS: go da
13:34:19,261 [Thread-0] INFO LicenseManager: Initializing user: jenkins.integrationtest@thermocalc.se
13:34:19,273 [Thread-0] INFO LicenseController: Running License Spring in DEV environment.
13:34:20,573 [Thread-0] INFO LicenseManager: There is an activated standalone license for jenkins.integrationtest@thermocalc.se for TC-
Application
THERMODYNAMIC DATABASE module
  Database folder:
  {\tt C:\jenkins\workspace\dev\_pipeline\generate\_dictra\_console\_examples\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\data
  Current database: Steels/Fe-Alloys v12.0
  VA /- DEFINED DICTRA_FCC_A1 REJECTED TOPB TCFF1?
TDB_TCFE12:
TDB_TCFE12: @@ USE A THERMODYNAMIC DATABASE TO RETRIEVE DATA
TDB TCFE12: sw fedemo
  Current database: Iron Demo Database v5.0
VA
TDB FEDEMO:
                                                       /- DEFINED
TDB FEDEMO: @@ DEFINE THE SYSTEM TO WORK WITH TDB FEDEMO: def-sys fe ni cr
     DEFINED
TDB_FEDEMO:
TDB_FEDEMO: @@ EXCLUDE THE THERMODYNAMIC DATA FOR THE PHASES THAT ARE NOT NEEDED
TDB_FEDEMO: rej ph /all
BCC A2
                                                        CBCC A12
                                                                                                             CHI A12
  CUB_A13
HCP_A3
                                                       FCC_A1
LAVES_PHASE_C14
                                                                                                             LIQUID:L
   SIGMA REJECTED
TDB_FEDEMO: res ph fcc liq bcc
  FCC_A1
RESTORED
                                                                                                             BCC A2
                                                        T.TOUTD: T.
TDB FEDEMO:
TDB_FEDEMO: @@ RETRIEVE DATA FROM THE DATABASE FILE
TDB FEDEMO: get
  13:34:21,633 [Thread-0] INFO JavaWrapper: *** Invoking Gibbs Energy System v6 ***
REINITIATING GES .....
  ELEMENTS .....
   SPECIES .....
  PHASES ......
PARAMETERS ...
  FUNCTIONS ....
  Use the command LIST_REFERENCES to see the list of references for assessed data
   -OK-
TDB_FEDEMO: @@
TDB FEDEMO: @@ MOBILITY/DIFFUSIVITY DATA ARE STORED IN A SEPARATE DATABASE FILE.
TDB_FEDEMO: 00 SWITCH TO THE MOBILITY DATABASE AND APPEND THE DATA
TDB FEDEMO: @@
TDB_FEDEMO: app
  Use one of these databases
  TCFE12 = Steels/Fe-Alloys v12.0
TCFE9 = Steels/Fe-Alloys v9.3
SSUB6 = SGTE Substances v6.0
  SSUB6 = SGTE Substances v6.0
FEDEMO = Iron Demo Database v5.0
MOB2 = Alloys Mobility v2.7
MOBFE2 = Steels/Fe-Alloys Mobility v4.0
MOBFE4 = Steels/Fe-Alloys Mobility v4.0
MOBFE7 = Steels/Fe-Alloys Mobility v7.1
  MFEDEMO = Fe-Alloys Mobility demo database v4.0
USER = User defined Database
DATABASE NAME /FEDEMO/: mobfe2
  Current database: Steels/Fe-Alloys Mobility v2.0
TCS Steel Mobility Database Version 2.0 from 2011-12-09.
  VA DEFINED
   *** WARNING: This database cannot be used with GES6, temporarily reverting to {\tt G}
  ES5
APP: def-sys fe ni cr
  FE
                                                        NΙ
                                                                                                             CR
      DEFINED
APP: rej ph /all
  BCC A2
                                                      FCC A1
                                                                                                             HCP A3
```

```
LIOUID:L REJECTED
APP: res ph fcc liq bcc FCC_A1
                                     LIQUID:L
                                                                        BCC A2
    RESTORED
APP: get
 ELEMENTS ....
  SPECIES .....
 PHASES .....
  PARAMETERS
 FUNCTIONS ....
 Use the command LIST_REFERENCES to see the list of references for assessed data
 -0K-
APP:
APP: @@
APP: 00 ENTER THE DICTRA MONITOR WHERE THE SYSTEM IS SET UP
APP: @@
APP: go d-m
13:34:22,263 [Thread-0] INFO StandaloneLicenseController: Checking out license for: Diffusion (DICTRA)
 NO TIME STEP DEFINED
DIC>
DIC> @@
DIC> @@ EXTRACT HEAT 91.19 J/mole/s
DIC> @@
DIC> set-cond glob Q 0 91.19; * N
DIC>
DIC> @@ ENTER AN INITIAL TEMPERATURE
DIC> @@
DIC> set-initial-temp 1900
DIC>
DIC> @@
DIC> @@ ENTER A REGION CALLED smalta
DIC> @@
DIC> enter-region smalta
DTC>
DIC> @@
DIC> @@ ENTER A GEOMETRIC GRID INTO THE REGION DIC> @@
DIC> enter-grid
REGION NAME : /SMALTA/: smalta
WIDTH OF REGION /1/: 1e-4
TYPE /LINEAR/: AUTO DIC>
DIC>
DIC> @@
DIC> 00 ENTER active PHASES INTO THE REGION DIC> 00 DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME: /SMALTA/: smalta
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: liq
DIC>
DIC> @@
DIC> @@ ENTER inactive PHASES INTO THE REGION, BOTH PHASES ON THE
DIC> 00 SAME SIDE OF THE LIQUID REGION TO GET A PERITECTIC REACTION.
DIC> @@
DIC> enter-phase
DIC> enter-phase

ACTIVE OR INACTIVE PHASE /ACTIVE/: inact

ATTACH TO REGION NAMED /SMALTA/: smalta

ATTACHED TO THE RIGHT OF SMALTA /YES/: yes

PHASE NAME: /NONE/: fcc#1

DEPENDENT COMPONENT ? /NI/: fe

REQUIRED DRIVING FORCE FOR PRECIPITATION: /1E-05/: le-3

CONDITION TYPE /CLOSED_SYSTEM/: closed
DIC>
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: inact
ATTACH TO REGION NAMED /SMALTA/: smalta
ATTACHED TO THE RIGHT OF SMALTA /YES/: yes
PHASE NAME: /NONE/: bcc#1
DEPENDENT COMPONENT ? /NI/: fe
REQUIRED DRIVING FORCE FOR PRECIPITATION: /1E-05/: 1e-3
CONDITION TYPE /CLOSED_SYSTEM/: closed
DIC>
DIC> @@
DIC> @@ ENTER A START COMPOSITION FOR THE LIQUID
DIC> enter-composition
PHASE NAME: /SMALTA/: smalta
PHASE NAME: /LIQUID/: liq
DEPENDENT COMPONENT ? /NI/: fe
COMPOSITION TYPE /MOLE_FRACTION/: w-p
PROFILE FOR /CR/: cr lin 18 18
PROFILE FOR /NI/: ni lin 8 8
DIC>
DIC> @@
DIC> @@ THE BOUNDARY CONDITION IS A CLOSED SYSTEM (DEFAULT) AS WE DO NOT SPECIFY
DIC> @@ ANYTHING ELSE
DIC> @@
DIC>
DIC> @@
DIC> 00 SET THE SIMULATION TIME
DIC> 00
DIC> set-simulation-time
DICS SET-SIMULATION -- TIME FOR INTEGRATION / .1/: 200
AUTOMATIC TIMESTEP CONTROL /YES/:
MAX TIMESTEP DURING INTEGRATION /20/:
INITIAL TIMESTEP : /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DIC>
DIC>
DIC>
DIC> 00 CHECK THE INTERFACE POSITION. THIS IS TO MAKE SURE THAT THE LIQUID REGION DIC> 00 DOES NOT SHRINK TOO MUCH DURING A TIMESTEP. IN ADDITION THE TIMESTEP IS
DIC> @@ CONTROLLED BY THE PHASE INTERFACE DISPLACEMENT DURING THE SIMULATION.
DIC> @@
```

```
DIC>About
   NO SUCH COMMAND, USE HELP
 DIC>DIC>MACRO exb4d\run.DCM DIC>
DIC> @@ exb4d_run.DCM
 DIC> @@
 DIC> @@ FILE FOR RUNNING EXAMPLE b4b
 DIC> @@
 DIC>
 DIC> @@
 DIC> @@ ENTER THE DICTRA MONITOR AND READ THE SET UP FROM FILE
DIC> @@
DIC> go d-m
 TIME STEP AT TIME 0.00000E+00
DIC> read exb4d
   OK
 DIC>
 DIC> @@
 DIC> @@ START THE SIMULATION
 DIC> @@
DIC> sim
Region: SMALTA
geometric 0.866196 dense at 0.100000E-03 89 points
DEGREE OF IMPLICITY SET TO TRAPEZOIDAL RULE
TEMPERATURE: 1900.0000 ENTHALPY: 73940.238
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882255
TOTAL SIZE OF SYSTEM: 1E-04 [m]
TEMPERATURE: 1900.0000 ENTHALPY: 73940.238
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882255
TOTAL SIZE OF SYSTEM: 1E-04 [m]
3.863918610029206E-003 3.864691456615999E-003 3.844149
06 DT = 0.10000000E-06 SUM OF SQUARES = 0.38284095E-20
TEMPERATURE: 1900.0000 ENTHALPY: 73940.238
U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292
NI = .0754116207882254
TOTAL SIZE OF SYSTEM: CR = .191520367992483 FE = .733068011219292
TOTAL SIZE OF SYSTEM: 1E-04 [m]
CPU time used in timestep 0 seconds
   Region: SMALTA
                                                                                                                                                                                                3.844149509874589E-012
                                                                                                                                                                                                                                                                                             3.828409457237947E-021
                                                                                                                                                                                                                                                                                                                                                                                         TIME = 0.10000000E-
   TOTAL SIZE OF SYSTEM: 1E-04 [m]

CPU time used in timestep

0 seconds
3.863369715420627E-003
3.864142409529244E-003
3.862638
05 DT = 0.38902696E-05 SUM OF SQUARES = 0.38689916E-20

TEMPERATURE: 1900.0000 ENTHALPY: 73940.238

U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292

NI = .0754116207882254

TOTAL SIZE OF SYSTEM: 1E-04 [m]

CPU time used in timesten
0 seconds
                                                                                                                                                                                                3.862638941968515E-012 3.868991631399091E-021
                                                                                                                                                                                                                                                                                                                                                                                      TIME = 0.39902696E -
  1.742256102296206E-
  TOTAL SIZE OF SYSTEM: 1E-04 [m]

CPU time used in timestep

0 seconds

1.544972738489654E-004

1.54528179426229ZE-004

6.073550732438570E-015

6.073550732438570E-015

012

9.779385076896095E-026

TIME = 0.27331887E-04 DT = 0.15561078E-04 SUM OF SQUARES = 0.97793851E-25

TEMPERATURE: 1899.9999

ENTHALPY: 73940.235

U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292

NI = .0754116207882254

TOTAL SIZE OF SYSTEM: 1E-04 [m]
                                                                                                                                                                                                                                                                                                                                                                                                  1.745310903714427E-
   TOTAL SIZE OF SYSTEM: 1E-04 [m]

CPU time used in timestep

0 seconds

1.544804750956444E-004

6.066058931563158E-015

6.06605
                                                                                                                                                                                                                                                                                                                                                                                                  1.745184034580139E-
  1.747006864638327E-
                                                                                                                                                                                                                                                                                                                                                                                                  1.751173664497199E-
 output ignored ...
 ... output resumed
   POSITION OF INTERFACE R_FCC_A1 / R_BCC_A2 IS 0.47764828E-05 TEMPERATURE: 1706.9084 ENTHALPY: 56074.266 U-FRACTION IN SYSTEM: CR = .191388019855254 FE = .73323061492677 NI = .0753813652179764 TOTAL SIZE OF SYSTEM: 1E-04 [m]
       11 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: R_FCC_A1
CPU time used in timestep 2 seconds
2.130458036905798E-002 2.130451540948964E-002 2.130460957846459E-002 2.13
005 2.459206461248073E-008 3.595916556164513E-013 4.362031520114629E-016
019 TIME = 197.47105 DT = 1.0007812 SUM OF SQUARES = 0.15188542E-18
CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.72964603E-07 AND 0.72964603E-07
POSITION OF INTERFACE R_FCC_A1 / R_BCC_A2 IS 0.48495044E-05
TEMPERATURE: 1704.7324 ENTHALPY: 55983.005
U-FRACTION IN SYSTEM: CR = .19138801985588 FE = .733230614927052
NI = .0753813652173677

TOTAL SIZE OF SYSTEM: 1E-04 [m]
8 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: R_FCC_A1
                                                                                                                                                                                                                                                                                                                   2.146715375118808E-
        8 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: R_FCC_A1
      CPU time used in timestep 1 seconds 9.357932626071368E-002 9.357897868205686E-002 9.3 1 339537295123986E-006 1.349225278427375E-009
                                                                                                                                                         1 seconds
6E-002 9.357940509128312E-002
* 690734499869
                                                                                                                                                                                                                                                                                                                                 8.357276456085232E-
    9.357932626071368E-002 9.3
004 1.339537295123986E-006
                                                                                                                                                                                                                                                                                9.357842606617575E-002
                                                                                                                                                                                                                                  4.690734499869817E-014
```

```
017 TIME = 199.47261 DT = 2.0015625 SUM OF SQUARES
CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.93944999E-07 AND 0.9394
POSITION OF INTERFACE R FCC A1 / R BCC A2 IS 0.50375412E-05
TEMPERATURE: 1700.3967 ENTHALPY: 55800.483
U-FRACTION IN SYSTEM: CR = .19138801985286 FE = .733230614928366
NI = .0753813652187737
TOTAL SIZE OF SYSTEM: 1E-04 [m]
67 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: R FCC A1
                                                                                           SUM OF SQUARES = 0.45657814E-16
017
                                                                                                          0.93944999E-07
  CPU time used in timestep 1 set 4.855056974966846E-003 4.855030126256783E-003
                                                                                                       4.855065973426648E-003
4.854851374321911E-003
                                                                                                                                                                                                            1.015066445619968E-
 WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                          194.90655
                                                         195.53204
195.59459
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                          195.71968
                                                          195.96988
                                                          196.47027
                                                        197.47105
 KEEPING TIME-RECORD FOR TIME
                                                     199.47261
 AND FOR TIME
WORKSPACE RECLAIMED
                                                        200.00000
 TIMESTEP AT 200.000000 SELECTED
DIC>
DTC>
DIC>
DTC>
DIC>
DIC>
DIC>
DIC>
```

DIC> DIC>

DIC> @@

DIC> set-inter --OK---DIC>

DIC> @@ THE SIMULATION IS FINISHED

exb4d-plot

```
DIC>About
NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exb4d\plot.DCM DIC>
DIC>
DIC> @@ exb4d_plot.DCM
DIC>
DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE b4b
DIC> @@
DIC>
DIC> @@
\overline{\text{DIC}}\text{>}\ \mbox{@}\ \mbox{@}\ \mbox{G} GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE \overline{\text{DIC}}\text{>}\ \mbox{@}\ \mbox{@}
DIC> go d-m
TIME STEP AT TIME 2.00000E+02
DIC> read exb4d
 OK
DIC>
DIC> @@
DIC> @@ GO TO THE POST PROCESSOR
DIC> @@
DIC> post
  POST PROCESSOR VERSION
                                   1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1: set-title Fe-18%Cr-8%Ni
POST-1:
POST-1: @@
POST-1: @@ PLOT THE FRACTION OF SOLID AND COMPARE WITH SCHEIL-GULLIVER
POST-1: @@ SIMULATION AND EQUILIBRIUM SOLIDIFICATION (DATA ON FILE exb4.exp)
POST-1: @@
POST-1: s-d-a x time
INFO: Time is set as independent variable
POST-1: s-d-a y T
POST-1: s-p-c inter first
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
ORKING ...orking ... OST-1: SET_EXP_FILE_FORMAT 10
POST-1:
POST-1: plot
```

Fe-18%Cr-8%Ni


```
POST-1: Hit RETURN to continue
POST-1: enter func fs=1-ivv(liquid);
POST-1: s-d-a x fs
POST-1: s-s-s x n 0 1
POST-1: s-s-x x n Fraction solid
POST-1: s-ax-te x n Fraction solid
POST-1: s-d-a y t-c
POST-1: s-d-a y t-c
POST-1: s-s-s y n 1420 1480
POST-1: s-s-s y n 1420 1480
POST-1: s-p-c interf smalta lower
POST-1: s-p-c interf smalta lower
POST-1: sp-c interf smalta lower
POST-1: pOST-1: post-1: SET_EXP_FILE_FORMAT 5
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: SET_EXP_FILE_FORMAT 10
POST-1: post-1: plot
```


POST-1:
POST-1:
POST-1:
POST-1: set-inter
--OK--POST-1:

Example exb5

$\gamma/\alpha/\gamma$ diffusion couple of Fe-Ni-Cr alloys

This example demonstrates the evaluation of a ternary Fe-Cr-Ni diffusion couple. A thin slice of α phase (38%Cr, 0%Ni) is clamped between two thicker slices of γ phase (27%Cr, 20%Ni). The assembly is subsequently heat treated at 1373K. This setup corresponds to diffusion couple A in M. Kajihara, C.-B. Lim and M. Kikuchi: ISIJ International 33 (1993), pp. 498-507. See also M. Kajihara and M. Kikichi: Acta Metall.Mater. 41 (1993), pp.2045-2059.

593.45E-6

exb5-setup

SYS: About

APP: @@

```
Thermo-Calc / DICTRA is software package for calculation of phase diagrams, simulation of phase transformation kinetics and much more.
   Copyright Foundation for Computational Thermodynamics,
  Stockholm, Sweden
   Software running on Windows 64-bit wordlength
  Compiler: unknown compiler
License library version: 9.7.0.0036
Linked: Fri Oct 18 11:32:56 2024
SYS:SYS:MACRO exb5\setup.DCM SYS: @@SYS: @@Moving boundary problem.
 SYS: @@ Ternary diffusion couple of Fe-Ni-Cr alloys
 SYS: @@ This example demonstrates the evaluation of a ternary Fe-Cr-Ni diffusion
SYS: 00 couple. A thin slice of alpha phase (38%Cr, 0%Ni) is clamped between SYS: 00 two thicker slices of gamma phase (27%Cr, 20%Ni). The assembly is SYS: 00 subsequently heat treated at 1373 K. This example corresponds to diffusion
SYS: 00 couple A in M. Kajihara, C.-B. Lim and M. Kikuchi: ISIJ International SYS: 00 33 (1993), pp. 498-507. See also M. Kajihara and M. Kikichi: Acta Metall.Mater.
 SYS: @@ 41 (1993), pp.2045-2059.
 SYS: ---
  NO SUCH COMMAND, USE HELP
 SYS:
 SYS: @@ exb5 setup.DCM
 SYS:
SYS: @@
 SYS: @@ GO TO A DATABASE AND READ THE THERMODYNAMIC AND KINETIC DATA
 SYS: @@
SYS: go da

13:41:02,829 [Thread-0] INFO LicenseManager: Initializing user: jenkins.integrationtest@thermocalc.se

13:41:02,842 [Thread-0] INFO LicenseController: Running License Spring in DEV environment.

13:41:03,964 [Thread-0] INFO LicenseManager: There is an activated standalone license for jenkins.integrationtest@thermocalc.se for TC-
 Application
   THERMODYNAMIC DATABASE module
   Database folder:
   {\tt C:\jenkins\workspace\dev\_pipeline\generate\_dictra\_console\_examples\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\data
  Current database: Steels/Fe-Allovs v12.0
VA /- DEFINED
DICTRA_FCC_A1 REJECTED
TDB_TCFE12: sw fedemo
Current database. T
  Current database: Iron Demo Database v5.0
                                                               /- DEFINED
 TDB_FEDEMO: def-sys cr fe ni
                                                                                                                          NI
  CR
       DEFINED
TDB_FEDEMO: rej-ph /all
BCC_A2
CUB_A13
                                                               CBCC_A12
FCC_A1
                                                                                                                           CHI A12
HCP A3 LA SIGMA REJECTED TDB FEDEMO: res-ph bcc,fcc BCC A2 FC TDB_FEDEMO: get
                                                              LAVES_PHASE_C14
                                                                                                                           T.TOUTD: I.
                                                               FCC_A1 RESTORED
 13:41:05,034 [Thread-0] INFO JavaWrapper: *** Invoking Gibbs Energy System v6 *** REINITIATING GES .....
   ELEMENTS .....
SPECIES .....
  PHASES ......
PARAMETERS ...
   FUNCTIONS ....
  Use the command LIST_REFERENCES to see the list of references for assessed data
   -OK-
 TDB_FEDEMO:
 TDB_FEDEMO: app
  Use one of these databases
   TCFE12 = Steels/Fe-Alloys v12.0
  TCFE12 = Steels/Fe-Alloys v12.0

TCFE9 = Steels/Fe-Alloys v9.3

SSUB6 = SGTE Substances v6.0

FEDEMO = Iron Demo Database v5.0

MOB2 = Alloys Mobility v2.7

MOBFE2 = Steels/Fe-Alloys Mobility v4.0

MOBFE4 = Steels/Fe-Alloys Mobility v7.1

MOBFE7 = Steels/Fe-Alloys Mobility v7.0
  MFEDEMO = Fe-Alloys Mobility demo database v4.0
USER = User defined Database
DATABASE NAME /FEDEMO/: mfedemo
Current database: Fe-Alloys Mobility demo database v4.0
  VA DEFINED
 APP: def-sys cr fe ni
                                                               FE
  CR
                                                                                                                           NI
       DEFINED
APP: rej-ph /all
BCC_A2
                                                              FCC A1
                                                                                                                          LIQUID:L
       REJECTED
APP: res-ph bcc,fcc
BCC_A2
APP: get
                                                              FCC A1 RESTORED
   ELEMENTS ....
   SPECIES .....
  PHASES .......
PARAMETERS ...
   FUNCTIONS ....
  Use the command LIST_REFERENCES to see the list of references for assessed data
  -OK-
```

```
APP: @@ GO TO THE DICTRA MODULE TO SET UP THE SIMULATION
APP: go d-m
13:41:05,635 [Thread-0] INFO StandaloneLicenseController: Checking out license for: Diffusion (DICTRA)
  NO TIME STEP DEFINED
DIC> @@
DIC> @@ SET THE GLOBAL CONDITIONS DIC> @@
 DIC> set-cond glob T 0 1373; * N
DIC>
DIC> 00
DIC> 00 ENTER TWO REGIONS, ONE FOR EACH PHASE
DIC> enter-region alpha
DIC> enter-region gamma
ATTACH TO REGION NAMED /ALPHA/:
ATTACHED TO THE RIGHT OF ALPHA /YES/:
DIC> 00
DIC> 00 ENTER THE GRID SIZE AND SPACINGS
DIC> @@
DIC> enter-grid alpha 93.45E-6 AUTO
DIC> enter-grid gamma 500.0E-6 AUTO
DIC>
DIC> 00 SPECIFY WHICH PHASE GOES INTO WHICH REGION DIC> 00
DIC> enter-phase act alpha matrix bcc
DIC> enter-phase act gamma matrix fcc
DIC>
DIC> 00
DIC> 00 DIC> 00 ENTER THE INITIAL COMPOSITIONS IN THE PHASES DIC> 00 IT IS IMPORTANT NOT TO PUT 0%NI IN PHASE BCC, DIC> 00 ENTER SOME SMALL VALUE INSTEAD DIC> 00 DIC> enter-composition
REGION NAME: /ALPHA/: alpha
PHASE NAME: /BCC_A2/: bcc
DEPENDENT COMPONENT ? /NI/: fe
COMPOSITION TYPE /MOLE_FRACTION/: w-f
PROFILE FOR /CR/: cr lin .38 .38
PROFILE FOR /NI/: ni lin 1e-5 1e-5
DIC>
DIC>
DIC>
DIC> enter-composition
DICS enter-composition
REGION NAME: /GAMMA/: gamma
PHASE NAME: /FCC_A1/: fcc
DEPENDENT COMPONENT? /NI/: fe
COMPOSITION TYPE /MOLE_FRACTION/: w-f
PROFILE FOR /CR/: cr lin .27 .27
PROFILE FOR /NI/: ni lin .28 .28
DIC> 00
DIC> set-simulation-time
END TIME FOR INTEGRATION /.1/: 36E5
AUTOMATIC TIMESTEP CONTROL /YES/:
MAX TIMESTEP DURING INTEGRATION /360000/:
INITIAL TIMESTEP: /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP: /1E-07/:
DIC>
 DIC>
DIC> SAVE exb5 Y
DIC> pic> set-inter
--OK---
```

```
NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exb5\run.DCM DIC>
DIC>
DIC> @@ exb5_run.DCM
DIC>
DIC> @@ FILE FOR RUNNING EXAMPLE b5
DIC> @@
DIC>
DIC> @@
\overline{\text{DIC>}} \overline{\text{QQ}} enter the dictra monitor and read the set up from file \overline{\text{DIC>}} \overline{\text{QQ}}
 TIME STEP AT TIME 0.00000E+00
DIC> read exb5
 OK
DTCS
DIC> @@
DIC> @@ START THE SIMULATION
DIC> @@
DIC> simulate
 Region: ALPHA
 geometric 0.
Region: GAMMA
                 0.787882 dense at 0.934500E-04 96 points
 geometric 1.29714 dense at 0.00000 DEGREE OF IMPLICITY SET TO TRAPEZOIDAL RULE
 Trying old scheme 4
GENERATING STARTING VALUES FOR CELL # 1 INTERFACE # 2
GENERATING STARTING VALUES FOR CELL # I INTEREDETERMINING INITIAL EQUILIBRIUM VALUES:

CALCULATING STARTING VALUES:

Give the command INFO TROUBLE for help

*** ERROR 1611 IN QTHISS: TOO MANY ITERATIONS

Give the command INFO TROUBLE for help
                                                     EQUILIBRIUM CALCULATIONS
                                                                                                          *** ERROR 1611 IN QTHISS: TOO MANY ITERATIONS
 *** ERROR 1611 IN OTHISS: TOO MANY ITERATIONS
Give the command INFO TROUBLE for help
DONE 6 OUT OF 9
Give the command INFO TROUBLE for help
DONE 9 OUT OF 9
try 3 failed
                                                                                                          *** ERROR 1611 IN QTHISS: TOO MANY ITERATIONS
                                                                                                           try
DETERMINED ACTIVITIES S railed

DETERMINED ACTIVITIES ACR(CR) .00275331206673

UNABLE TO OBTAIN GOOD STARTING VALUE USING THE OLD SCHEME

USE NEW SCHEME /YES/:
  Trying new scheme
GENERATING STARTING VALUES FOR CELL # 1 INTERFACE # 2
DETERMINING INITIAL EQUILIBRIUM VALUES
CALCULATING STARTING VALUES: 18 EQUILIBRIUM CALC
                                                       EQUILIBRIUM CALCULATIONS
                                                                                                          DONE 1 OUT OF
                                                                                                                                             1.8
 04
U-FRACTION IN SYSTEM: CR = .305280432605602 FE = .471672082221692
NI = .223047485172707

TOTAL SIZE OF SYSTEM: 5.9345E-04 [m]
U-FRACTION IN SYSTEM: CR = .305280432605602 FE = .471672082221692
NI = .223047485172707
006
006
019
  CPU time used in timestep
                                                                      seconds
2.642826838933915E-
            4.111299423752579E-012
output ignored...
... output resumed
 NI = .223047486070157
TOTAL SIZE OF SYSTEM: 5.9345E-04 [m]
6 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: GAMMA
                                                                      seconds
007 4.546624601431393E-007
6 84399144176
  CPU time used in timestep
009
              1.682466448224741E-009
                                                        1.279470231844726E-009
                                                                                                 1.171546040007228E-009
                                                                                                                                            1.202735641658811E-
               1.177691695956214E-009
1.158126542479074E-009
                                                        1.171119199067579E-009
1.146319738099367E-009
                                                                                                  1.163448170584850E-009
                                                                                                                                            1.164031690959471E-
1.128379153490799E-
                                                                                                                                           8 224513635991282E-
                                                                                                                                            3.160213171796849E-
   COTAL SIZE OF SYSTEM: 5.9345E-04 [m]
5 GRIDPOINT(S) REMOVED FROM CELL #1
                                                     REGION: GAMMA
CPU time used in timestep 4 seconds 3.147840586150086E-007 3.156726038865369E-007 3.129253452827497E-007 010 1.608998746556003E-013 4.259008830667696E-019 TIME = 3453553.9 DT = 360000.00 SUM OF SQUARES = 0.24726341E-21 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.52006922E-11 AND -0.52006922E-11 POSITION OF INTERFACE ALPHA / GAMMA IS 0.86659604E-04 U-FRACTION IN SYSTEM: CR = .305280433861286 FE = .471672080046809 NI = .223047486091905
                                                                                                                           2.089865868762208E-009
                                                                                                                                                                    4.625962631295723E-
```

```
TOTAL SIZE OF SYSTEM:
                                      5.9345E-04 [m]
     GRIDPOINT(S) REMOVED FROM CELL #1
                                                                REGION: GAMMA
 CPU time used in timestep
                                                                                   seconds
CPU time used in timestep 1 seconds
5.962264523568051E-007 5.961610382142017E-007 5.96877861537642
013 7.734104188364651E-021 TIME = 3600000.0 DT = 1466446.
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.46233102E-11 AND -0.46233102E-11
POSITION OF INTERFACE ALPHA / GAMMA IS 0.85982539E-04
U-FRACTION IN SYSTEM: CR = .305280433868743 FE = .471672080031609
NI = .223047486099649
TOTAL SIZE OF SYSTEM: 5.9345E-04 [m]
                                                                                                1.633351510636594E-
MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                      0.0000000
                                                     0.10000000E-06
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                     0.35977533E-04
                                                     0.10773260E-03
DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                     0 25124273E-03
DELETING TIME-RECORD FOR TIME
                                                     0.11123035E-02
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                     0.22603846E-02
0.45565466E-02
DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                     0 72719533E-02
DELETING TIME-RECORD FOR TIME
                                                     0.21279333E-01
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                     0.27251790E-01
0.31615384E-01
DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                     0 40342574E-01
DELETING TIME-RECORD FOR TIME
                                                     0.92705708E-01
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                     0.30215825
DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                     0.51935812
DELETING TIME-RECORD FOR TIME
                                                      1.6258880
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                       3.1012611
                                                       4.6067718
DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                       7.6177933
                                                       13.639836
DELETING TIME-RECORD FOR TIME
                                                       17.807173
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                       26.141846
                                                       36.344698
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                       52.233308
84.010526
DELETING TIME-RECORD FOR TIME
                                                       147.56496
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                       503.69187
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                       922.75233
DELETING TIME-RECORD FOR TIME
                                                       2792.4410
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                       5030.7213
9507.2820
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                       18460.403
                                                       36366.646
DELETING TIME-RECORD FOR TIME
                                                       72179 132
DELETING TIME RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                       287054.04
DELETING TIME-RECORD FOR TIME
                                                       573553.93
DELETING TIME-RECORD FOR TIME
                                                       933553.93
                                                       1293553.9
1653553.9
DELETING TIME-RECORD FOR TIME
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                       2013553.9
```

TIMESTEP AT 3600000.00 SELECTED

DELETING TIME-RECORD FOR TIME

KEEPING TIME-RECORD FOR TIME

AND FOR TIME WORKSPACE RECLAIMED

2373553.9 2733553.9

3093553.9

3453553.9

3600000.0

DIC> set-inter --OK---

DTC>

POST-1: s-p-c time 3600

POST-1:

```
DIC>About
NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exb5\plot.DCM DIC>
DIC>
DIC> @@ exb5_plot.DCM
DIC>
DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE b5
DIC> @@
DIC>
DIC> @@
\overline{\text{DIC}}\text{>}\ \mbox{@}\ \mbox{@}\ \mbox{G} GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE \overline{\text{DIC}}\text{>}\ \mbox{@}\ \mbox{@}
DIC> go d-m
TIME STEP AT TIME 3.60000E+06
DIC> read exb5
 OK
DIC>
DIC> @@
DIC> 00 ENTER THE POST PROCESSOR, PLOT SOME QUANTITIES AND COMPARE WITH EXPERIMENTS DIC> 00 DIC> post
  POST PROCESSOR VERSION
                                  1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1: set-title Diffusion Couple A
POST-1:
POST-1: @@
POST-1: 00 WE ARE INTERESTED IN THE POSITION OF THE UPPER INTERFACE OF REGION ALPHA POST-1: 00
POST-1: s-p-c interf alpha upper
POST-1:
POST-1: @@
POST-1: @@ 10 IS THE INITIAL THICKNESS USED FOR NORMALIZATION
POST-1: @@
POST-1: enter func 10=186.9e-6;
POST-1: enter func aa=2*poi(alpha,u)/10;
POST-1: enter func ab=time/10**2;
POST-1: s-i-v time
POST-1:
POST-1: s-d-a x ab
POST-1: s-s-s x n 1e10 1e15
POST-1: s-ax-ty x log
POST-1:
POST-1: s-d-a y aa
POST-1: s-s-s y n 0 2 POST-1:
POST-1: app y exb5.exp
PROLOGUE NUMBER: /0/: 0
DATASET NUMBER(s): /-1/: 7
POST-1:
POST-1:
POST-1: SET EXP FILE FORMAT 5
POST-1: MAKE c:\[\]jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
             OST-1: SET_EXP_FILE_FORMAT 10
POST-1: plot
                                           Diffusion Couple A
        1.8
        1.6
        1.4
        1.2
     ≨ 1.0
        0.8
        0.6
        0.4
        0.2
                      10<sup>11</sup>
        0.0
                                               1012
                                                                 10<sup>13</sup>
                                                                                   1014
           1010
                                                                                                     1015
                                                        AB
 POST-1:
POST-1:
POST-1:
POST-1:Hit RETURN to continue
POST-1:
POST-1: @@
POST-1: @@ PLOT THE CONCENTRATION PROFILES FOR DIFFERENT ANNEALING TIMES
POST-1: @@
POST-1: s-d-a x dist glo
INFO: Distance is set as independent variable POST-1: s-ax-ty x lin POST-1: s-s-s x n 0 350e-6
POST-1:
POST-1: s-d-a y w(*)
POST-1: s-s-s y n 0 1 POST-1:
```

```
POST-1: app y exb5.exp 0; 1
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
POST-1: SET_EXP_FILE_FORMAT 10
POST-1:
POST-1: plot
```

Diffusion Couple A

```
1.0
                                                                         △ Fe
                                                                         □ Cr
   0.9
                                                                         ♦ Ni
   0.8
   0.7
   0.6
*) 0.5
   0.4
                     П
   0.3
                                 ₫3
   0.2
   0.1
   0.0-
   0.00000
                0.00005
                             0.00010
                                          0.00015
                                                      0.00020
                                                                   0.00025
                                                                                0.00030
                                                                                             0.00035
                                               Distance
```

POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:Hit RETURN to continue
POST-1: s-p-c time 36000
POST-1: app y exb5.exp 0; 2
POST-1: app y exb5.exp 0; 2
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
POST-1: SET_EXP_FILE_FORMAT 10
POST-1: plot

Diffusion Couple A


```
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:Hit RETURN to continue
POST-1: s-p-c time 360000
POST-1: app y exb5.exp 0; 3
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: SET_EXP_FILE_FORMAT 10
POST-1: SET_EXP_FILE_FORMAT 10
POST-1: DOST-1: plot
```

Diffusion Couple A

```
1.0
                                                                    △ Fe
  0.9
                                                                    □ Cr
                                                                    ♦ Ni
  0.7
  0.6
                               Δ
*) 0.5
                      П
                                   ШШ
                 ₾
                                     0.2
  0.1
  0.0
   0.00000
               0.00005
                           0.00010
                                       0.00015
                                                   0.00020
                                                               0.00025
                                                                           0.00030
                                                                                       0.00035
                                            Distance
```

```
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1: s-p-c time 3600000
POST-1: app y exb5.exp 0; 4
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: SET_EXP_FILE_FORMAT 10
POST-1: POST-1: POST-1:
POST-1: plot
```

Diffusion Couple A


```
POST-1:
POST-1:
POST-1:Hit RETURN to continue
POST-1: ## RETURN to
```

Diffusion Couple A

POST-1: POST-1: POST-1: POST-1: set-inter --OK---POST-1:

Example exb6

Micro-segregation of phosphorus

This example illustrates the effect of microsegregation of phosphorus during peritectic solidification in steel.

SYS: About

```
Thermo-Calc / DICTRA is software package for calculation of phase diagrams,
 simulation of phase transformation kinetics and much more.
 Copyright Foundation for Computational Thermodynamics,
 Stockholm, Sweden
 Software running on Windows 64-bit wordlength
 Compiler: unknown compiler
License library version: 9.7.0.0036
Linked: Fri Oct 18 11:32:56 2024
SYS:SYS:MACRO exb6\setup.DCM
SYS: @@
SYS: @@ Moving boundary problem.
SYS: @@ Microsegregation of phosphorus
SYS: @@ This example illustrates the effect of microsegregation
SYS: @@ of phosphorus during peritectic solidification in steel.
 NO SUCH COMMAND, USE HELP
SYS: @@
SYS: @@ START BY GOING TO THE DATABASE MODULE
SYS: @@
SYS: Ge SYS: Go da

13:45:11,804 [Thread-0] INFO LicenseManager: Initializing user: jenkins.integrationtest@thermocalc.se

13:45:11,818 [Thread-0] INFO LicenseController: Running License Spring in DEV environment.

13:45:13,037 [Thread-0] INFO LicenseManager: There is an activated standalone license for jenkins.integrationtest@thermocalc.se for TC-
 THERMODYNAMIC DATABASE module
 Database folder:
  C:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples\databases\da
 Current database: Steels/Fe-Alloys v12.0
 VA /- DEFINED DICTRA_FCC_A1 REJECTED 'DB TCFE12.
TDB_TCFE12:
TDB_TCFE12: @@ USE A TCFE DATABASE FOR THERMODYNAMIC DATA
TDB TCFE12: sw tcfe9
 Current database: Steels/Fe-Alloys v9.3
                                   /- DEFINED
 L12_FCC
REJECTED
                                   B2_BCC
                                                                    DICTRA_FCC_A1
TDB_TCFE9:
TDB_TCFE9: @@ DEFINE THE SYSTEM TO WORK WITH
TDB_TCFE9: def-sys fe c si mn p
 FE
                                  C
P DEFINED
                                                                     ST
TDB TCFE9:
TDB_TCFE9: @@ EXCLUDE THE THERMODYNAMIC DATA FOR THE PHASES THAT ARE NOT NEEDED
TDB TCFE9: rej ph /all
 GAS:G
                                   LIQUID:L
                                                                     BCC_A2
 FCC_A1
CUB_A13
WHITE_P
                                   HCP_A3
DIAMOND_FCC_A4
GRAPHITE
                                                                     CBCC_A12
RED P
                                                                     CEMENTITE
 M23C6
KSI_CARBIDE
                                   м7с3
                                                                     M5C2
                                   FE4N_LP1
                                                                     FECN_CHI
 LAVES_PHASE_C14
MN11SI19
                                  M3SI
                                                                     MN9SI2
                                  MN6SI
FE2SI
                                                                     G_PHASE
FESI2_H
 CR3SI
 FESI2_L
                                   MST
                                                                     M5ST3
                                   FE8SI2C
 MN5SIC
                                   CUZN_EPSILON
CU3P_D021
MN3P_D0E
                                                                     AL5FE4
 MP_B31
M3P_D0E
FESI4P4
                                                                     M2P_C22
FENBP
                                   SIP
                                                                     STP2
    REJECTED
TDB_TCFE9: res ph fcc liq bcc
FCC_A1 LIQU
                                                                  BCC A2
                                   LIQUID:L
    RESTORED
TDB_TCFE9:
TDB TCFE9: @@ RETRIEVE DATA FROM THE DATABASE FILE
TDB_TCFE9: get
TDB_TCFE9: get
13:45:14,521 [Thread-0] INFO JavaWrapper: *** Invoking Gibbs Energy System v6 ***
REINITIATING GES .....
 SPECIES .....
 PHASES ......
PARAMETERS ...
 FUNCTIONS ...
 Use the command LIST_REFERENCES to see the list of references for assessed data
 -OK-
TDB_TCFE9:
TDB_TCFE9: @@
TDB_TCFE9: @@ MOBILITY/DIFFUSIVITY DATA ARE STORED IN A SEPARATE DATABASE FILE.
TDB_TCFE9: @@ SWITCH TO A MOBILITY DATABASE AND APPEND THE DATA. TDB_TCFE9: @@
TDB_TCFE9: app
Use one of these databases
 TCFE12 = Steels/Fe-Alloys v12.0
TCFE9 = Steels/Fe-Alloys v9.3
SSUB6 = SGTE Substances v6.0
FEDEMO = Iron Demo Database v5.0
 FELLEMO = Iron Demo Database v5.0

MOB2 = Alloys Mobility v2.7

MOBFE2 = Steels/Fe-Alloys Mobility v2.0

MOBFE4 = Steels/Fe-Alloys Mobility v4.0

MOBFE7 = Steels/Fe-Alloys Mobility v7.1

MFEDEMO = Fe-Alloys Mobility demo database v4.0

USER = User defined Database
DATABASE NAME /TCFE9/: mobfe4
 Current database: Steels/Fe-Alloys Mobility v4.0
```

VA DEFINED

```
B2_BCC REJECTED
\overline{\text{APP:}} def-sys fe c si mn p
                                        C
P DEFINED
                                                                              SI
 FE
 MN
APP: rej ph /all
 BCC A2
                                        CEMENTITE
                                                                               FCC A1
 FE4N_LP1
                                        HCP_A3
    REJECTED
APP: res ph fcc liq bcc FCC_A1
                                       LIQUID:L
                                                                             BCC A2
    RESTORED
APP: get
  ELEMENTS .....
  SPECIES .....
 PHASES ......
PARAMETERS ...
 FUNCTIONS ....
 Use the command LIST_REFERENCES to see the list of references for assessed data
APP:
APP: @@ ENTER THE DICTRA MONITOR WHERE THE SYSTEM IS SET UP
APP: go d-m
13:45:16,782 [Thread-0] INFO StandaloneLicenseController: Checking out license for: Diffusion (DICTRA)
NO TIME STEP DEFINED DIC> DIC> @@
DIC> @@ ENTER THE GLOBAL CONDITION T
DIC> @@
DIC> @@ LOWER THE TEMPERATURE TO A RATE OF 0.2 K/s
DIC> @@
DIC> set-cond glob T 0 1780-0.2*TIME; * N
DTC>
DIC> @@
DIC> @@ ENTER A REGION CALLED smalta
DIC> @@
DIC> enter-region smalta
DIC>
DIC> 00
DIC> 00 ENTER A DOUBLE GEOMETRIC GRID INTO THE REGION
DIC> enter-grid
REGION NAME: /SMALTA/: smalta
WIDTH OF REGION /1/: 1e-4
TYPE /LINEAR/: AUTO
DIC>
DIC> @@
DIC> @@ ENTER active PHASES INTO THE REGION
DIC> @@ ENTER active PHASES INTO THE RIDIC> @@
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /SMALTA/: smalta
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: liq
DIC>
DIC> @@ ENTER inactive PHASES INTO THE REGION, BOTH PHASES ON THE SAME SIDE
DIC> 00 OF THE LIQUID REGION TO GET A PERITECTIC REACTION.
DIC> @@
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: inact
ATTACH TO REGION NAMED /SMALTA/: smalta
ATTACHED TO THE RIGHT OF SMALTA /YES/: no
PHASE NAME: /NOME/: fcc#1
DEPENDENT COMPONENT ? /SI/: fe
REQUIRED DRIVING FORCE FOR PRECIPITATION: /1E-05/: 1e-5
CONDITION TYPE /CLOSED_SYSTEM/: closed
DIC>
DICY enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: inact
ATTACH TO REGION NAMED /SMALTA/: smalta
ATTACHED TO THE RIGHT OF SMALTA /YES/: no
PHASE NAME: /NONE/: bcc#1
DEPENDENT COMPONENT ? /SI/: fe
REQUIRED DRIVING FORCE FOR PRECIPITATION: /1E-05/: le-5
CONDITION TYPE /CLOSED_SYSTEM/: closed
DIC>
DIC> @@ ENTER A START COMPOSITION FOR THE LIQUID DIC> @@ DIC> enter-composition
PHASE NAME: /SMALTA/: smalta
PHASE NAME: /LIQUID/: liq
DEPENDENT COMPONENT ? /SI/: fe
COMPOSITION TYPE /MOLE_FRACTION/: w-p
PROFILE FOR /C/: c lin 0.4 0.4
PROFILE FOR /MN/: si lin 0.7 0.7
PROFILE FOR /P/: mn lin 0.8 0.8
PROFILE FOR /SI/: p lin 0.03 0.03
DIC>
DIC> @@
DIC> @@ THE BOUNDARY CONDITION IS A CLOSED SYSTEM (DEFAULT) AS WE DO NOT SPECIFY
DIC> @@ ANYTHING ELSE
DIC> @@
DIC>
DIC> @@
DIC> @@ SET THE SIMULATION TIME
DIC> @@
DIC> set-simulation-time
END TIME FOR INTEGRATION /.1/: 3000
AUTOMATIC TIMESTEP CONTROL /YES/: yes
MAX TIMESTEP DURING INTEGRATION /300/: 15
INITIAL TIMESTEP: /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP: /1E-07/:
DIC>
DIC>
DIC
```

```
DIC> @@ CHECK THE INTERFACE POSITION. THIS IS TO MAKE SURE THAT THE LIQUID REGION DIC> @@ DOES NOT SHRINK TOO MUCH DURING A TIMESTEP. IN ADDITION THE TIMESTEP IS DIC> @@ CONTROLLED BY THE PHASE INTERFACE DISPLACEMENT DURING THE SIMULATION. DIC> @@ DIC> s-s-c
NSO1A PRINT CONTROL: /O/:
FILUX CORRECTION FACTOR: /L/:
NUMBER OF DELTA TIMESTEPS IN CALLING MULDIF: /2/:
CHECK INTERFACE POSITION /AUTO/: yes
VARY POTENTIALS OR ACTIVITIES OR LNAC: /ACTIVITIES/:
ALLOW AUTOMATIC SWITCHING OF VARYING ELEMENT: /YES/:
SAVE WORKSPACE ON FILE (YES,NO,0-999) /YES/:
DEGREE OF IMPLICITY WHEN INTEGRATING PDES (AUTO, 0 -> 0.5 -> 1): /AUTO/:
MAX TIMESTEP CHANGE PER TIMESTEP: /2/:
USE FORCED STARTING VALUES IN EQUILIBRIUM CALCULATION /AUTO/:
ALWAYS CALCULATE STIFFMES MATRIX IN MULDIF /YES/:
CALCULATE RESIDUAL FOR DEPENDENT COMPONENT /NO/:
DIC>
DIC> @@
DIC> SAVE THE SET UP TO A NEW STORE FILE AND EXIT
DIC> @@
DIC> save exb6 Y
DIC> set-inter
--OK---
DIC>
DIC> Set-inter
```

```
NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exb6\run.DCM DIC>
DIC>
DIC> @@ exb6_run.DCM
DIC>
DIC> @@ READ THE SET UP FROM FILE AND START THE SIMULATION
DIC> @@
DIC>
DIC> go d-m
TIME STEP AT TIME 0.00000E+00
DIC> read exb6
Region: SMALTA
geometric 1.15279 dense at 0.00000 88 points

DEGREE OF IMPLICITY SET TO TRAPEZOIDAL RULE

U-FRACTION IN SYSTEM: C = .0185375871047351 FE = .977481861209079

MN = .00810568126669964 P = 5.39133528237326E-04

SI = .0138733239959839

TOTAL SIZE OF SYSTEM: 1E-04 [m]

U-FRACTION IN SYSTEM: C = .0185375871047351 FE = .977481861209079

MN = .00810568126669964 P = 5.39133528237326E-04

SI = .0138733239959839

TOTAL SIZE OF SYSTEM: 1E-04 [m]

TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.00000

U-FRACTION IN SYSTEM: C = .0185375871047351 FE = .977481861209079

MN = .00810568126669965 P = 5.39133528237326E-04
 Region: SMALTA
 TOTAL SIZE OF SYSTEM: 1E-04 [m]

CPU time used in timestep

TIME = 0.79252098E-06 DT = 0.69252098E-06 SUM OF SQUARES = 0.0000000

U-FRACTION IN SYSTEM: C = .018537587104735 FE = .977481861209079

MN = .00810568126669965 P = 5.39133528237326E-04
  ST = 0138733239959838
  TOTAL SIZE OF SYSTEM: 1E-04 [m]
 TOTAL SIZE OF SYSTEM: LE-0-4 [m]

CPU time used in timestep 1 seconds

TIME = 0.21775630E-05 DT = 0.13850420E-05 SUM OF SQUARES = 0.0000000

U-FRACTION IN SYSTEM: C = .018537587104735 FE = .977481861209079

MN = .00810568126669964 P = 5.39133528237326E-04
 SI = .0138733239959838
 SI = .0138733239959839
 SI = .0138733239959838
TOTAL SIZE OF SYSTEM: 1E-04 [m]
 TOTAL SIZE OF SYSTEM: 1E-U4 [HI]

CPU time used in timestep 1 seconds

TIME = 0.88050165E-04 DT = 0.44321343E-04 SUM OF SQUARES = 0.0000000

U-FRACTION IN SYSTEM: C = .018537587104735 FE = .977481861209079

MN = .00810568126669964 P = 5.39133528237327E-04
U-FRACTION IN SYSTEM: 1E-04 [m]
CPU time used in timestep
TIME = 0.17669285E-03 DT = 0.88642686E-04 SUM OF SQUARES = 0.0000000
U-FRACTION IN SYSTEM: C = .018537587104735 FE = .977481861209079
MN = .00810568126669964 P = 5.39133528237327E-04
 TOTAL SIZE OF SISTEM: IE-04 [m]

CPU time used in timestep

TIME = 0.35397822E-03 DT = 0.17728537E-03 SUM OF SQUARES = 0.0000000

U-FRACTION IN SYSTEM: C = .018537587104735 FE = .977481861209079

MN = .00810568126669964 P = 5.39133528237326E-04

SI = .0138733239959838
 ST = 0138733239959838
  TOTAL SIZE OF SYSTEM: 1E-04 [m]
 TOTAL SIZE OF SYSTEM: 1E-07 [11]

CPU time used in timestep 0 seconds

TIME = 0.14176905E-02 DT = 0.70914149E-03 SUM OF SQUARES = 0.0000000

U-FRACTION IN SYSTEM: C = .018537587104735 FE = .977481861209079

MN = .00810568126669964 P = 5.39133528237326E-04
  SI = .0138733239959838
TOTAL SIZE OF SYSTEM: 1E-04 [m]
 U-FRACTIO...

MN = .005.

SI = .0138733239959838

TOTAL SIZE OF SYSTEM: IE-04 [m]

CPU time used in timestep

TIME = 0.56725394E-02 DT = 0.28365659E-02 SUM OF SQUARES = 0.0000000

U-FRACTION IN SYSTEM: C = .018537587104735 FE = .977481861209079

MN = .00810568126669964 P = 5.39133528237326E-04
  TOTAL SIZE OF SYSTEM: 1E-04 [m]

CPU time used in timestep

TIME = 0.11345671E-01 DT = 0.56731319E-02 SUM OF SQUARES = 0.0000000
```

output ignored...

... output resumed

DELETING TIME-RECORD FOR TIME 920.11031 DELETING TIME-RECORD FOR TIME 935.11031 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 950.11031 965.11031 DELETING TIME-RECORD FOR TIME 980.11031 995.11031 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 1010.1103 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 1040.1103 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 1055.1103 1070.1103 DELETING TIME-RECORD FOR TIME 1085.1103 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 1115.1103 DELETING TIME-RECORD FOR TIME 1130.1103 DELETING TIME-RECORD FOR TIME 1145.1103 DELETING TIME-RECORD FOR TIME 1160.1103 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 1190.1103 DELETING TIME-RECORD FOR TIME 1205.1103 DELETING TIME-RECORD FOR TIME 1220.1103 DELETING TIME-RECORD FOR TIME 1235.1103 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 1265.1103 DELETING TIME-RECORD FOR TIME 1280.1103 DELETING TIME-RECORD FOR TIME 1295.1103 DELETING TIME-RECORD FOR TIME 1310.1103 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 1340.1103 DELETING TIME-RECORD FOR TIME 1355.1103 1370.1103 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 1385 1103 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 1415.1103 DELETING TIME-RECORD FOR TIME 1430.1103 DELETING TIME-RECORD FOR TIME 1445.1103 1460.1103 1475.1103 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 1490.1103 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 1505.1103 1520.1103 DELETING TIME-RECORD FOR TIME 1535.1103 DELETING TIME-RECORD FOR TIME 1565.1103 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 1580.1103 1595.1103 1610.1103 1625.1103 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 1640.1103 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 1655.1103 1670.1103 DELETING TIME-RECORD FOR TIME 1685.1103 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 1715.1103 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 1745.1103 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 1760.1103 1775.1103 DELETING TIME-RECORD FOR TIME 1790.1103 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 1820.1103 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 1835.1103 1850.1103 DELETING TIME-RECORD FOR TIME 1865.1103 DELETING TIME-RECORD FOR TIME 1880.1103 DELETING TIME-RECORD FOR TIME 1895.1103 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 1910.1103 1925.1103 DELETING TIME-RECORD FOR TIME 1940.1103 DELETING TIME-RECORD FOR TIME 1955.1103 DELETING TIME-RECORD FOR TIME 1970.1103 DELETING TIME-RECORD FOR TIME 1985.1103 DELETING TIME-RECORD FOR TIME 2000.1103 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 2015.1103 2030.1103 DELETING TIME-RECORD FOR TIME 2045.1103 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 2075.1103 DELETING TIME-RECORD FOR TIME 2090.1103 DELETING TIME-RECORD FOR TIME 2105.1103 2120.1103 2135.1103 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 2150.1103 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 2165.1103 2180.1103 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 2195.1103

```
DELETING TIME-RECORD FOR TIME
                                                    2225.1103
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                   2240.1103
2255.1103
DELETING TIME-RECORD FOR TIME
                                                    2270.1103
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                    2300.1103
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                    2315.1103
2330.1103
DELETING TIME-RECORD FOR TIME
                                                    2345.1103
DELETING TIME RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                    2360.1103
                                                    2375.1103
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                    2390.1103
2405.1103
                                                    2420.1103
2435.1103
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                    2450.1103
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                    2465.1103
2480.1103
                                                    2495.1103
2510.1103
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                    2525.1103
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                    2540.1103
2555.1103
                                                    2570.1103
2585.1103
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                    2600.1103
2615.1103
2630.1103
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                    2645.1103
2660.1103
                                                    2675.1103
2690.1103
2705.1103
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                    2720.1103
2735.1103
                                                    2750.1103
2765.1103
2780.1103
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                    2795.1103
2810.1103
DELETING TIME-RECORD FOR TIME
                                                    2825.1103
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                    2840.1103
                                                    2855.1103
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                    2870.1103
2885.1103
                                                    2900.1103
2915.1103
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                    2930.1103
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                   2945.1103
2960.1103
DELETING TIME-RECORD FOR TIME
                                                   2975.1103
KEEPING TIME-RECORD FOR TIME
                                                  2990.1103
AND FOR TIME
WORKSPACE RECLAIMED
                                                  3000.0000
TIMESTEP AT 3000.00000
                                             SELECTED
```

DIC>
DIC> set-inter
--OK--DIC>

exb6-plot

```
DIC>About
NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exb6\plot.DCM DIC>
DIC>
DIC>
DIC> @@
DIC> 00 GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> 00 DIC> go d-m
TIME STEP AT TIME 3.00000E+03
DIC> read exb6
 OK
DIC>
DIC> 00
DIC> 00 GO TO THE POST PROCESSOR
DIC> 00
DIC> post
POST PROCESSOR VERSION 1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1: set-title Fe-0.4%C-0.7%Si-0.8%Mn-0.03%P
POST-1:
POST-1: s-d-a y t-c
POST-1: s-d-a x time
INFO: Time is set as independent variable
POST-1: s-p-c interf first
POST-1: POST-1:

POST-1: SET_EXP_FILE_FORMAT 5

POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y

ORKING ...orking ... OST-1: SET_EXP_FILE_FORMAT 10

POST-1:
POST-1: plot
```



```
POST-1: Hit RETURN to continue
POST-1: Hit RETURN to continue
POST-1: 00
POST
```

```
1520
   1500
   1480
Temperature [°C]
    1460
    1440
   1420
    1400
        0.0
                  0.1
                            0.2
                                     0.3
                                                0.4
                                                         0.5
                                                                    0.6
                                                                              0.7
                                                                                        0.8
                                                                                                 0.9
                                                                                                            1.0
                                                   Fraction solid
```

```
POST-1: Hit RETURN to continue
POST-1: s-d-a y ivv(bcc)
POST-1: s-d-a x time
   INFO: Time is set as independent variable
POST-1:
POST-1:
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
ORKING ... orking ... OST-1: SET_EXP_FILE_FORMAT 10
POST-1:
POST-1: plot
```



```
POST-1:
POST-1:Hit RETURN to continue
POST-1:
POST-1: s-d-a y ivv(fcc)
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
ORKING ...orking ... OST-1: SET_EXP_FILE_FORMAT 10
POST-1:
POST-1: plot
```

```
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.2
0.1
0.0
   0
                 500
                                1000
                                               1500
                                                              2000
                                                                             2500
                                                                                             3000
                                               Time
```

```
POST-1:
POST-1:Hit RETURN to continue
POST-1: ent table solid
Variable(s) ivv(bcc) ivv(fcc)
POST-1:
POST-1: s-d-a y solid
COLUMN NUMBER /*/:
POST-1:
POST-1:
POST-1:
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
ORKING ...orking ... OST-1: SET_EXP_FILE_FORMAT 10
POST-1: plot
```



```
POST-1: Hit RETURN to continue
POST-1: s-d-a y W-p c
POST-1: s-d-a x dis gl
INFO: Distance is set as independent variable
POST-1: s-p-c time 120,135,400,700,1500,3000
POST-1: s-p-c time 120,135,400,700,1500,3000
POST-1:
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
ORKING ...orking ...OST-1: SET_EXP_FILE_FORMAT 10
POST-1:
POST-1: plot
```


POST-1:
POST-1:Hit RETURN to continue
POST-1: s-d-a y w-p si
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
ORKING ...orking ...OST-1: SET_EXP_FILE_FORMAT 10
POST-1:
POST-1: plot

```
POST-1:
POST-1:Hit RETURN to continue
POST-1: s-d-a y w-p p
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
ORKING ...orking ...OST-1: SET_EXP_FILE_FORMAT 10
POST-1:
POST-1: plot
```



```
POST-1:
POST-1: Hit RETURN to continue
POST-1:
POST-1: ent function mnn
FUNCTION: w(mn)/0.008
& POST-1: ent function sin
FUNCTION: w(si)/0.007
POST-1: ent function pn FUNCTION: w(p)/0.0003
POST-1: ent function cn
FUNCTION: w(c)/0.004
POST-1: ent tabel segregation
Variable(s) mnn sin pn cn
POST-1:
POST-1:
POST-1: s-d-a y segregation
COLUMN NUMBER /*/:
POST-1:
POST-1:
POST-1: s-p-c time 610
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
POST-1: SET_EXP_FILE_FORMAT 10
POST-1:
POST-1: plot
```

```
2.2

2.0

1.8

No. 1.6

1.0

0.8

0.1 2 3 4 5 6 7 8 9 10

Distance ×10<sup>s</sup>
```

```
POST-1:
```



```
POST-1:
POST-1:Hit RETURN to continue
POST-1:
POST-1: s-p-c time 1500
POST-1: s-p-c time 1500
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
POST-1: SET_EXP_FILE_FORMAT 10
POST-1: plot
```


POST-1:
POST-1:Hit RETURN to continue
POST-1: set-inter
--OK--POST-1:

Example exb7

Moving boundary problem with multiple phases on each side of the boundary

This example shows how to enter dispersed phases on either side of a phase interface. The particular case shows how the kinetics of a ferrite to austenite transformation is affected by simultaneous precipitation of niobium carbide. The transformation is caused by carburization.

exb7-setup

SYS: About

```
Thermo-Calc / DICTRA is software package for calculation of phase diagrams, simulation of phase transformation kinetics and much more.
  Copyright Foundation for Computational Thermodynamics,
  Stockholm, Sweden
  Software running on Windows 64-bit wordlength
  Compiler: unknown compiler
License library version: 9.7.0.0036
Linked: Fri Oct 18 11:32:56 2024
SYS: 00 yet supported by GES6. Therefore, we enforce the use of GES5.
SYS: set-ges-version 5
SYS: @@
SYS: @@ Moving boundary problem.
SYS: 00 Moving boundary problem with multiple phases on each side
SYS: 00 This example shows how to enter dispersed phases on either side
SYS: @@ of a phase interface. The particular case shows how
SYS: @@ the kinetics of a ferrite to austenite transformation is
{\bf SYS}\colon 00 affected by simultaneous precipitation of niobium carbide.  
 {\bf SYS}\colon 00 The transformation is caused by carburization.
SYS:
  NO SUCH COMMAND, USE HELP
SYS:
SYS: @@
SYS: @@ RETRIEVE DATA FROM THE DATABASE
SYS: @@
SYS: go da
14:30:41,567 [Thread-0] INFO LicenseManager: Initializing user: jenkins.integrationtest@thermocalc.se
14:30:41,579 [Thread-0] INFO LicenseController: Running License Spring in DEV environment.
14:30:42,638 [Thread-0] INFO LicenseManager: There is an activated standalone license for jenkins.integrationtest@thermocalc.se for TC-
Application
   THERMODYNAMIC DATABASE module
  Database folder:
  {\tt C:\jenkins\workspace\dev\_pipeline\generate\_dictra\_console\_examples\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\data
  Current database: Steels/Fe-Alloys v12.0
VA /- DEFINED
DICTRA_FCC_A1 REJECTED
TDB_TCFE12:
TDB_TCFE12: @@
TDB_TCFE12: @@
TDB_TCFE12: @@ USE A TCFE DATABASE FOR THERMODYNAMIC DATA TDB_TCFE12: @@
TDB TCFE12: sw tcfe9
  Current database: Steels/Fe-Alloys v9.3
                                                        /- DEFINED
                                                                                                            DICTRA FCC A1
REJECTED

TDB_TCFE9:

TDB_TCFE9: @@
TDB_TCFE9: @@ DEFINE THE SYSTEM TO WORK WITH
TDB_TCFE9: 00
TDB_TCFE9: def-species fe c nb
  FE
                                                                                                          NB
      DEFINED
TDB TCFE9:
TDB_TCFE9: @@
TDB_TCFE9: 00 EXCLUDE THE THERMODYNAMIC DATA FOR THE PHASES THAT ARE NOT NEEDED TDB_TCFE9: 00
TDB_TCFE9: rej ph * all
                                                                                                             BCC_A2
CBCC A12
                                                        LIQUID:L
  FCC_A1
CUB A13
                                                        HCP A3
                                                        DIAMOND_FCC_A4
M23C6
                                                                                                              GRAPHITE
  CEMENTITE
                                                                                                              м7С3
                                                                                                             KSI_CARBIDE
FECN_CHI
LAVES_PHASE_C14
  M6C
                                                        M5C2
                                                        FE4N_LP1
  SIGMA
                                                        MU PHASE
ALSFE4 REJECTED

TDB_TCFE9: res ph fcc bcc grap
FCC AL
                                                                                                              NBNI3
                                                        BCC_A2
                                                                                                         GRAPHITE
     RESTORED
TDB_TCFE9:
TDB_TCFE9: @@
TDB_TCFE9: @@ RETRIEVE DATA FROM THE DATABASE FILE
TDB_TCFE9: @@
TDB TCFE9: get
   REINITIATING GES .....
   ELEMENTS ....
  SPECIES .....
 SPECIES .....
PHASES .....
Creating a new composition set FCC_A1#2
PARAMETERS ...
FUNCTIONS ....
  Use the command LIST_REFERENCES to see the list of references for assessed data
  -0K-
TDB_TCFE9:
TDB_TCFE9: @@
TDB_TCFE9: @@ NOW APPEND A SSUB DATABASE FROM WHICH WE READ THE THERMODYNAMIC
TDB_TCFE9: @@ DESCRIPTION OF NIOBIUM CARBIDE
TDB_TCFE9: @@
TDB_TCFE9:
TDB TCFE9: app SSUB6
  Current database: SGTE Substances v6.0
VA DEFINED

APP: def-sys fe c nb
  FE
                                                                                                             NB
      DEFINED
APP: rej ph *
```

```
C0_877NB1_S
C_L
C1NB1_S
                                     C0 749NB1 S
 GAS:G
 C0_98NB1_S
DIAMOND
                                     C_S
C1FE3_S
                                     C60_S
FE_S3
                                                                         FE_S
FE_L
 C1NB2_S
 FE_S2
FE2NB1 S
                                     NB S
                                                                         NB L
    REJECTED
APP: rest ph clnb1_s
ClNB1_S RESTORED
APP: get
 ELEMENTS ....
  SPECIES .....
 PHASES .....
PARAMETERS ...
FUNCTIONS ....
 Use the command LIST_REFERENCES to see the list of references for assessed data
 -OK-
APP:
APP:
APP: @@
APP: 00 MOBILITY/DIFFUSIVITY DATA ARE STORED IN A SEPARATE DATABASE FILE.

APP: 00 SWITCH TO A MOBILITY DATABASE TO RETRIEVE THE DATA
APP: app mobfe4
  Current database: Steels/Fe-Alloys Mobility  v4.0
       DEFINED
B2_BCC REJECTED

APP: def-sys fe c nb
 FE
    DEFINED
APP: rej ph * all
BCC_A2
FE4N_LP1
                                     CEMENTITE
                                     HCP_A3
   REJECTED
APP: res ph fcc bcc FCC A1
                                    BCC A2 RESTORED
APP: get
ELEMENTS ....
 SPECIES .....
PHASES .....
PARAMETERS ...
 Use the command LIST_REFERENCES to see the list of references for assessed data
 -0K-
APP:
APP: @@
APP: @@ ENTER THE DICTRA MONITOR WHERE THE SYSTEM IS SET UP
APP: @@
APP: go d-m
AFF. 90 d-m:
14:30:44,861 [Thread-0] INFO StandaloneLicenseController: Checking out license for: Diffusion (DICTRA)
NO TIME STEP DEFINED

*** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE

*** ENTERING C1NB1_S AS A DIFFUSION NONE PHASE
DIC>
DIC> @@
DIC> @@ ENTER THE GLOBAL CONDITION T
DIC> @@
DIC> set-cond glob T 0 1073.15; * N
DIC> @@
DIC> @@ ENTER REGIONS ferr AND aus
DIC> @@
DIC> enter-region
REGION NAME : ferr
DIC> ent-reg
REGION NAME : aus
ATTACH TO REGION NAMED /FERR/: ferr
ATTACHED TO THE RIGHT OF FERR /YES/: n
DIC>
DIC> 00
DIC> 00
DIC> 00 ENTER GRIDS INTO REGIONS
DIC> 00
DIC> enter-grid
REGION NAME: /AUS/: ferr
WIDTH OF REGION /1/: 2.499999e-3
TYPE /LINEAR/: AUTO
DIC>
DIC>
DIC> enter-grid
REGION NAME : /AUS/: aus
WIDTH OF REGION /1/: 1e-9
TYPE /LINEAR/: AUTO
DIC>
DIC> 00
DIC> 00 ENTER active PHASES INTO REGIONS
DIC> 00
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: active
REGION NAME : /AUS/: ferr
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: bcc
DIC>
DIC>
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /AUS/: ferr
PHASE TYPE /MATRIX/: sph
PHASE NAME: /NONE/: clnb1_s
 INFO: EQUILIBRIUM COMPOSITION AND FRACTION OF SPHEROID PHASES USED AS DEFAULT
DIC>
ACTIVE OR INACTIVE PHASE /ACTIVE/: active REGION NAME : /AUS/: aus PHASE TYPE /MATRIX/: matrix
```

```
PHASE NAME: /NONE/: fcc#1
 DIC>
DIC>
 DIC> en-ph
 ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /AUS/: aus
PHASE TYPE /MATRIX/: sph
 PHASE NAME: /NONE/: clnb1_s
  INFO: EQUILIBRIUM COMPOSITION AND FRACTION OF SPHEROID PHASES USED AS DEFAULT
DIC> @@
DIC> 00 ENTER THE INITIAL COMPOSITIONS OF THE PHASES DIC> 00 DIC> enter-composition
PREGION NAME: /AUS/: ferr
PHASE NAME: /BCC_AZ/: bcc
DEPENDENT COMPONENT ? /NB/: fe
COMPOSITION TYPE /MOLE_FRACTION/: w-p
PROFILE FOR /C/: C
TYPE /LINEAR/: lin
VALUE OF FIRST POINT : 1e-3
VALUE OF LAST POINT : /1E-3/: 1e-3
PROFILE FOR /NB/: nb
TYPE /LINEAR/: lin
 VALUE OF FIRST POINT : 0.28
 VALUE OF LAST POINT : /0.28/: 0.28
DIC>
DTC> en-co
PHASE NAME: /AUS/: ferr
PHASE NAME: /BCC_A2/: clnb1_s
USE EQUILIBRIUM VALUE /Y/: y
DIC> enter-composition
PROPILE FOR /C/: C

DICY enter-composition
REGION NAME: /FCC_Al#1/: fcc#1

DEPENDENT COMPONENT ? /NB/: fe

COMPOSITION TYPE /MOLE_FRACTION/: w-p

PROFILE FOR /C/: C
TYPE /LINEAR/: lin
VALUE OF FIRST POINT : 0.89
VALUE OF LAST POINT : /0.89/: 0.89
PROFILE FOR /NB/: nb
TYPE /LINEAR/: lin
VALUE OF FIRST POINT : 0.28
 VALUE OF LAST POINT : /0.28/: 0.28
DIC>
PHASE NAME: /AUS/: aus
PHASE NAME: /FCC_A1#1/: clnb1_s
USE EQUILIBRIUM VALUE /Y/: y
DIC>
DTC>
DIC> @@
DIC> @@ SET THE SIMULATION TIME
DIC> @@
DIC> set-simulation-time
END TIME FOR INTEGRATION /.1/: 32400
AUTOMATIC TIMESTEP CONTROL /YES/: y
MAX TIMESTEP DURING INTEGRATION /3240/: 3240
INITIAL TIMESTEP: /1E-07/: 1e-8
SMALLEST ACCEPTABLE TIMESTEP: /1E-08/: 1e-15
 DIC>
DIC>
 DIC>
DIC>
DIC> @@
DIC> 00 SET THE REFERENCE PHASE OF CARBON AS GRAPHITE DIC> 00
DIC> s-ref
Component: c
Reference state: grap
Temperature /*/: *
Pressure /100000/: 1e5
DIC>
DIC> @@
DIC> @@ SET THE BOUNDARY CONDITION.
 DIC> @@ THE CARBON ACTIVITY IS THE ONE ON THE BOUNDARY
DIC> 00
DIC> s-cond
DIC> s-cond
GLOBAL OR BOUNDARY CONDITION /GLOBAL/: bound
BOUNDARY /LOWER/: low
CONDITION TYPE /CLOSED_SYSTEM/: mix
Dependent substitutional element:FE
Dependent interstitial element:VA
TYPE OF CONDITION FOR COMPONENT C /ZERO_FLUX/: act
LOW TIME LIMIT /0/: 0
ACR(C) (TIME) = 1.0;
HIGH TIME LIMIT /*/: *
HIGH TIME LIMIT /*/: *
ANY MORE RANGES /N/: N
 TYPE OF CONDITION FOR COMPONENT NB /ZERO_FLUX/: zero
DIC>
DIC> @@ ENABLE THE HOMOGENIZATION MODEL
DIC> @@
DIC> ho y y
INFO: HOMOGENIZATION MODEL ENABLED
DIC>
DIC>
DIC>
DIC> 00
DIC> 00 SAVE THE SET UP TO A NEW STORE FILE AND EXIT
DIC> @@
DIC> save exb7 Y
DIC>
DIC>
   --OK---
DIC>
```

```
DIC>About
 NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exb7\run.DCM DIC> @@
DIC> @@ READ THE SET UP FROM FILE AND START THE SIMULATION
DIC> @@
DIC>
DIC> go d-m
 TIME STEP AT TIME 0.00000E+00
 *** ENTERING CARPHITE AS A DIFFUSION NONE PHASE
*** ENTERING C1NB1_S AS A DIFFUSION NONE PHASE
DIC> read exb7
DIC> sim yes
 Region: AUS
 geometric
                 1.01184
                                                0.00000
                                                                   38 points
                                 dense at
 0.988299
                              dense at 0.100000E-08 39 points
                                                0.00000
 geometric 1.11821 dense at 0.00000 80 DEGREE OF IMPLICITY SET TO EULER BACKWARD INFO: not solving in latticefixed frame of reference
                                 dense at
                                                                  84 points
 STARTING SIMULATION USING HOMOGENIZATION MODEL
 WARNING: ELEMENT C
 IS BOTH INTERSTITIAL AND SUBSTITUTIONAL AND RESULTS MUST BE INTERPRETED WITH CARE
 INFO: PHASE WITH LIMITED SOLUBILITY OF ELEMENT(S) EXIST A FALLBACK PHASE ZZDICTRA_GHOST WILL BE DEFINED
 ALONG WITH THE FOLLOWING PARAMETERS:
 ALONG WITH THE FOLLOWING PARAMETERS:

G(ZZDICTRA GHOST, C;0)-H298 (GRAPHITE, C;0)

G(ZZDICTRA_GHOST, FE;0)-H298 (BCC_A2, FE;0)

G(ZZDICTRA_GHOST, NE;0)-H298 (BCC_A2, NB;0)

L(ZZDICTRA_GHOST, C, FE;0)

L(ZZDICTRA_GHOST, C, NB;0)
 Starting time-step t0= 0.0000000
                               0.24414063E-11 dt= 0.24414063E-11
0.48828125E-11 dt= 0.48828125E-11
0.97656250E-11 dt= 0.97656250E-11
Starting time-step t0=
Starting time-step t0=
Starting time-step t0=
                               0.19531250E-10 dt=
Starting time-step t0=
                                                          0.19531250E-10
                               0.39062500E-10 dt=
0.78125000E-10 dt=
0.15625000E-09 dt=
Starting time-step t0=
                                                          0.39062500E-10
Starting time-step t0=
                                                          0.78125000E-10
Starting time-step t0=
Starting time-step t0=
                                                          0.15625000E-09
                               0.31250000E-09 dt=
0.46875000E-09 dt=
Starting time-step t0=
                                                          0.15625000E-09
Starting time-step t0=
                               0.62500000E-09 dt=
0.78125000E-09 dt=
0.93750000E-09 dt=
                                                          0.15625000E-09
Starting time-step t0=
                                                          0.15625000E-09
Starting time-step t0=
Starting time-step t0=
                                                          0.31250000E-09
                               0.12500000E-08 dt=
0.15625000E-08 dt=
                                                          0.31250000E-09
Starting time-step t0=
                                                          0.31250000E-09
Starting time-step t0=
                               0.18750000E-08 dt=
0.21875000E-08 dt=
0.28125000E-08 dt=
                                                          0.31250000E-09
0.62500000E-09
Starting time-step t0=
Starting time-step t0=
Starting time-step t0=
                                                          0.62500000E-09
                               0.34375000E-08 dt=
                                                          0.12500000E-08
                               0.46875000E-08 dt=
Starting time-step t0=
                                                          0.25000000E-08
Starting time-step t0=
                               0.71875000E-08 dt=
0.12187500E-07 dt=
0.22187500E-07 dt=
                                                          0.50000000E-08
0.10000000E-07
Starting time-step t0=
Starting time-step t0=
                                                          0.1000000E-07
Starting time-step t0=
                               0.32187500E-07 dt=
                                                          0.1000000E-07
Starting time-step t0=
                               0.42187500E-07 dt =
                                                          0.1000000E-03
Starting time-step t0=
                               0.52187500E-07 dt=
0.72187500E-07 dt=
                                                          0.2000000E-07
Starting time-step t0=
                                                          0.2000000E-07
Starting time-step t0=
                               0.92187500E-07 dt=
                                                          0.20000000F=03
                               0.11218750E-06 dt=
                                                          0.4000000E-07
Starting time-step t0=
Starting time-step t0=
Starting time-step t0=
                               0.15218750E-06 dt=
                                                          0.4000000E-07
                               0.19218750E-06 dt=
0.27218750E-06 dt=
                                                          0.8000000E-07
Starting time-step t0=
                                                          0.8000000E-07
Starting time-step t0=
Starting time-step t0=
                               0.35218750E-06 dt=
                                                          0.16000000E-06
                               0.51218750E-06 dt=
                                                          0.3200000E-06
Starting time-step t0= Starting time-step t0=
                               0.83218750E-06 dt=
                                                          0.64000000E-06
                               0.14721875E-05 dt=
0.27521875E-05 dt=
Starting time-step t0=
                                                          0.25600000E-05
Starting time-step t0=
Starting time-step t0=
                               0.53121875E-05 dt=
                                                          0.51200000E-05
                               0.10432188E-04 dt=
                                                          0.10240000E-04
Starting time-step t0= Starting time-step t0=
                               0.20672188E-04 dt=
                                                          0.20480000E-04
                               0.41152187E-04 dt=
0.82112187E-04 dt=
Starting time-step t0=
                                                          0.81920000E-04
Starting time-step t0=
                               0.16403219E-03 dt=
0.32787219E-03 dt=
                                                          0.16384000E-03
0.32768000E-03
Starting time-step t0=
Starting time-step t0=
Starting time-step t0=
                               0.65555219E-03 dt=
                                                          0.65536000E-03
                               0.13109122E-02 dt=
                               0.26216322E-02 dt=
Starting time-step t0=
                                                          0.26214400E-02
                                                          0.52428800E-02
Starting time-step t0=
                               0.52430722E-02 dt=
0.10485952E-01 dt=
Starting time-step t0=
                                                          0.52428800E-02
                               0.15728832E-01 dt=
0.26214592E-01 dt=
Starting time-step t0=
                                                          0 10485760E-01
Starting time-step t0=
                                                          0.10485760E-01
Starting time-step t0=
                               0.36700352E-01 dt=
                                                          0.10485760E-01
Starting time-step t0=
                               0.47186112E-01 dt=
0.68157632E-01 dt=
                                                         0.20971520E-01
0.20971520E-01
Starting time-step t0=
Starting time-step t0=
                               0.89129152E-01 dt= 0.20971520E-01
 Error
                                  408
                               0.89784512E-01 dt= 0.65536000E-03
Starting time-step t0=
Starting time-step t0=
                               0.90439872E-01 dt=
0.91095232E-01 dt=
                                                         0.65536000E-03
0.65536000E-03
Starting time-step t0=
                               0.91750592E-01 dt=
0.92405952E-01 dt=
Starting time-step t0=
                                                          0.65536000E-03
Starting time-step t0=
                                                          0.65536000E-03
Starting time-step t0=
                               0 93061312E-01 dt=
                                                          0 65536000E-03
Starting time-step t0=
                               0.93716672E-01 dt=
                                                          0.65536000E-03
                               0.94372032E-01 dt=
                                                          0.65536000E-03
Starting time-step t0=
                               0.95027392E-01 dt=
0.95682752E-01 dt=
Starting time-step t0=
                                                          0.65536000E-03
Starting time-step t0=
                                                          0.13107200E-02
Starting time-step t0=
                               0 96993472E-01 dt=
                                                          0 13107200E-02
Starting time-step t0=
                               0.98304192E-01 dt=
                               0.99614912E-01 dt=
0.10092563 dt=
0.10223635 dt=
Starting time-step t0=
                                                          0.13107200E-02
Starting time-step t0=
                                                          0.13107200E-02
Starting time-step t0=
                                                         0.13107200E-02
Starting time-step t0=
Starting time-step t0=
                              0.10354707
0.10485779
                                                   dt=
                                                          0 13107200E-02
```

Starting	time-step	t0=	0.10747923	dt=	0.26214400E-02
Starting	time-step	t0=	0.11010067	dt=	0.26214400E-02
Starting	time-step	t0=	0.11272211	dt=	0.52428800E-02
Starting	time-step	t0=	0.11796499	dt=	0.52428800E-02
Starting	time-step	t0=	0.12320787	dt=	0.52428800E-02
Starting	time-step	t0=	0.12845075	dt=	0.10485760E-01
Starting	time-step	t0=	0.13893651	dt=	0.10485760E-01
Starting	time-step	t0=	0.14942227	dt=	0.10485760E-01
Starting	time-step	t0=	0.15990803	dt=	0.10485760E-01
Starting	time-step	t0=	0.17039379	dt=	0.10485760E-01
Starting	time-step	t0=	0.18087955	dt=	0.10485760E-01
Starting	time-step	t0=	0.19136531	dt=	0.20971520E-01
Starting	time-step	t0=	0.21233683	dt=	0.20971520E-01
Starting	time-step	t0=	0.23330835	dt=	0.20971520E-01
Starting	time-step	t0=	0.25427987	dt=	0.20971520E-01
Starting	time-step	t0=	0.27525139	dt=	0.20971520E-01
Starting	time-step	t0=	0.29622291	dt=	0.20971520E-01
Starting	time-step	t0=	0.31719443	dt=	0.20971520E-01
Starting	time-step	t0=	0.33816595	dt=	0.20971520E-01
Starting	time-step	t0=	0.35913747	dt=	0.20971520E-01
Starting	time-step	t0=	0.38010899	dt=	0.20971520E-01
Starting	time-step	t0=	0.40108051	dt=	0.41943040E-01
Starting	time-step	t0=	0.44302355	dt=	0.83886080E-01
Starting	time-step	t0=	0.52690963	dt=	0.83886080E-01
Starting	time-step	t0=	0.61079571	dt=	0.83886080E-01

output ignored...

... output resumed

26673.784 26716.733 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 26759.683 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 26802.633 26845.582 DELETING TIME-RECORD FOR TIME 26888.532 26952.957 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 26995.906 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 27038.856 27081.806 DELETING TIME-RECORD FOR TIME 27124.755 27167.705 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 27210.655 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 27253.604 27296.554 DELETING TIME-RECORD FOR TIME 27339.504 27382.453 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 27425.403 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 27468.353 27522.040 DELETING TIME-RECORD FOR TIME 27564.989 27607.939 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 27650.889 DELETING TIME RECORD FOR TIME DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 27693.839 27736.788 DELETING TIME-RECORD FOR TIME 27779.738 27822.688 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 27865 637 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 27951.537 DELETING TIME-RECORD FOR TIME 27994.486 28037.436 DELETING TIME-RECORD FOR TIME 28080.386 28123.335 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 28177.022 28219.972 28262.922 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 28305.871 28348.821 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 28391.771 28434.720 28477.670 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 28520.620 28563.569 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 28606.519 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 28649.469 28692.418 28735.368 28799.793 28842.742 DELETING TIME-RECORD FOR TIME 28885.692 28939.379 DELETING TIME-RECORD FOR TIME 28982.329 29025.278 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 29068.228 DELETING TIME-RECORD FOR TIME 29111.178 29164.865 29207.814 29250.764 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 29293.714 DELETING TIME-RECORD FOR TIME 29336.663 29390.351 29433.300 29497.725 29540.674 29583.624 DELETING TIME-RECORD FOR TIME 29626.574 29669.523 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 29712.473 DELETING TIME-RECORD FOR TIME 29776.898 DELETING TIME-RECORD FOR TIME 29819.847 29862.797 29905.747 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 29948.696 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 29991.646 30034.596 30077.545 30120.495 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 30163.445 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 30206.394 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 30292.294

```
DELETING TIME-RECORD FOR TIME
                                                    30378.193
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                    30421.143
30464.092
                                                    30507.042
30549.992
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                    30592.941
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                    30635.891
30700.316
DELETING TIME-RECORD FOR TIME
                                                    30743 265
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                    30861.377
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                    30904.327
30947.276
                                                    30990.226
31033.176
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                    31076.125
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                    31119.075
31162.025
DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                    31204.974
31247.924
                                                   31290.874
31333.823
31376.773
31441.197
31484.147
DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                    31527.097
31570.046
31612.996
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                   31655.946
31731.108
31774.057
31817.007
31859.957
DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                    31902.906
31945.856
DELETING TIME-RECORD FOR TIME
                                                    31988.806
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                    32031.755
32074.705
DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                    32117.655
32160.604
DELETING TIME-RECORD FOR TIME
                                                    32203.554
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                    32246.504
                                                    32289.454
DELETING TIME-RECORD FOR TIME
                                                   32332.403
                                               32375.353
KEEPING TIME-RECORD FOR TIME
AND FOR TIME
WORKSPACE RECLAIMED
                                                  32400.000
INTERPOLATION SCHEME USED THIS FRACTION OF
THE ALLOCATED MEMORY: 0.131836825520669
EFFICIENCY FACTOR: 33.3314025122010
MEMORY FRACTION USAGE PER BRANCH:
0.195780311406258
8.808639892001351E-002
  9 254160181970550E-002
DEALLOCATING
TIMESTER AT 32400 0000 SELECTED
```

DIC>
DIC> set-inter
--OK---

DIC>

```
DIC>About

NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exb7\plot.DCM DIC>
DIC>
DIC> @@
DIC> 00 GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> 00 DIC> go d-m
TIME STEP AT TIME 3.24000E+04

*** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE

*** ENTERING C1NB1_S AS A DIFFUSION NONE PHASE

DIC> read exb7
 OK
OK
DIC>
DIC> @@
DIC> @@
DIC> @@ GO TO THE POST PROCESSOR
DIC> @@
DIC> post
 POST PROCESSOR VERSION 1.7
Implemented by Bjorn Jonsson
POST-1: @@
POST-1: @@ PLOT THE INTERFACE POSITION AS A FUNCTION OF TIME
POST-1: @@
 POST-1: s-d-a x time
INFO: Time is set as independent variable
POST-1: s-d-a y po-o-in aus upp
POST-1:
 POST-1: plot
          0.00040
          0.00035
          0.00030
      Position of interface
          0.00025
          0.00020
          0.00015
          0.00010
          0.00005
          0.00000
                                  5000
                                                  10000
                                                                 15000
                                                                                 20000
                                                                                                 25000
                                                                                                                 30000
                                                                                                                                35000
                                                                         Time
POST-1:
POST-1:Hit RETURN to continue
POST-1:
POST-1: @@
POST-1: @@ APPEND DATA FROM A CORRESPONDING SIMULATION POST-1: @@ WITHOUT NIOBIUM
POST-1: @@POST-1:
POST-1: app y fec.exp 0
DATASET NUMBER(s): /-1/: 1
POST-1: plot
          0.00040
          0.00035
          0.00030
      Dosition of interface 0.00025
          0.00010
          0.00005
          0.00000
                                  5000
                                                  10000
                                                                                                 25000
                                                                                                                 30000
                                                                                                                                 35000
                                                                         Time
```

POST-1:

POST-1: set-inter
 --OK--POST-1:

Cell Calculations

Example exc1

'Carbon cannon' in α/γ Fe-C system: Two-cell calculation

This example simulates what happens to a ferrite plate that has inherited the carbon content of its parent austenite. The ferrite plate formed is embedded in an austenite matrix. This setup corresponds to a proposed mechanism for formation of Widmannstätten ferrite or for the ferrite phase of the bainite structure. It is assumed that the phase boundary between ferrite and austenite is immobile, this is achieved in the simulation by putting the ferrite and the austenite in two different cells. See also M. Hillert, L. Höglund and J. Ågren: Acta Metall. Mater. 41 (1993), pp.1951-1957.

$$T = 673K$$

exc1-setup

SYS: About

```
Thermo-Calc / DICTRA is software package for calculation of phase diagrams, simulation of phase transformation kinetics and much more.
 Copyright Foundation for Computational Thermodynamics,
 Stockholm, Sweden
 Software running on Windows 64-bit wordlength
 Compiler: unknown compiler
License library version: 9.7.0.0036
Linked: Fri Oct 18 11:32:56 2024
SYS:SYS:MACRO exc1\setup.DCM
SYS: i>;@@
 NO SUCH COMMAND, USE HELP
SYS: @@ Cell calculation.
SYS: @@ Carbon cannon in ferrite/austenite: Fe-C system, 2-cell calculation SYS: @@ This example simulates what happens to a ferrite plate that has
      @@ inherited the carbon content of its parent austenite. The ferrite
SYS: 00 plate formed is embedded in an austenite matrix. This setup
SYS: @@ corresponds to a proposed mechanism for formation of Widmannstä¤tten
SYS: @@ ferrite or for the ferrite phase of the bainite structure. It is
SYS: @@ assumed that the phase boundary between ferrite and austenite is
SYS: @@ immobile, this is achieved in the simulation by putting the ferrite
SYS: @@ and the austenite in two different cells. See also M. Hillert,
SYS: @@ L. HĶglund and J. Ä…gren: Acta Metall. Mater. 41 (1993), pp.1951-1957.
SYS:
 NO SUCH COMMAND, USE HELP
SYS:
SYS: @@ exc1_setup.DCM
SYS:
SYS: @@
SYS: @@ RETRIEVE DATA FROM THE DATABASE
SYS: @@
Application
THERMODYNAMIC DATABASE module
 Database folder:
C:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples\databases\da
 Current database: Steels/Fe-Alloys v12.0
TDB_TCFE12: @@ USE A THERMODYNAMIC DATABASE TO RETRIEVE DATA
TDB_TCFE12: @@
TDB_TCFE12: sw fedemo
 Current database: Iron Demo Database v5.0
                             /- DEFINED
TDB_FEDEMO: def-sys fe c
                             C DEFINED
TDB_FEDEMO: rej ph * all
BCC_A2
CUB_A13
                              CBCC_A12
                                                          CEMENTITE
                             DIAMOND_FCC_A4
GRAPHITE
                                                          FCC_A1
HCP_A3
LIQUID:L
 GAS:G
KSI_CARBIDE
M23C6
                              LAVES PHASE C14
                             M5C2
                                                           M7C3
   REJECTED
TDB_FEDEMO: res ph fcc,bcc
FCC_A1 BC
TDB_FEDEMO: get
                             BCC_A2 RESTORED
14:37:54,261 [Thread-0] INFO JavaWrapper: *** Invoking Gibbs Energy System v6 *** REINITIATING GES .....
 ELEMENTS .....
SPECIES .....
 FUNCTIONS ....
 Use the command LIST_REFERENCES to see the list of references for assessed data
TDB FEDEMO:
TDB_FEDEMO: @@
TDB FEDEMO: @@ SWITCH TO A MOBILITY DATABASE TO RETRIEVE DATA
TDB FEDEMO: app mfedemo
 Current database: Fe-Alloys Mobility demo database v4.0
 VA DEFINED
APP: def-sys fe c
                             C DEFINED
APP: rej ph * all
 BCC_A2
LIQUID:L REJECTED
                           FCC_A1
                                                        CEMENTITE
APP: res ph fcc,bcc FCC_A1
                             BCC_A2 RESTORED
APP: get
ELEMENTS ....
 SPECIES .....
 PHASES .......
PARAMETERS ...
 FUNCTIONS ....
 Use the command LIST REFERENCES to see the list of references for assessed data
 -OK-
APP: @@
APP: @@ ENTER THE DICTRA MONITOR
APP: @@
APP: go d-m
```

```
14:37:54,748 [Thread-0] INFO StandaloneLicenseController: Checking out license for: Diffusion (DICTRA)
 NO TIME STEP DEFINED
DIC> @@
DIC> @@ ENTER THE GLOBAL CONDITION T
DIC> @@
DIC> set-cond glob T 0 673; * N
DIC>
DIC> @@
DIC> @@ IN THE FIRST CELL
DIC> @@
DIC> @@ ENTER REGION aus CONTAINING AUSTENITE
DIC> @@ ENTER A GEOMETRICAL GRID INTO THAT REGION
DIC> @@ ENTER THE INITIAL COMPOSITION INTO THE AUSTENITE
DIC> @@
DIC> enter-region aus
DIC> enter-grid aus 0.2e-6 AUTO
DIC> enter-phase act aus matrix fcc a1#1
DTC>
DIC> enter-composition
PROFILE FOR /C/: c

DICS enter-composition
region Name: /AUS/: aus
PHASE NAME: /FCC_AI/: fcc_al#1
COMPOSITION TYPE /MOLE_FRACTION/: w-p
PROFILE FOR /C/: c
TYPE /LINEAR/: lin 0.4 0.4
DIC>
DIC> @@ IN THE SECOND CELL
DIC> @@
DIC> create-new-cell
CELL DISTRIBUTION FACTOR /1/: 1
CREATING NEW CELL, NUMBER:
CELL 2 SELECTED
DIC-2>
DIC-2> @@
DIC-2> @@ ENTER REGION fer CONTAINING FERRITE
DIC-2> @@ ENTER A GEOMETRICAL GRID INTO THAT REGION
DIC-2> @@ ENTER THE INITIAL COMPOSITION INTO THE FERRITE
DIC-2> @@
DIC-2> enter-region fer
DIC-2>
DIC-2>
DIC-2>
DIC-2> enter-grid fer 0.2e-6 AUTO
DIC-2> enter-phase act fer matrix bcc_a2#1
DIC-2> enter-composition
DIC-2> enter-composition
REGION NAME: /FER/: fer
PHASE NAME: /BCC_AZ/: bcc_a2#1
COMPOSITION TYPE /MOLE_FRACTION/: w-p
PROFILE FOR /C/: c
TYPE /LINEAR/: lin 0.4 0.4
DIC-2>
DIC-2> @@
DIC-2> @@ SET THE SIMULATION TIME AND OTHER SIMULATION PARAMETERS DIC-2> @@
DIC-2> set-simulation-time
END TIME FOR INTEGRATION /.1/: 0.5
AUTOMATIC TIMESTEP CONTROL /YES/
MAX TIMESTEP DURING INTEGRATION /.05/: INITIAL TIMESTEP : /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DIC-2>
DIC-2>
DIC-2>
DIC-2> @@
DIC-2> @@ USE IMPLICIT (1) TIME INTEGRATION
DIC-2> @@
DIC-2> set-simulation-cond
DIC-2> set-simulation-cond
NSO1A PRINT CONTROL : /0/:
FLUX CORRECTION FACTOR : /1/:
NUMBER OF DELTA TIMESTEPS IN CALLING MULDIF: /2/:
CHECK INTERFACE POSITION /AUTO/:
VARY POTENTIALS OR ACTIVITIES OR LNAC : /ACTIVITIES/:
ALLOW AUTOMATIC SWITCHING OF VARYING ELEMENT : /YES/:
SAVE WORKSPACE ON FILE (YES,NO,0-999) /YES/:
DEGREE OF IMPLICITY WHEN INTEGRATING PDEs (AUTO, 0 -> 0.5 -> 1): /AUTO/: 1.0

MAX TIMESTEP CHANGE PER TIMESTEP : /2/:

USE FORCED STARTING VALUES IN EQUILIBRIUM CALCULATION /AUTO/:
ALWAYS CALCULATE STIFFNES MATRIX IN MULDIF /YES/:

CALCULATE RESIDUAL FOR DEPENDENT COMPONENT /NO/:
DIC-2> @@
DIC-2> @@ SAVE THE SET UP TO A NEW STORE FILE AND EXIT
DIC-2> save exc1 Y
DIC-2>
DIC-2> set-inter
--OK--
```

```
DIC-2>About
  NO SUCH COMMAND, USE HELP
 DIC-2>DIC-2>MACRO exc1\run.DCM DIC-2>
 DIC-2>
 DIC-2> @@ exc1 run.DCM
 DIC-2>
DIC-2> @@ READ THE WORKSPACE AND START THE SIMULATION DIC-2> @@ DIC-2> go d-m
   TIME STEP AT TIME 0.00000E+00
 DIC-2> read exc1
 DIC> sim
   geometric 0.807790 dense at 0.200000E-06 94 points Region: FER
   Region: AUS
  Region: FER
geometric 0.902995 dense at 0.200000E-06 84 points
U-FRACTION IN SYSTEM: C = .018673311178274 FE = 1
TOTAL SIZE OF SYSTEM: 4E-07 [m]
U-FRACTION IN SYSTEM: C = .018673311178274 FE = 1
TOTAL SIZE OF SYSTEM: 4E-07 [m]
135307.642815820 135301.527756833 2262.52030312600 27.0263371728539 4.07991607
003 7.6224332928335958-009 2.128570473283522E-018 TIME = 0.10000000E-06 DT = 0.10000000E-
06 SUM OF SQUARES = 0.21285705E-17
U-FRACTION IN SYSTEM: C = .018673311178274 FE = 1
TOTAL SIZE OF SYSTEM: 4E-07 [m]
                                                                                                                                                                                                                                                                                        4 079916077775184E-
TOTAL SIZE OF SYSTEM: 4E-0/[m]

CPU time used in timestep 0 seconds
208816.034890406 208822.265430346 5072.20638557645 182.384319733901 0.270385769468413

005 1.417906187461779E-012 TIME = 0.30000000E-06 DT = 0.20000000E-06 SUM OF SQUARES = 0.14179062E-11

U-FRACTION IN SYSTEM: C = .0186733111782859 FE = 1

TOTAL SIZE OF SYSTEM: 4E-07 [m]
1.350142054712660
TOTAL SIZE OF SYSTEM: 4E-U/[m]

CPU time used in timestep 0 seconds
160981.695992437 160966.298643037 473.094715618747 1.20596610124271 7.950968550466077E-

006 1.345267246846770E-013 TIME = 0.15000000E-05 DT = 0.80000000E-06 SUM OF SQUARES = 0.13452672E-12

U-FRACTION IN SYSTEM: C = .0186733111782873 FE = 1

TOTAL SIZE OF SYSTEM: 4E-07 [m]
TOTAL SIZE OF SYSTEM: 4E-07 [m]

CPU time used in timestep 1 seconds

44587.8325289803 44583.8234072530 150.768304019182 0.438221743816040 3.757794245626230E-

006 9.437999994062030E-014 TIME = 0.63000000E-05 DT = 0.32000000E-05 SUM OF SQUARES = 0.94380000E-13

U-FRACTION IN SYSTEM: C = .0186733111782975 FE = 1

TOTAL SIZE OF SYSTEM: 4E-07 [m]
TOTAL SIZE OF SYSTEM: 4E-07 [m]

CPU time used in timestep 0 seconds
21859.5994961233 21857.6129647661 72.2612290402324 0.205632792775804 1.689336117715827E-

006 3.978453188056322E-014 TIME = 0.12700000E-04 DT = 0.64000000E-05 SUM OF SQUARES = 0.39784532E-13

U-FRACTION IN SYSTEM: C = .0186733111783038 FE = 1

TOTAL SIZE OF SYSTEM: 4E-07 [m]

CPU time used in timestep 1 seconds
  CFU time used in timestep 0 seconds 535369.675221392 535320.456989284 1731.44143349908 4.82682529900785 3.807517348056760E-005 8.431126112574533E-013 TIME = 0.51100000E-04 DT = 0.25600000E-04 SUM OF SQUARES = 0.84311261E-12 U-FRACTION IN SYSTEM: C = .0186733111783241 FE = 1 TOTAL SIZE OF SYSTEM: 4E-07 [m] CPU time used in timester
      CPU time used in timestep
output ignored...
 ... output resumed
   TIME = 0.19085954 DT = 0.21069509E-01 SUM OF SQUARES = 0.13303619E-14 U-FRACTION IN SYSTEM: C = .0186733111787198 FE = 1
TOTAL SIZE OF SYSTEM: 4E-07 [m]
 TIME = 0.19085954
  TOTAL SIZE OF SYSTEM: 4E-U/[m]

CPU time used in timestep 1 seconds
4108.02803301117 4102.19302144178 4.056696676418507E-002 3.5728

017 TIME = 0.21376470 DT = 0.22905157E-01 SUM OF SQUARES = 0.24527622E-16

U-FRACTION IN SYSTEM: C = .0186733111787186 FE = 1

TOTAL SIZE OF SYSTEM: 4E-07 [m]

0 seconds
  TOTAL SIZE OF SYSTEM: 4E-07 [m]

CPU time used in timestep

0 seconds
571.074978481085
569.214487629745
2.707313231531283E-003
5.5925
017 TIME = 0.23956620
DT = 0.25801504E-01 SUM OF SQUARES = 0.56233636E-16
U-FRACTION IN SYSTEM: C = .018673311787191 FE = 1
TOTAL SIZE OF SYSTEM: 4E-07 [m]
CPU time used in timestep
1 seconds
102143.643501521
102350.463526968
0.181390032353163
1.492899557
015 TIME = 0.27042983
DT = 0.30863623E-01 SUM OF SQUARES = 0.12322756E-14
U-FRACTION IN SYSTEM: C = .0186733111787202 FE = 1
TOTAL SIZE OF SYSTEM: 4E-07 [m]
CPU time used in timestep
0 seconds
930479.460779709
930975.816610817
46.8812006728164
1.326573692
008
6.409750094701172F=002
1.457419367127132E-015
TIME = 0.3103147
                                                                                                                                                                                                                                  5.592515824767624E-010
                                                                                                                                                                                                                                                                                                                   5.623363624507712E-
                                                                                                                                                                                                                   1.492899557896823E-006
                                                                                                                                                                                                                                                                                                 1.232275590545007E-
                                                                                                                              0 seconds
46.8812006728164 1.326573692200910E-003 1.239
7419367127132E-015 TIME = 0.31031413 DT = 0.39884302E-
  930479.460779709 930975.816610817 46.8812006728

008 6.409750094701172E-002 1.457419367127132E-015

01 SUM OF SQUARES = 0.14574194E-14

U-FRACTION IN SYSTEM: C = .01867331117872 FE = 1

TOTAL SIZE OF SYSTEM: 4E-07 [m]
                                                                                                                                                                                                                                                                                                       1.239404901396882E-
TOTAL SIZE OF SYSTEM: 4E-07 [m]

CPU time used in timestep

1 seconds
1154275.19089850

1154716.10722486

113.748788592907

1.340252896755056E-002

1.4352

1.340252896755056E-002

1.4352

1.340252896755056E-002

1.3402589675056E-002

1.3402589675056E-002

1.34026896F-002

1.
                                                                                                                                                                                                                                                                                                       1.435200845092451E-
                                                                                                                             0 seconds
0.287193529275020
  3.200184478134127E-006
                                                                                                                                                                                                                                                                                                 2.405550535687920E-
```

```
4.522513737505278E-006 1.639092376263767E-
                                                                                                                                         4.028484572131457E-
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                           0.31000000E-05
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                           0.12700000E-04
                                           0.25500000E-04
                                           0.51100000E-04
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                           0 10230000E-03
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                           0.40950000E-03
                                          0.81910000E-03
0.16383000E-02
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                          0.32767000E-02
0.65535000E-02
  DELETING TIME-RECORD FOR TIME
                                           0.13107100E-01
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                          0.26214300E-01
0.44751337E-01
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                           0.60463644E-01
  DELETING TIME-RECORD FOR TIME
                                           0.95020874E-01
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                           0.13105170
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                           0.14998839
  DELETING TIME-RECORD FOR TIME
                                           0.19085954
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                           0.23956620
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                           0.27042983
                                           0.31031413
  DELETING TIME-RECORD FOR TIME
                                          0.36031413
  DELETING TIME-RECORD FOR TIME
 KEEPING TIME-RECORD FOR TIME 0.46031413
 AND FOR TIME
                                         0.50000000
 WORKSPACE RECLAIMED
 TIMESTEP AT 0.500000000
                                      SELECTED
DTCS
DIC>
DIC> set-inter
```

--OK---

exc1-plot

```
DIC>About

NO SUCH COMMAND, USE HELP
 DIC>DIC>MACRO exc1\plot.DCM DIC>
DIC>
DIC> @@ exc1_plot.DCM
DIC>
\overline{\text{DIC}}\text{>}\ \mbox{\for} Generating graphical output for example c1 \overline{\text{DIC}}\text{>}\ \mbox{\for}
DIC>
DIC> 00 GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> 00 DIC> go d-m
TIME STEP AT TIME 5.00000E-01
DIC> read exc1
 OK
DIC>
DIC> @@
DIC> @@ GO TO THE POST PROCESSOR
DIC> @@
DIC> post
   POST PROCESSOR VERSION
                                            1.7
 Implemented by Bjorn Jonsson
 POST-1:
POST-1: 00
POST-1: 00
FIRST PLOT CARBON CONCENTRATION PROFILES IN FERRITE (CELL-2)
POST-1: 00
THEN SET THE DISTANCE AS X-AXIS (NOT THAT DISTANCE IS SET INDEPENDENT
POST-1: 00
VARIABLE AUTOMATICALLY) AND W-FRACTION CARBON AS Y-AXIS
POST-1: 00
REMEMBER THAT THE PLOT CONDITION ALSO MUST BE SET.
POST-1: @@
POST-1: select-cell
Number /NEXT/: 2
CELL 2 SELECTED
POST-2:
POST-2: @@
POST-2: 00 NOTICE THAT THE PROMPT INCLUDES THE CURRENT CELL NUMBER POST-2: 00
POST-2: s-d-a x dist glo
INFO: Distance is set as independent variable
POST-2: s-d-a y w(c)
POST-2: s-p-c time .0001 .001 .03 .1 .5
POST-2: @@
 POST-2: @@ SET THE TITLE ON THE PLOTS
POST-2: @@
POST-2: set-title Figure c1.1
 POST-2: plot
```

Figure c1.1


```
POST-2:
POST-2:
POST-2:
POST-2:
POST-2:@?<_hit_return_to_continue_>
POST-2:@@
POST-2:@@
POST-2:@@
POST-2:@@
POST-2:@@
POST-2: @@
POST-2: select-cell
Number /NEXT/: 1
CELL 1 SELECTED
POST-1: set-title Figure c1.2
POST-1: plot
```



```
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:@?
POST-1:
POST-1: @@
POST-1: POST
POST-1: 00
POST-2: sel-cell 2
CELL 2 SELECTED
POST-2: enter func sqrt=sqrt(time);
POST-2: s-d-a x sqrt
POST-2: s-d-a y iww(2,c)
POST-2: s-i-v time
POST-2: set-title Figure c1.3
POST-2: plot
```

Figure c1.3


```
POST-2:
POST-2:
POST-2:
POST-2:
POST-2:0?<hit_return_to_continue>
POST-2: @@
POST-2: @@ DO THE SAME THING FOR THE AUSTENITE POST-2: @@
POST-2: 00
POST-2: sel-cell 1
CELL 1 SELECTED
POST-1: s-d-a y iww(1,c)
POST-1: set-title Figure c1.4
POST-1: plot
```



```
POST-1:
POST-2:
POST-2
```

Figure c1.5


```
POST-2:
POST-2:
POST-2:
POST-2:
POST-2:@?<hit_return_to_continue>
POST-2:@@
POST-2:@@
POST-2:@@
POST-2:@@
POST-2:@@
POST-2:@@
POST-2:sel-cell 1
CELL 1 SELECTED
POST-1: set-title Figure c1.6
POST-1: plot
```


POST-1:
POST-1:
POST-1:
POST-1:@?<_hit_return_to_continue_>
POST-1: set-inter
--OK--POST-1:

Example exc2

Cementite dissolution in an Fe-Cr-C alloy: Three particle sizes and three different cells

This example calculates the dissolution of cementite particles in an austenite matrix. This is the same as exc1 except that there are three particle sizes. Altogether six particles are considered using three different cells. This is to be able to represent some size distribution among the cementite particles. See also Z.-K. Liu, L. Höglund, B. Jönsson and J. Ågren: Metall.Trans.A, v. 22A (1991), pp. 1745-1752.

$$T = 1183K$$

exc2-setup

SYS: About

APP:

```
{\tt Thermo-Calc} \ / \ {\tt DICTRA} \ {\tt is} \ {\tt software} \ {\tt package} \ {\tt for} \ {\tt calculation} \ {\tt of} \ {\tt phase} \ {\tt diagrams},
 simulation of phase transformation kinetics and much more.
 Copyright Foundation for Computational Thermodynamics,
 Stockholm, Sweden
 Software running on Windows 64-bit wordlength
 Compiler: unknown compiler
License library version: 9.7.0.0036
Linked: Fri Oct 18 11:32:56 2024
SYS:SYS:MACRO exc2\setup.DCM
SYS: i>;@@
 NO SUCH COMMAND, USE HELP
SYS: @@ Cell calculation.
SYS: @@ Cementite dissolution in an Fe-Cr-C alloy: Three particle sizes and SYS: @@ three different cells
SYS: 00 This example calculates the dissolution of cementite particles
{\bf SYS}\colon 00 in an austenite matrix. This example is the same as exc1 but {\bf SYS}\colon 00 instead there are three particle sizes. A total of six
SYS: @@ particles are considered using three different cells. This is to
SYS: 00 See also Z.-K. Liu, L. HĶglund, B. JĶnsson and J. Ä…gren:
SYS: 00 Metall.Trans.A, v. 22A (1991), pp. 1745-1752.
SYS: ---
 NO SUCH COMMAND, USE HELP
SYS:
SYS: @@ exc2_setup.DCM
SYS:
SYS: @@
SYS: @@ RETRIEVE DATA FROM THE DATABASE
SYS: go da
14:41:07,913 [Thread-0] INFO LicenseManager: Initializing user: jenkins.integrationtest@thermocalc.se
14:41:07,926 [Thread-0] INFO LicenseController: Running License Spring in DEV environment.
14:41:09,037 [Thread-0] INFO LicenseManager: There is an activated standalone license for jenkins.integrationtest@thermocalc.se for TC-
Application
 THERMODYNAMIC DATABASE module
 Database folder:
 C:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples\databases\da
 Current database: Steels/Fe-Alloys v12.0
 VA
                               /- DEFINED
 DICTRA_FCC_A1 REJECTED
TDB_TCFE12: 00
TDB TCFE12: @@ USE A THERMODYNAMIC DATABASE TO RETRIEVE DATA
TDB_TCFE12: @@
TDB_TCFE12: switch fedemo
 Current database: Iron Demo Database v5.0
 VA
                                /- DEFINED
TDB_FEDEMO: def-sys fe cr c
 FE
                                CR
    DEFINED
TDB_FEDEMO: rej ph * all
BCC_A2
CHI_A12
                                CBCC_A12
CUB_A13
                                                              CEMENTITE
                                                               DIAMOND_FCC_A4
                                GAS:G
KSI_CARBIDE
M23C6
 FCC_A1
HCP_A3
                                                               GRAPHITE
                                                               LAVES_PHASE_C14
 LIOUID:L
                                                              M3C2
 M5C2
                               м7С3
                                                               STGMA
   REJECTED
TDB_FEDEMO: res ph fcc cementite
FCC A1 CEMENTI
                               CEMENTITE RESTORED
TDB FEDEMO: get

14:41:10,098 [Thread-0] INFO JavaWrapper: *** Invoking Gibbs Energy System v6 ***
REINITIATING GES .....
 ELEMENTS .....
 SPECIES .....
 PHASES .....
Creating a new composition set FCC_A1#2
 PARAMETERS ...
 Use the command LIST REFERENCES to see the list of references for assessed data
 -0K-
TDB_FEDEMO:
TDB FEDEMO: @@
TDB FEDEMO: 00 SWITCH TO A MOBILITY DATABASE TO RETRIEVE MOBILITY DATA
TDB_FEDEMO: @@
TDB FEDEMO: app mfedemo
 Current database: Fe-Alloys Mobility demo database v4.0
 VA DEFINED
APP: def-sys fe cr c
 FE
                               CR
                                                              C
    DEFINED
APP: rej ph * all BCC_A2
                               FCC_A1
                                                              CEMENTITE
 LIQUID:L REJECTED
APP: res ph fcc cementite
FCC_A1
APP: get
ELEMENTS ....
                               CEMENTITE RESTORED
 SPECIES .....
 Creating a new composition set FCC A1#3
 PARAMETERS ...
 FUNCTIONS ....
 Use the command LIST_REFERENCES to see the list of references for assessed data
 -0K-
```

```
APP: @@
APP: @@ ENTER THE DICTRA MONITOR
APP: @@
APP: go d-n
14:41:10,650 [Thread-0] INFO StandaloneLicenseController: Checking out license for: Diffusion (DICTRA)
NO TIME STEP DEFINED
DIC> @@
DIC> 00 ENTER THE GLOBAL CONDITION T
DIC> set-cond glob t 0 1183; * n
DIC> @@-----
DIC> @@ CELL NUMBER ONE - Defining 1 copy of the largest particle
\tt DIC> @@ Since the commands CRE_NEW_CELL or AMEND_CELL are not used for this \tt DIC> @@ first definition, it is just like any <code>DICTRA</code> setup.
DIC> @@-----
DIC>
DIC> @@
DIC> @@ ENTER REGIONS carb AND aus
DIC> @@
DIC> enter-region carb
DIC> enter-region aus
ATTACH TO REGION NAMED /CARB/:
ATTACHED TO THE RIGHT OF CARB /YES/:
DIC> 00
DIC> 00 ENTER GEOMTRICAL GRIDS INTO THE REGIONS
DIC> @@
DIC>
DIC> @@
DIC> 00 THE SIZE OF THE CEMENTITE PARTICLES ARE KNOWN AS WE ASSUME
DIC> 00 IT HAS BEEN MEASURED.
DIC> 00
DIC> enter-grid
REGION NAME : /CARB/: carb
WIDTH OF REGION /1/: 0.700000e-6
TYPE /LINEAR/: GEO
NUMBER OF POINTS /50/: 30
VALUE OF R IN THE GEOMETRICAL SERIE : 0.9
DTC> @@
DIC> @@ THE SIZE OF THE FCC REGION CAN BE CALCULATED FROM A MASS BALANCE
\ensuremath{\mathsf{DIC}}\xspace @@ after estimating the initial compositions in the two phases. \ensuremath{\mathsf{DIC}}\xspace @@
DIC> enter-grid
REGION NAME : /AUS/: aus
WIDTH OF REGION /1/: 7.1832993E-7
TYPE /LINEAR/: GEO
NUMBER OF POINTS /50/: 30
VALUE OF R IN THE GEOMETRICAL SERIE : 1.1
DIC> @@
DIC> 00 ENTER PHASES INTO REGIONS DIC> 00
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: act REGION NAME : /CARB/: carb
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: cementite
DIC>
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /AUS/: aus
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: fcc#1
DIC>
DTC> 00
DIC> @@ ENTER INITIAL VALUES FOR THE COMPOSITIONS IN THE PHASES
DIC> @@
DIC> enter-composition carb cementite fe w-f
PROFILE FOR /CR/: cr lin 0.12423326 0.12423326
DIC>
DIC> enter-composition aus fcc#1 fe w-f
PROFILE FOR /C/: cr lin 4.6615447E-3 4.6615447E-3 PROFILE FOR /CR/: c lin 1.5135207E-4 1.5135207E-4
DIC>
DIC> @@ CELL NUMBER TWO - Defining 1 copy also of the smallest particle
DIC> @@ This is done by giving the argument 1 at the CRE_NEW_CELL command.
DIC> @@-----
DIC> create-new-cell
CELL DISTRIBUTION FACTOR /1/: 1
CREATING NEW CELL, NUMBER: 2
 CELL
         2 SELECTED
DIC-2>
DIC-2> @@
DIC-2> @@ ENTER REGIONS carb AND aus
DIC-2> @@ ENTER REGIONS CATD A
DIC-2> @@
DIC-2> enter-region carb
DIC-2> enter-region aus
ATTACH TO REGION NAMED /CARB/:
ATTACHED TO THE RIGHT OF CARB /YES/:
DIC-2> @@
DIC-2> @@ ENTER GEOMTRICAL GRIDS INTO THE REGIONS
DIC-2> @@
DIC-2> enter-grid carb 0.300000e-6 GEO 20 0.9
DIC-2> enter-grid aus 3.0785568E-7 GEO 20 1.1
DIC-2>
DIC-2> enter-phase act aus matrix
DIC-2>
DIC-2> @@
DIC-2> @@ ENTER INITIAL VALUES FOR THE COMPOSITIONS IN THE PHASES
DIC-2> enter-composition carb cementite fe w-f
PROFILE FOR /CR/: cr lin 0.12423326 0.12423326
DIC-2>
```

```
DIC-2> enter-composition aus fcc#1 fe w-f
PROFILE FOR /C/: cr lin 4.6615447E-3 4.6615447E-3
PROFILE FOR /CR/: c lin 1.5135207E-4 1.5135207E-4
DIC-2> @@-----
 DIC-2> @@ CELL NUMBER THREE - Defining 2 copies of the average sized particle
DIC-2> @@-----
DIC-2> create-new-cell
CELL DISTRIBUTION FACTOR /1/: 2
CREATING NEW CELL, NUMBER: 3
CELL 3 SELECTED
DIC-3>
DIC-3> @@
 DIC-3> @@ ENTER REGIONS carb AND aus
DIC-3> @@
DIC-3> enter-region carb
DIC-3> enter-region aus
ATTACH TO REGION NAMED /CARB/:
ATTACHED TO THE RIGHT OF CARB /YES/:
DIC-3> @@
DIC-3> @@ ENTER GEOMTRICAL GRIDS INTO THE REGIONS DIC-3> @@
DIC-3> enter-grid carb 0.525500e-6 GEO 25 0.9 DIC-3> enter-grid aus 5.3926054E-7 GEO 25 1.1
DIC-3> enter-grid aus 5.39200371 . CLT 1. DIC-3> DIC-3> @@
DIC-3> @@
DIC-3> @@
ENTER PHASES INTO REGIONS
DIC-3> @@
DIC-3> enter-phase act carb matrix cementite
DIC-3> enter-phase act aus matrix fcc#1
DIC-3> enter-phase act aus matrix fcc#1
DIC-3>
DIC-3> @@
DIC-3> @@
DIC-3> @@ ENTER INITIAL VALUES FOR THE COMPOSITIONS IN THE PHASES
DIC-3> @@
DIC-3> enter-composition carb cementite fe w-f
 PROFILE FOR /CR/: cr lin 0.12423326 0.12423326
DIC-3>
DIC-3> enter-composition aus fcc#1 fe w-f
PROFILE FOR /C/: cr lin 4.6615447E-3 4.6615447E-3
PROFILE FOR /CR/: c lin 1.5135207E-4 1.5135207E-4
DTC-3>
DIC-3> @@ GLOBAL CONDITIONS - Note: temperature already set.
DIC-3> @@------
DIC-3>
DIC-3> @@
DIC-3> @@ SET TO A SPHERICAL GEOMETRY DIC-3> @@ DIC-3> enter-geo 2
DIC-3>
 DIC-3>
DIC-3>
 DIC-3> @@
DIC-3> 00 SET THE SIMULATION TIME DIC-3> 00
DIC-3> set-simulation-time
END TIME FOR INTEGRATION /.1/: 10000
AUTOMATIC TIMESTEP CONTROL /YES/:
MAX TIMESTEP DURING INTEGRATION /1000/:
INITIAL TIMESTEP : /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
 DIC-3>
DIC-3> 00
DIC-3> 00 SAVE THE SET UP TO A NEW STORE FILE AND EXIT DIC-3> 00
DIC-3> save exc2 Y
 DIC-3>
DIC-3> set-inter
--OK---
DIC-3>
```

```
DIC-3>About
  NO SUCH COMMAND, USE HELP
DIC-3>DIC-3>MACRO exc2\run.DCM DIC-3>
DIC-3>
DIC-3> @@ exc2_run.DCM
DIC-3>
DIC-3> @@ READ THE SET UP FROM FILE AND START THE SIMULATION
DIC-3> @@
DIC-3>
DIC-3> go d-m
TIME STEP AT TIME 0.00000E+00
DIC-3> read exc2
  OK
  DEGREE OF IMPLICITY SET TO TRAPEZOIDAL RULE
    Trying old scheme
GENERATING STARTING VALUES FOR CELL # 1 INTERFACE # 2
DETERMINING INITIAL EQUILIBRIUM VALUES
CALCULATING STARTING VALUES: 9 EQUILIBRIUM CALCU
                                                                               EQUILIBRIUM CALCULATIONS
                                                                                                                                                            DONE
                                                                                                                                                                               6 OUT OF
                                                                                                                                                                                                              9
    Trving old scheme
GENERATING STARTING VALUES FOR CELL # 2 INTERFACE # 2
DETERMINING INITIAL EQUILIBRIUM VALUES
CALCULATING STARTING VALUES: 9 EQUILIBRIUM CALCU
                                                                             EQUILIBRIUM CALCULATIONS
                                                                                                                                                               DONE
                                                                                                                                                                                   6 OUT OF
                                                                                                                                                                                                               9
CALCULATING STARTING VALUES: 9 EQUILIBRIUM CALCULATIONS
                                                                                                                                                                DONE
                                                                                                                                                                               6 OUT OF
                                                                                                                                                                                                               9
 04
U-FRACTION IN SYSTEM: C = .0406910187115061 CR = .0214382352209387
FE = .978561764909568

TOTAL SIZE OF SYSTEM: 2.30050996865E-17 [m^3]
U-FRACTION IN SYSTEM: C = .0406910187115061 CR = .0214382352209387
FE = .978561764909568
TOTAL SIZE OF SYSTEM: 2.3005090696FE 17 [m^3]
  TOTAL SIZE OF SYSTEM: 2.30050996865E-17 [m^3]
   TOTAL SIZE OF SYSTEM: 2.30050996855E-17 [m^3]

8 GRIDPOINT(S) ADDED TO CELL #1 REGION: CARB
9 GRIDPOINT(S) ADDED TO CELL #2 REGION: AUS
11 GRIDPOINT(S) ADDED TO CELL #2 REGION: AUS
12 GRIDPOINT(S) ADDED TO CELL #2 REGION: AUS
10 GRIDPOINT(S) ADDED TO CELL #3 REGION: CARB
9 GRIDPOINT(S) ADDED TO CELL #3 REGION: CARB
0.562308005161987 0.56234274011782 0.562366853557356
02 3.175413249295662E-002 1.213896739589521E-002
05 3.825371689357113E-006 1.436471950202005E-005
06 3.95307679271290E-006 3.744817358935585E-006
  0.562308005161987
                                                                                                                                                             0.562349175215441
                                                                                                                                                                                                                0.562308055404654
                                                                                                                                                                                                                                                                    0.562308076601151
                                                                                                                                                 1.062121835683817E-004
4.649535418442126E-006
                                                                                                                                                                                                                 1.403438790273176E-
3.845602994570142E-
002
005
006
                       3.953076792712090E-006
3.750979315676525E-006
                                                                                     3.744817358935585E-006
                                                                                                                                                   3.788020535983020E-006
                                                                                                                                                                                                                 3.752696037130689E-
                                                                                                                                                                                                                 3.789577105282956E-
3.511997011626638E-
006
                       3.687373747186901E-006
                                                                                     3.623600664792957E-006
                                                                                                                                                   3.626488639510962E-006
                       3.402323193205779E-006
2.666125028219394E-006
                                                                                    3.207385177398647E-006
2.602539804322142E-006
                                                                                                                                                   3.013575760567609E-006
2.328375229025504E-006
006
                                                                                                                                                                                                                  3 034833370691419F-
006
                      1.749273203708094E-006
006
                                                                                     4.075236873032249E-004
                                                                                                                                                   6.106453349196179E-003
                                                                                                                                                                                                                  1.770380341798807E-
007
                      2.382230520986728E-008
                                                                                    1.323331856029851E-008
                                                                                                                                                   5.542161996842264E-009
                                                                                                                                                                                                                 1.039982722406221E-
                                                                                  7.697419519572880E-010 4.032279949869757E-010 2.166092460141906E-

TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.18286937E-21

-0.29712891E-02 AND -0.29712891E-02
                       2.958858956725420E-010
6.687099630271476E-017
  CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.29712891E-02 AND -0.29712891E-02
POSITION OF INTERFACE CARB / AUS IS 0.69970287E-06
CELL # 2 VELOCITY AT INTERFACE # 2 IS -0.35949743E-02 AND -0.35949743E-02
  CELL # 2 VELOCITY AT INTERFACE # 2 IS -0.35949'43E-U2 AND -U.35949'43E-U2 POSITION OF INTERFACE CARB / AUS IS 0.29964050E-06 CELL # 3 VELOCITY AT INTERFACE # 2 IS -0.36149476E-02 AND -0.36149476E-02 POSITION OF INTERFACE CARB / AUS IS 0.52513851E-06 U-FRACTION IN SYSTEM: C = .0407183318974313 CR = .0214509582219593
  U-FRACTION OF INTERFACE CARB / AUS IS 0.5251:
U-FRACTION IN SYSTEM: C = .0407183318974313
FE = .978549041908548
  FE = .978549041908040

TOTAL SIZE OF SYSTEM: 2.30050996865E-17 [m^3]
        AL SIZE C. Utime used in timester GRIDPOINT(S) ADDED TO CELL #1 GRIDPOINT(S) ADDED TO CELL #1 GRIDPOINT(S) ADDED TO CELL #2 GRIDPOINT(S) ADDED TO CELL #2 GRIDPOINT(S) ADDED TO CELL #3 TO CELL #3
                                                      TO CELL #1 REGION: CARB
                                                                                    REGION: AUS
                                                                                    REGION: CARB
                                                                                     REGION: AUS
                                                                                    REGION: CARB
                                                                                    REGION: AUS
                                                      0.720078268703713
output ignored...
... output resumed
                                                                                                                                                                                                                2.283995210532048E-
3.865918918098311E-
  2.283830655729331E-002
                                                              2.283830676606915E-002
                                                                                                                             2.283830676057919E-002
                                                                                                                                                                                            2.283981643379663E-002
2.283830657729331E-002 2.283830676606915E-002 2.283830676057919E-002 2.28
002 2.283448945308952E-002 2.283761255679290E-002 1.491842558976137E-003
006 9.200378920785326E-009 3.610158102196856E-012 1.062570776420941E-
017 TIME = 7227.0921 DT = 1000.0000 SUM OF SQUARES = 0.32928424E-17

CELL #1 VELOCITY AT INTERFACE # 2 IS -0.13080917E-10 AND -0.13080917E-10
POSITION OF INTERFACE CARB / AUS IS 0.42001679E-06

CELL # 3 VELOCITY AT INTERFACE # 2 IS -0.14333666E-10 AND -0.14333666E-10
POSITION OF INTERFACE CARB / AUS IS 0.23556611E-06

U-FRACTION IN SYSTEM: C = .0407429546789286 CR = .0215435267682685

FE = .978456473362238

TOTAL SIZE OF SYSTEM: 2.30050996865E-17 [m^3]
CPU time used in timestep 4 seconds
  CPU time used in timestep 4 seconds
3.400641895705857E-002 3.400641909216802E-002 3.400641906530464E-002 3.40
002 3.400197279404037E-002 3.400548308609514E-002 2.36674776370587E-003
006 7.975520190435769E-010 1.957790690260421E-013 7.278377336561062E-
                                                                                                                                                                                                                3.400827680084697E-
3.426599279548059E-
                                                                                                                                                                                            3.400815939702265E-002
 017
                                                                                                                                                     0.24458446E-18
    FE = .978456817593813 FOTAL SIZE OF SYSTEM: 2.30050996865E-17 [m^3] 1 GRIDPOINT(S) REMOVED FROM CELL #3 REGION: AUS
                                                                                                   4 seconds
                                                                                                                                                                                                               3.733601936768893E-
4.772199214248983E-
    CPU time used in timestep
 CPU time used in timestep 4 seconds
3.733423912304688E-002 3.733423922061026E-002 3.733423917931009E-002 3.7
002 3.732983448688868E-002 3.733310444812683E-002 3.202648072836520E-003
006 1.840130679366424E-009 9.353573705619087E-013 3.896529718912137E-
016 TIME 9 9227.0921 DT = 1000.0000 SUM OF SQUARES = 0.12300445E-18
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.10556470E-10 ADD -0.10556470E-10
                                                                                                                                                                                            3.733593882041732E-002
002
006
```

```
POSITION OF INTERFACE CARB / AUS IS 0.39779427E-06

CELL # 3 VELOCITY AT INTERFACE # 2 IS -0.12565889E-10 AND -0.12565889E-10

POSITION OF INTERFACE CARB / AUS IS 0.20980640E-06

U-FRACTION IN SYSTEM: C = .0407430209895106 CR = .021542936786108

FE = .978457063344399
                                   FE = .978457063344399
2.30050996865E-17 [m^3]
 TOTAL SIZE OF SYSTEM:
   1 GRIDPOINT(S) REMOVED FROM CELL #1
  CPU time used in timestep
                                                                         seconds
4.868045479179083E-
 C - .040/430131956872 FE = .978457220161303

TOTAL SIZE OF SYSTEM: 2.30050996865E-17 [m^3]

MUST SAVE WORKSPACE ON FILE

WORKSPACE SAVED ON FILE

RECLAIMING WORKSPACE
 RECLAIMING WORKSPACE
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                 2679.6081
  DELETING TIME-RECORD FOR TIME
                                                  2884.9149
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                  2884.9149
2884.9149
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                  2884 9150
  DELETING TIME-RECORD FOR TIME
                                                  2884.9155
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                  2884.9161
                                                  2884.9174
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                  2884 9200
                                                  2884.9251
  DELETING TIME-RECORD FOR TIME
                                                  2884.9353
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                  2884.9968
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                  2885.0787
                                                  2885.2425
  DELETING TIME-RECORD FOR TIME
                                                  2885.5702
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                  2887.5363
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                  2890.1577
                                                  2895.4006
  DELETING TIME-RECORD FOR TIME
                                                  2905.8864
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                  2968.8009
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                  3052.6870
                                                  3220.4592
  DELETING TIME-RECORD FOR TIME
                                                  3556.0035
                                                  4227.0921
5227.0921
6227.0921
7227.0921
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
 DELETING TIME-RECORD FOR TIME
                                                 8227 0921
 KEEPING TIME-RECORD FOR TIME
                                               9227.0921
 AND FOR TIME
WORKSPACE RECLAIMED
                                               10000.000
 TIMESTEP AT
                     10000.0000 SELECTED
DIC>
DIC> ,
14:58:44,423 [Thread-0] INFO StandaloneLicenseController: Releasing license for: Diffusion (DICTRA)
SYS: set-inter
```

exc2-plot

```
SYS: About
```

```
\label{thm:calc} Thermo-Calc \ / \ DICTRA \ is \ software \ package \ for \ calculation \ of \ phase \ diagrams, \\ simulation \ of \ phase \ transformation \ kinetics \ and \ much \ more.
 Copyright Foundation for Computational Thermodynamics,
 Stockholm, Sweden
 Software running on Windows 64-bit wordlength
 Compiler: unknown compiler
License library version: 9.7.0.0036
Linked: Fri Oct 18 11:32:56 2024
SYS:SYS:MACRO exc2\plot.DCM SYS:
SYS:
SYS: @@ exc2_plot.DCM
SYS:
SYS: 00
SYS: 00 FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE c2
SYS: @@
SYS:
SYS: @@
SYS: 00 GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE
SYS: go d-m
14:59:39,516 [Thread-0] INFO StandaloneLicenseController: Checking out license for: Diffusion (DICTRA) TIME
STEP AT TIME 1.00000E+04
DIC> read exc2
 OK
DIC> @@
DIC> @@ GO TO THE POST PROCESSOR
DIC> @@
DIC> post
  POST PROCESSOR VERSION 1.7
Implemented by Bjorn Jonsson
POST-1: @@
POST-1: 00 PLOT THE CHROMIUM CONCENTRATION PROFILES IN THE SAME WAY AS IN exb2
POST-1: 00 BUT NOW FOR EACH PARTICLE. LET US LOOK AT THE PROFILES AFTER 1000s.
POST-1: @@
POST-1: @@
POST-1: 00 FIRST CELL
POST-1: 00
POST-1: enter-symb
Function or table /FUNCTION/: func
NAME: rdist
FUNCTION: gd-poi(carb,u);
POST-1:
POST-1: s-d-a x rdist
POST-1:
POST-1: s-d-a y uf(cr)
POST-1: POST-1: s-i-v
VARIABLE /TIME/: dist
DISTANCE : /GLOBAL/: glo
POST-1: s-p-c time 1000
POST-1:
POST-1: @@
POST-1: @@ SET THE TITLE ON THE PLOT
POST-1: @@
POST-1: set-title Figure C2.1
POST-1: plot
                                                 Figure C2.1
```



```
POST-1:
POST-1:
POST-1:@?<_hit_return_to_continue_>
POST-1: @@
POST-1: @@
POST-1: @@ SELECT CELL 2
POST-1: @@
POST-1: @@
POST-1: @@
POST-1: %@
```

```
CELL 2 SELECTED
 POST-2: enter-symb
Function or table /FUNCTION/: func
NAME: rdist2
  FUNCTION: gd-poi(carb,u);
 POST-2: POST-2: s-d-a x rdist2
 POST-2:
POST-2: set-title Figure C2.2
  POST-2: plot
                                                                                                                                                                                   Figure C2.2
                               0.40
                               0.35
                               0.30
                               0.25
                               0.20
                               0.15
                               0.10
                               0.05
                               0.00
                                              -2
                                                                                                                                                                                                                                                    2
                                                                                                                                                                                                                RDIST2
                                                                                                                                                                                                                                                                                                                                                                                      ×10<sup>-7</sup>
  POST-2:
POST-3:
POST-3
POST-3: enter-symb
Function or table /FUNCTION/: func
NAME: rdist3
FUNCTION: gd-poi(carb,u);
 POST-3: s-d-a x rdist3
POST-3:
 POST-3: set-title Figure C2.3
POST-3: plot
                                                                                                                                                                                   Figure C2.3
                               0.40
                               0.35
                               0.30
                   O.20
                               0.15
                               0.10
                               0.05
                               0.00
                                                                                                         -2
                                                                                                                                                                                                                                                                                      4
                                                                                                                                                                                                                 RDIST3
                                                                                                                                                                                                                                                                                                                                                                                      ×10<sup>-7</sup>
 POST-3:
POST-3:
POST-3:
 POST-3:
POST-3:0?<_hit_return_to_continue_>
 POST-3:
POST-3:
POST-3: 00
POST-3: 00 ALSO PLOT HOW THE DIAMETER OF THE CEMENTITE PARTICLE VARIES
POST-3: 00 WITH TIME IN THE THREE CELLS
POST-3: 00
POST-3: @@
POST-3: @@
POST-3: @@ SELECT THE FIRST CELL
POST-3: @@
POST-3: sel-cell 1
```

```
CELL 1 SELECTED
CELL 1 SELECTED

POST-1:
POST-1: s-d-a x time
INFO: Time is set as independent variable

POST-1: s-s-s x n .01 10000
POST-1: set-axis-type x log
POST-1:
POST-1: enter func diam1=2*poi(carb,u);
POST-1: s-d-a y diam1
POST-1: s-s-s y n 0 1.5e-6
POST-1:
POST-1: s-p-c interf carb upp
POST-1:
POST-1: app n
POST-1: set-title Figure C2.4
POST-1: plot
                                                               Figure C2.4
  ×10<sup>-6</sup> 1.4
           1.2
             1
      DIAM1
           0.8
           0.6
           0.4
           0.2
                                                100
                              10-1
                                                                                            10<sup>2</sup>
                                                                         10<sup>1</sup>
                                                                                                              10<sup>3</sup>
              10-2
                                                                          Time
POST-1:
POST-1:
POST-1:
POST-1:@?<_hit_return_to_continue_>
POST-1:
POST-1:
POST-1: 00
POST-1: 00 SELECT CELL 2
POST-1: 00
POST-1: sel-cell 2
. sel-cell 2
CELL 2 SELECTED
POST-2:
POST 7
POST-2: enter func diam2=2*poi(carb,u);
POST-2: s-d-a y diam2
POST-2: s-s-s y n 0 1.5e-6
POST-2:
POST-2: s-p-c interf carb upp
POST-2:
POST-2: set-title Figure C2.5
POST-2: plot
                                                               Figure C2.5
   ×10<sup>-6</sup>
          1.4
           1.2
      DIAM2
          0.8
           0.6
           0.4
           0.2
             0 -
                         10<sup>-1</sup>
                                              100
                                                                      10<sup>1</sup>
                                                                                        10<sup>2</sup>
                                                                                                            10<sup>3</sup>
              10-2
                                                                                                                                          104
                                                                          Time
POST-2:
POST-2:
POST-2:
POST-2:
POST-2:@?<_hit_return_to_continue_>
POST-2: @@
POST-2: @@ SELECT CELL 3
POST-2: @@
POST-2: sel-cell 3
```

```
CELL
                                     3 SELECTED
   POST-3: enter func diam3=2*poi(carb,u);
   POST-3: s-d-a y diam3
POST-3: s-s-s y n 0 1.5e-6
    POST-3:
    POST-3: s-p-c interf carb upp
    POST-3:
   POST-3: set-title Figure C2.6
POST-3:
   POST-3: plot
                                                                                                                                                                        Figure C2.6
           ×10<sup>-6</sup>
                                1.2
                    DIAM3
                                0.8
                                0.6
                                0.4
                                0.2
                                     0 -
                                                                                                10-1
                                                                                                                                                     10º
                                                                                                                                                                                                           10¹
                                                                                                                                                                                                                                                                10<sup>2</sup>
                                                                                                                                                                                                                                                                                                                       10<sup>3</sup>
                                         10-2
                                                                                                                                                                                                                                                                                                                                                                            104
                                                                                                                                                                                                     Time
    POST-3:
   POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3
   POST-3: s-s-s y n 0 0.14
POST-3:
   POST-3: s-p-c integral
POST-3:
    POST-3: set-title Figure C2.7
    POST-3: plot
                                                                                                                                                                        Figure C2.7
                                0.140
                                0.120
                                0.100
                  IW(1,CEM)
                                0.040
                                0.020
                                                                                                                                                                                                                                            10<sup>2</sup>
                               0.000 H
                                                                                                                                    100
                                                                                                                                                                                                      101
101
                                                                                                                                                                                                                                                                                           10<sup>3</sup>
                                                 10-2
                                                                                                     10-1
                                                                                                                                                                                                         Time
    POST-3:
  POST-3:
POST-3:
POST-3:
POST-3:0?<hit_return_to_continue>
   POST-3: @@
   POST-3: @@ CELL 2
POST-3: @@
   POST-3: s-d-a y ivv(2,cem)
POST-3:
POST-3: set-title Figure C2.8
```

```
POST-3: plot
```

Figure C2.8


```
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3:
POST-3: @@
POST-3: @@
POST-3: @@
POST-3: @@
POST-3: s-d-a y ivv(3,cem)
POST-3:
POST-3: set-title Figure C2.9
POST-3: plot
```

Figure C2.9


```
POST-3:
POST-3
```


Diffusion in Dispersed Systems

Example exd1a

Carburization of a Ni-25% Cr alloy: Dispersed system model

This example is about carburization of a Ni-25Cr alloy. In this case the M3C2 and M7C3 carbides are entered as spheroid phases in a FCC matrix. In this example the DISPERSED SYSTEM MODEL is used. This case is from A. Engström, L. Höglund and J. Ågren: Metall.Trans.A v. 25A (1994), pp. 1127-1134.

$$T = 1123 K$$

exd1a-setup

SYS: About

```
{\tt Thermo-Calc} \ / \ {\tt DICTRA} \ {\tt is} \ {\tt software} \ {\tt package} \ {\tt for} \ {\tt calculation} \ {\tt of} \ {\tt phase} \ {\tt diagrams},
 simulation of phase transformation kinetics and much more.
  Copyright Foundation for Computational Thermodynamics,
 Stockholm, Sweden
  Software running on Windows 64-bit wordlength
 Compiler: unknown compiler
License library version: 9.7.0.0036
Linked: Fri Oct 18 11:32:56 2024
SYS:SYS:MACRO exd1a\setup.DCM
SYS: @@
SYS: @@ Diffusion in dispersed systems.
SYS: 00 Diffusion in dispersed systems.
SYS: 00 Carburization of Ni-25%Cr alloy: Dispersed system model
SYS: 00 This example is about carburization of a Ni-25Cr alloy.
SYS: 00 In this case the M3C2 and M7C3 carbides are entered as
SYS: 00 spheroid phases in a FCC matrix. This simulation can be run
SYS: 00 with either the DISPERSED SYSTEM MODEL or the HOMOGENIZATION MODEL.
SYS: 00 In this example the DISPERSED SYSTEM MODEL is used, which requires
SYS: @@ that the default HOMOGENIZATION MODEL is disabled.
SYS: @@ With the DISPERSED SYSTEM MODEL the command
SYS: 00 WITH THE DISPERSED SYSTEM MODEL the command SYS: 00 ENTER LABYRINTH FUNCTION is used to take into account the SYS: 00 impeding effect of dispersed phases on long-range diffusion. SYS: 00 For the HOMOGENIZATION MODEL the command SYS: 00 ENTER HOMOGENIZATION FUNCTION should be used. SYS: 00 This case is from A. Engstrå¶m, L. Hå¶glund and J. Ä…gren: SYS: 00 Metall.Trans.A v. 25A (1994), pp. 1127-1134.
 NO SUCH COMMAND, USE HELP
SYS
SYS: @@ exd1_setup.DCM
SYS:
SYS: @@
SYS: 00 RETRIEVE DATA FROM THE DATABASE SYS: 00
SYS: go da
15:00:54,063 [Thread-0] INFO LicenseManager: Initializing user: jenkins.integrationtest@thermocalc.se
15:00:54,063 [Thread-0] INFO LicenseController: Running License Spring in DEV environment.
15:00:55,138 [Thread-0] INFO LicenseManager: There is an activated standalone license for jenkins.integrationtest@thermocalc.se for TC-
Application
  THERMODYNAMIC DATABASE module
  Database folder:
  C:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples\databases\da
 Current database: Steels/Fe-Alloys v12.0
 VA /- DEFINED
DICTRA_FCC_A1 REJECTED
FDB TCFE19:
TDB_TCFE12: 00
TDB_TCFE12: @@ USE THE SSOL DATABASE FOR THERMODYNAMIC DATA TDB_TCFE12: @@
TDB_TCFE12: sw fedemo
 Current database: Iron Demo Database v5.0
VA
TDB_FEDEMO: def-sys ni cr c
CR
                                         /- DEFINED
     DEFINED
DEFINED
TDB FEDEMO: rej ph * all
BCC_A2
CHI_A12
FCC_A1
HCP_A3
LIQUID:L
M7C3
                                         CBCC_A12
                                          CUB A13
                                                                                  DIAMOND FCC A4
                                          GAS:G
KSI_CARBIDE
M23C6
                                                                                   GRAPHITE
                                                                                   LAVES_PHASE_C14
                                                                                  M3C2
                                          SIGMA REJECTED
TDB_FEDEMO: res ph fcc,m7c3,m3c2,grap FCC_A1 M7C3
 GRAPHITE RESTORED
TDB_FEDEMO: get
15:00:56,204 [Thread-0] INFO JavaWrapper: *** Invoking Gibbs Energy System v6 ***
  REINITIATING GES .....
 ELEMENTS ..... SPECIES .....
  Creating a new composition set FCC_A1#2 PARAMETERS ...
  FUNCTIONS ....
 Use the command LIST_REFERENCES to see the list of references for assessed data
TDB_FEDEMO: @@
TDB_FEDEMO: @@ SWITCH TO A MOBILITY DATABASE TO RETRIEVE MOBILITY DATA
TDB_FEDEMO: app mfedemo
Current database: Fe-Alloys Mobility demo database v4.0
 VA DEFINED
APP: def-sys ni c cr
  ΝI
                                         C
                                                                                  CR
     DEFINED
APP: rej ph * all
BCC A2
                                         FCC A1
                                                                                 CEMENTITE
 LIQUID:L REJECTED
APP: res ph fcc,m7c3,m3c2,grap

*** ERROR M7c3 INPUT IGNORED

*** ERROR M3c2 INPUT IGNORED

*** ERROR GRAP INPUT IGNORED
FCC_A1 RESTORED

APP: get
  ELEMENTS ....
  SPECIES .....
  PHASES ......
Creating a new composition set FCC_A1#3
```

```
PARAMETERS ...
 FUNCTIONS .
 Use the command LIST REFERENCES to see the list of references for assessed data
  -OK-
APP: @@
APP: @@ ENTER THE DICTRA MONITOR
APP: @@
APP: go d-m
AFF: 90 d-m
15:00:56,678 [Thread-0] INFO StandaloneLicenseController: Checking out license for: Diffusion (DICTRA)
NO TIME STEP DEFINED
*** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE
*** ENTERING M3C2 AS A DIFFUSION NONE PHASE
*** ENTERING M7C3 AS A DIFFUSION NONE PHASE
DIC>
DIC> @@
DIC> @@ ENTER THE GLOBAL CONDITION T
DIC> @@
\tt DIC> set-cond glob T 0 1123; * N
DIC> @@
DIC> 00 SET THE REFERENCE STATE FOR CARBON
DIC> @@
DIC> set-reference-state
Component: C
Reference state: grap
Temperature /*/: *
Pressure /100000/: 101325
DIC> @@
DIC> @@ ENTER THE REGION aus
DIC> 00
DIC> enter-region aus
DIC>
DIC> @@
DIC> @@ ENTER A GEOMETRICAL GRID INTO THE REGION
DIC> @@
DIC> enter-grid aus 3e-3 geo 100 1.02
DIC>
DIC> @@
DIC> @@ ENTER A MATRIX PHASE IN THE REGION
DIC> enter-phase act aus matrix fcc a1#1
DIC>
DIC> 00
DIC> 00 ENTER THE START COMPOSITION FOR THE MATRIX PHASE
DIC> 00
DIC> enter-composition
REGION NAME : /AUS/: aus
PHASE NAME: /FCC A1#1/: fcc#1
DEPENDENT COMPONENT ? /NI/: ni
COMPOSITION TYPE /MOLE FRACTION/: w-p
PROFILE FOR /C/: cr
TYPE /LINEAR/: lin 25 25
PROFILE FOR /CR/: c
TYPE /LINEAR/: lin 1e-4 1e-4
DTC> 00
DIC> @@ ENTER SPHEROIDAL PHASES IN THE REGION
DIC> 00
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /AUS/: aus
PHASE TYPE /MATRIX/: sph
PHASE NAME: /NONE/: m7c3
  INFO: EQUILIBRIUM COMPOSITION AND FRACTION OF SPHEROID PHASES USED AS DEFAULT
DIC> @@
DIC> 00 ENTER A STOICHOMETRIC SPHEROIDAL PHASE IN THE REGION
DIC> 00
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /AUS/: aus
PHASE TYPE /MATRIX/: sph
PHASE NAME: /NONE/: m3c2
 INFO: EQUILIBRIUM COMPOSITION AND FRACTION OF SPHEROID PHASES USED AS DEFAULT
DIC>
DIC>
DIC> @@
DIC> 00 ENTER A START COMPOSITION FOR THE SPHEROIDAL PHASES DIC> 00
DIC> enter-composition
REGION NAME: /AUS/: aus
PHASE NAME: /FCC_A1#1/: m7c3
USE EQUILIBRIUM VALUE /Y/: Y
DIC> enter-composition
REGION NAME : /AUS/: aus
PHASE NAME: /FCC_A1#1/: m3c2
USE EQUILIBRIUM VALUE /Y/: Y
DIC>
DIC> @@
DIC> 00 SET THE BOUNDARY CONDITION DIC> 00
DIC> set-cond
GLOBAL OR BOUNDARY CONDITION /GLOBAL/: boundary
BOUNDARY /LOWER/: lower
CONDITION TYPE /CLOSED_SYSTEM/: mixed
Dependent substitutional element:NI
Dependent interstitial element: YA

TYPE OF CONDITION FOR COMPONENT C /ZERO_FLUX/: activity
LOW TIME LIMIT /0/: 0
ACR(C)(TIME) = 1;
HIGH TIME LIMIT /*/:
ANY MORE RANGES /N/: N
TYPE OF CONDITION FOR COMPONENT CR /ZERO_FLUX/: zero-flux
DIC> @@
DIC> @@ ENTER THE LABYRINTH FACTOR
DIC> @@
```

```
DIC> enter-lab
REGION NAME : aus
f(T,P,VOLFR,X) = volfr**2;
DIC> @@
DIC> 00 SET THE SIMULATION TIME. REMEMBER TO BE CAREFUL WITH THE DIC> 00 TIMESTEP WHEN THERE ARE SPHEROIDAL PHASES PRESENT. IN THIS CASE DIC> 00 THE TIMESTEP IS NOT ALLOWED TO BE LARGER THAN 1800s.
DIC> @@
DIC> set-simulation-time
DICS SET-SIMULATION-TIME
END TIME FOR INTEGRATION /.1/: 3600000
AUTOMATIC TIMESTEP CONTROL /YES/: YES
MAX TIMESTEP DURING INTEGRATION /360000/: 1800
INITIAL TIMESTEP : /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DIC>
DIC>
DIC> 00 DIC> 00 IN ORDER SO SAVE SOME SPACE ON THE DISK THE RESULT IS STORED
DIC> 00 SELECTIVELY. OTHERWISE THE STORE-RESULT-FILE FROM THIS EXAMPLE DIC> 00 WOULD BE VERY LARGE.
DIC> @@
DIC> set-simulation-condition
NSO1A PRINT CONTROL : /0/:
FLUX CORRECTION FACTOR : /1/:
NUMBER OF DELTA TIMESTEPS IN CALLING MULDIF: /2/:
CHECK INTERFACE POSITION /AUTO/:
CHECK INTERFACE POSITION /AUTO/:
VARY POTENTIALS OR ACTIVITIES OR LNAC : /ACTIVITIES/:
ALLOW AUTOMATIC SWITCHING OF VARYING ELEMENT : /YES/:
SAVE WORKSPACE ON FILE (YES,NO,0-999) /YES/: 99
DEGREE OF IMPLICITY WHEN INTEGRATING PDES (AUTO, 0 -> 0.5 -> 1): /AUTO/:
MAX TIMESTEP CHANGE PER TIMESTEP : /2/:
USE FORCED STARTING VALUES IN EQUILIBRIUM CALCULATION /AUTO/:
ALWAYS CALCULATE STIFFNES MATRIX IN MULDIF /YES/:
CALCULATE RESIDUAL FOR DEPENDENT COMPONENT /NO/:
DIC>
DIC>
DIC> 00 BY DEFAULT THE "HOMOGENIZATION MODEL" IS USED WHEN MULTIPLE PHASES DIC> 00 ARE ENTERED IN A SINGLE REGION. FOR THIS EXAMPLE THE HOMOGENIZATION DIC> 00 MODEL IS DISABLED.

DIC> ho n
HOMOGENIZATION DISABLED DIC>
DIC>
DIC> @@
DIC> 00 SAVE THE SET UP TO A NEW STORE FILE AND EXIT DIC> 00 DIC> save exd1 y
DIC>
DIC> set-inter
     --OK---
DIC>
```

CPU time used in timestep

```
NO SUCH COMMAND, USE HELP
  DIC>DIC>MACRO exdla\run.DCM DIC>
  DIC>
  DIC> @@ exd1_run.DCM
  DIC>
  DIC> 00 READ THE SETUP FILE AND START THE SIMULATION
  DIC> @@
  DIC> go d-m
    TIME STEP AT TIME 0.00000E+00
    *** ENTERING CRAPHITE AS A DIFFUSION NONE PHASE
*** ENTERING M3C2 AS A DIFFUSION NONE PHASE
      *** ENTERING M7C3 AS A DIFFUSION NONE PHASE
  DIC> read exd1
    DEGREE OF IMPLICITY SET TO TRAPEZOIDAL RULE
U-FRACTION IN SYSTEM: C = 4.7339450059566E-06 CR = .273386452547573
MARNING:MTC3 HAS NO VOLUME FRACTION, CREATING ONE
MARNING:MTC3 HAS NO VOLUME FRACTION, CREATING ONE
U-FRACTION IN SYSTEM: C = 4.733994500595678-06 CR = .273386452547573

NI = .726613547452427

TOTAL SIZE OF SYSTEM: .003 [m]
ITHE = 0.100000002-06 DT = 0.100000002-06 SUM OF SQUARES = 0.0000000
U-FRACTION IN SYSTEM: C = 8.3223382995161E-05 CR = .273386452547572

NI = .726613547452428

TOTAL SIZE OF SYSTEM: .003 [m]
CPU time used in timestep
ITHE = 0.10010000E-03 DT = 0.10000000E-03 SUM OF SQUARES = 0.0000000
U-FRACTION IN SYSTEM: C = 1.14491977930612E-04 CR = .273386452547545

TOTAL SIZE OF SYSTEM: .003 [m]
CPU time used in timestep
ITHE = 0.40010010 DT = 0.40000000 SUM OF SQUARES = 0.0000000
U-FRACTION IN SYSTEM: C = 1.14491977930612E-04 CR = .273386452547545

TOTAL SIZE OF SYSTEM: .003 [m]
CPU time used in timestep
ITHE = 0.40010010 DT = 0.40000000 SUM OF SQUARES = 0.0000000
U-FRACTION IN SYSTEM: C = 1.73439753194935E-04 CR = .273386452541228

NI = .726613547458772

TOTAL SIZE OF SYSTEM: .003 [m]
CPU time used in timestep
ITHE = 61.226617 DT = 60.826517 SUM OF SQUARES = 0.0000000
U-FRACTION IN SYSTEM: C = 1.73234198866319E-04 CR = .273386451404806

NI = .726613549595134

TOTAL SIZE OF SYSTEM: C = 1.73234198866319E-04 CR = .273386450378639

NI = .726613549621361

TOTAL SIZE OF SYSTEM: .003 [m]
CPU time used in timestep
IN = .966.73312 DT = .75.504702 SUM OF SQUARES = 0.0000000
U-FRACTION IN SYSTEM: C = 2.1515953613461188-04 CR = .273386450378639

NI = .726613549621361

TOTAL SIZE OF SYSTEM: .003 [m]
CPU time used in timestep
IN = .726613549621361

TOTAL SIZE OF SYSTEM: .003 [m]
CPU time used in timestep
IN = .726613549621361

TOTAL SIZE OF SYSTEM: .003 [m]
CPU time used in timestep
IN = .72661355157256

TOTAL SIZE OF SYSTEM: .003 [m]
CPU time used in timestep
IN = .72661355173423406E-04 CR = .273386449367934

NI = .72661355157256

TOTAL SIZE OF SYSTEM: .003 [m]
CPU time used in timestep
IN = .72661355517355011563

TOTAL SIZE OF SYSTEM: .003 [m]
CPU time used in timestep
IN = .72661355517315073

TOTAL SIZE OF SYST
                                                                                                                                                                                                                                                                                                                  .726613547452427
                                                                                                                                                                                                                                                            TOTAL SIZE OF SYSTEM: .003 [m]
    CPU time used in timestep 0 seconds
TIME = 7536.4660 DT = 1800.0000 SUM OF SQUARES = 0.0000
U-FRACTION IN SYSTEM: C = .00118296902880157 CR = .273386442066142
                                                                                                                                                                                                                     0.0000000
     NI = .726613557933858
TOTAL SIZE OF SYSTEM: .003 [m]
    CPU time used in timestep 0 seconds
TIME = 9336.4660 DT = 1800.0000 SUM OF SQUARES = 0.000
U-FRACTION IN SYSTEM: C = .00133879540957735 CR = .273386441011293
                                                                                                                                                                                                                    0.0000000
     NI = .726613558988706
TOTAL SIZE OF SYSTEM: .003 [m]
    CPU time used in timestep 1 seconds
TIME = 11136.466 DT = 1800.0000 SUM OF SQUARES = 0.001
U-FRACTION IN SYSTEM: C = .00148538430057558 CR = .27338643927903
                                                                                                                                                                                                                     0.0000000
     NI = .72661356072097
TOTAL SIZE OF SYSTEM: .003 [m]
    CPU time used in timestep 0 seconds
TIME = 12936.466 DT = 1800.0000 SUM OF SQUARES = 0.000
U-FRACTION IN SYSTEM: C = .00162329996141555 CR = .273386436825667
                                                                                                                                                                                                                     0.0000000
     NI = .726613563174333
TOTAL SIZE OF SYSTEM: .003 [m]
    CPU time used in timestep 0 seconds
TIME = 14736.466 DT = 1800.0000 SUM OF SQUARES = 0.0001
U-FRACTION IN SYSTEM: C = .00175666371078121 CR = .273386434544898
                                                                                                                                                                                                                   0.0000000
     NI = .726613565455102
TOTAL SIZE OF SYSTEM: .003 [m]
```

0 seconds

```
TIME = 16509.560 DT = 1773.0939 SUM OF SQUARES = 0.000
U-FRACTION IN SYSTEM: C = .00188419698676038 CR = .273386432317815
NI = .726613567682185
TOTAL SIZE OF SYSTEM: .003 [m]
0.0000000
output ignored...
... output resumed
  CPU time used in timestep
                                                                                    seconds
TIME = 3563985.3 DT = 1800.0000 SUM OF SQUARES = 0.
U-FRACTION IN SYSTEM: C = .031453798352627 CR = .27338632521063
                                                                                                         0.0000000
                                      NI = .72661367478937
.003 [m]
 NI = TOTAL SIZE OF SYSTEM: .003
TOTAL SIZE OF SISTEM: .UUS [m]

CPU time used in timestep 0 seconds

TIME = 3565785.3 DT = 1800.0000 SUM OF SQUARES = 0.00

U-FRACTION IN SYSTEM: .0314617329030152 CR = .273386325190173

NI = .726613674809828

TOTAL SIZE OF SYSTEM: .003 [m]
                                                                                                        0.0000000
TOTAL SIZE OF SISTEM: .UUS [m]
CPU time used in timestep 0 seconds
TIME = 3567585.3 DT = 1800.0000 SUM OF SQUARES = 0.000
U-FRACTION IN SYSTEM: .0314696650642585 CR = .273386325169498
NI = .726613674830502
TOTAL SIZE OF SYSTEM: .003 [m]
                                                                                                        0.0000000
TOTAL SIZE OF SISTEM: .UUS [m]
CPU time used in timestep 0 seconds
TIME = 3569385.3 DT = 1800.0000 SUM OF SQUARES = 0.000
U-FRACTION IN SYSTEM: .00314775948480471 CR = .273386325148606
NI = .726613674851394
TOTAL SIZE OF SYSTEM: .003 [m]
                                                                                                        0.0000000
TOTAL SIZE OF SISTEM: .005 [m]

CPU time used in timestep 1 seconds

TIME = 3571185.3 DT = 1800.0000 SUM OF SQUARES = 0.00

U-FRACTION IN SYSTEM: .00314855222664734 CR = .273386325127497

NI = .726613674872503

TOTAL SIZE OF SYSTEM: .003 [m]
                                                                                                        0.0000000
 TOTAL SIZE OF SYSTEM:
TOTAL SIZE OF SISTEM: .003 [m] 0 seconds

CPU time used in timestep 0 seconds

TIME = 3572985.3 DT = 1800.0000 SUM OF SQUARES = 0.0

U-FRACTION IN SYSTEM: C = .031493447332012 CR = .27338632510617

NI = .72661367489383

TOTAL SIZE OF SYSTEM: .003 [m]
                                                                                                        0.0000000
 TOTAL SIZE OF SYSTEM: .003
TOTAL SIZE OF SISTEM: .UUS [m]
CPU time used in timestep 0 seconds
TIME = 3574785.3 DT = 1800.0000 SUM OF SQUARES = 0.00
U-FRACTION IN SYSTEM: C = .0315013700574988 CR = .273386325084625
NI = .726613674915375
TOTAL SIZE OF SYSTEM: .003 [m]
                                                                                                        0.0000000
 TOTAL SIZE OF SYSTEM: .003
TOTAL SIZE OF SISTEM: .003 [m]

CPU time used in timestep 0 seconds

TIME = 3576585.3 DT = 1800.0000 SUM OF SQUARES = 0.0000000

U-FRACTION IN SYSTEM: C = .0315092904561124 CR = .273386325062862

NI = .726613674937138

TOTAL SIZE OF SYSTEM: .003 [m]
TOTAL SIZE OF SISTEM: .005 [m]

CPU time used in timestep 0 seconds

TIME = 3580185.3 DT = 1800.0000 SUM OF SQUARES = 0.000

U-FRACTION IN SYSTEM: C = .0315251243270304 CR = .273386325018682

NI = .726613674981318

TOTAL SIZE OF SYSTEM: .003 [m]
 TOTAL SIZE OF SYSTEM: .003
TOTAL SIZE OF SYSTEM: .003 [m]
TOTAL SIZE OF SYSTEM: .UUS [m]
CPU time used in timestep 1 seconds
TIME = 3585585.3 DT = 1800.0000 SUM OF SQUARES = 0.00
U-FRACTION IN SYSTEM: C = .0315488580289199 CR = .273386324950772
NI = .726613675049228
TOTAL SIZE OF SYSTEM: .003 [m]
                                                                                                        0.0000000
0.0000000
O seconds

O-FRACTION IN SYSTEM: C = .0315804716545022 CR = .273386324857158

NI = .726613675142842

TOTAL SIZE OF SYSTEM: .003 [m]

CPU time used in timestep
```

```
TIME = 3594585.3 DT = 1800.0000 SUM OF SQUARES = 0.00 U-FRACTION IN SYSTEM: C = .0315883695715051 CR = .273386324833206 NI = .726613675166795

TOTAL SIZE OF SYSTEM: .003 [m]
0.0000000
TOTAL SIZE OF SYSTEM: .003 [m]

CPU time used in timestep
TIME = 3598185.3

DT = 1800.0000

SUM OF SQUARES = 0.000

U-FRACTION IN SYSTEM: C = .0316041589282164

RI = .72661367521536

TOTAL SIZE OF SYSTEM: .003 [m]

CPU time used in timestep

TIME = 359985.3

DT = 1800.0000

SUM OF SQUARES = 0.000

U-FRACTION IN SYSTEM: C = .0316120503999466

CPU time used in timestep

NI = .726613675239973

TOTAL SIZE OF SYSTEM: .003 [m]

CPU time used in timestep

O seconds

TIME = 3600000.0

DT = 14.712794

SUM OF SQUARES = 0.000

U-FRACTION IN SYSTEM: C = .0316121157454992

CPU time used in timestep

TIME = 3600000.0

DT = 14.712794

SUM OF SQUARES = 0.000

U-FRACTION IN SYSTEM: C = .0316121157454992

TOTAL SIZE OF SYSTEM: .003 [m]

MUST SAVE WORKSPACE ON FILE

WORKSPACE SAVED ON FILE

RECLAIMING WORKSPACE
                                                                                                                                           0.0000000
                                                                                                                                           0.0000000
                                                                                                                                           0.0000000
WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                         0.0000000
                                                                      0.10000000E-06
0.10010000E-03
 DELETING TIME-RECORD FOR TIME
                                                                         163785.29
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                          341985.29
                                                                          520185.29
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                                         698385.29
876585.29
 DELETING TIME-RECORD FOR TIME
                                                                         1054785.3
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                          1411185.3
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                                         1589385 3
 DELETING TIME-RECORD FOR TIME
                                                                         1945785.3
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                          2302185.3
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                         2480385.3
                                                                          2658585.3
 DELETING TIME-RECORD FOR TIME
                                                                          2836785.3
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                          3014985.3
                                                                          3193185.3
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                          3371385.3
                                                                          3549585.3
 DELETING TIME-RECORD FOR TIME
                                                                         3596385.3
 DELETING TIME-RECORD FOR TIME
                                                                         3598185.3
KEEPING TIME-RECORD FOR TIME AND FOR TIME
                                                                      3599985.3
                                                                      3600000.0
WORKSPACE RECLAIMED
TIMESTEP AT
                                   3600000.00
                                                                SELECTED
```

DIC>
DIC> set-inter --OK---DIC>

exd1a-plot

POST-1: s-d-a y npm(*)
POST-1: s-s-s y n 0 0.4

POST-1: app n
POST-1:
POST-1: set-tit d1.2
POST-1: plot

```
DIC>About
NO SUCH COMMAND, USE HELP
 DIC>DIC>MACRO exdla\plot.DCM DIC>
DIC>
DIC> @@ exd1_plot.DCM
DIC>
DIC> 00 FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE exdl DIC> 00
DIC>
DIC> @@
DIC> 00
DIC> 00 GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> 00
DIC> 00 d-m
TIME STEP AT TIME 3.60000E+06
*** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE
*** ENTERING M3C2 AS A DIFFUSION NONE PHASE
*** ENTERING M7C3 AS A DIFFUSION NONE PHASE
DIC> read exd1
OK
DIC>
DIC> @@
DIC> @@
DIC> @@ GO TO THE POST PROCESSOR
DIC> @@
DIC> post
POST PROCESSOR VERSION 1.7
Implemented by Bjorn Jonsson
POST-1: @@
POST-1: 00 LOT THE TOTAL CARBON CONCENTRATION PROFILE POST-1: 00
POST-1: s-d-a y w-p c
POST-1: s-d-a x distance global
INFO: Distance is set as independent variable POST-1: s-s-s x n 0 2e-3
POST-1: s-p-c time 3600000
POST-1:
POST-1: app y exd1.exp
PROLOGUE NUMBER: /0/: 1
DATASET NUMBER(s): /-1/: 1
POST-1: 00
POST-1: 00 SET THE TITLE ON THE PLOT POST-1: 00
 POST-1: set-tit d1.1
 POST-1:
 POST-1: plot
                                                                d1.1
          3.0 -
                                                                       \triangle Bongartz et al.
          2.0
      Mass percent C
                                        Δ
          1.5
                                             Δ
          1.0
                                                              Δ
          0.5
                                                                               Δ
           0.00000 0.00020 0.00040 0.00060 0.00080 0.00100 0.00120 0.00140 0.00160 0.00180 0.00200
                                                                  Distance
  POST-1:
POST-1:
POST-1:
POST-1:@?<_hit_return_to_continue_>
POST-1: @@
{\bf POST-1} : 00 NOW PLOT THE AMOUNT OF CARBIDES FORMED {\bf POST-1} : 00
```


POST-1:
POST-1:
POST-1:
POST-1:
POST-1:@?<_hit_return_to_continue_>
POST-1:
POST-1: set-inter
--OK--POST-1:

Example exd1b

Carburization of a Ni-25% Cr alloy: Homogenization model

This example is about carburization of a Ni-25Cr alloy. In this case the M3C2 and M7C3 carbides are entered as spheroid phases in a FCC matrix. It is similar to exd1a except the default HOMOGENIZATION MODEL is used and then ENTER_HOMOGENIZATION_FUNCTION should be used instead of ENTER_LABYRINTH_FUNCTION. This case is from A. Engström, L. Höglund and J. Ågren: Metall.Trans. A, v.25A (1994), pp. 1127-1134.

$$T = 1123 K$$

exd1b-setup

SYS: About

```
{\tt Thermo-Calc} \ / \ {\tt DICTRA} \ {\tt is} \ {\tt software} \ {\tt package} \ {\tt for} \ {\tt calculation} \ {\tt of} \ {\tt phase} \ {\tt diagrams},
 simulation of phase transformation kinetics and much more.
 Copyright Foundation for Computational Thermodynamics,
 Stockholm, Sweden
 Software running on Windows 64-bit wordlength
 Compiler: unknown compiler
License library version: 9.7.0.0036
Linked: Fri Oct 18 11:32:56 2024
SYS:SYS:MACRO exd1b\setup.DCM
SYS: i>;@@
 NO SUCH COMMAND, USE HELP
SYS: @@ Diffusion in dispersed systems.
SYS: @@ Carburization of Ni-25%Cr alloy: Homogenization model SYS: @@ This example is about carburization of a Ni-25Cr alloy.
SYS: @@ In this case the M3C2 and M7C3 carbides are entered as
SYS: 00 spheroid phases in a FCC matrix. This case is from
SYS: @@ A. Engström, L. Höglund and J. Ã…gren: Metall.Trans. A,
SYS: @@ v.25A (1994), pp. 1127-1134.

SYS: @@ This simulation can be run with the DISPERSED SYSTEM MODEL or

SYS: @@ HOMOGENIZATION MODEL. The default HOMOGENIZATION MODEL is used

SYS: @@ and then ENTER HOMOGENIZATION_FUNCTION should be used instead of
SYS: @@ ENTER_LABYRINTH_FUNCTION.
SYS:
 NO SUCH COMMAND, USE HELP
SYS:
SYS: @@ exd1b_setup.DCM
SYS:
SYS: @@
SYS: @@ RETRIEVE DATA FROM THE DATABASE
SYS: @@
{\tt SYS}\colon @@ This example modifies the database interactively, which is not {\tt SYS}\colon @@ yet supported by GES6. Therefore, we enforce the use of GES5.
SYS: set-ges-version 5
SYS: go da
15:08:46,043 [Thread-0] INFO LicenseManager: Initializing user: jenkins.integrationtest@thermocalc.se
15:08:46,055 [Thread-0] INFO LicenseController: Running License Spring in DEV environment.
15:08:47,155 [Thread-0] INFO LicenseManager: There is an activated standalone license for jenkins.integrationtest@thermocalc.se for TC-
Application
 THERMODYNAMIC DATABASE module
 Database folder:
 C:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples\databases\da
 Current database: Steels/Fe-Alloys v12.0
 /- DEFINED DICTRA_FCC_A1 REJECTED TOB TCFE19.
TDB_TCFE12: 00
TDB_TCFE12: @@ USE THE SSOL DATABASE FOR THERMODYNAMIC DATA
TDB_TCFE12: @@
TDB_TCFE12: sw fedemo
 Current database: Iron Demo Database v5.0
                                /- DEFINED
TDB_FEDEMO: def-sys ni cr c
 ΝI
   DEFINED
TDB FEDEMO: rej ph * all
BCC_A2
CHI_A12
FCC_A1
HCP_A3
                                 CBCC_A12
                                                                CEMENTITE
                                                                DIAMOND_FCC_A4
GRAPHITE
LAVES_PHASE_C14
                                 CUB A13
                                 GAS:G
KSI_CARBIDE
 LIQUID:L
M7C3
                                M23C6
                                                                M3C2
                                 SIGMA REJECTED
TDB_FEDEMO: res ph fcc,m7c3,m3c2,grap
                                                               M3C2
 FCC_A1
GRAPHITE RESTORED
TDB_FEDEMO: get
REINITIATING GES .....
 ELEMENTS .....
 SPECIES .....
 PHASES ......
Creating a new composition set FCC_A1#2
PARAMETERS ...
 FUNCTIONS ....
 Use the command LIST_REFERENCES to see the list of references for assessed data
 -OK-
TDB_FEDEMO:
TDB_FEDEMO: @@
TDB_FEDEMO: @@ SWITCH TO A MOBILITY DATABASE TO RETRIEVE MOBILITY DATA
TDB FEDEMO: @@
TDB_FEDEMO: app mfedemo
 Current database: Fe-Alloys Mobility demo database v4.0
 VA DEFINED
APP: def-sys ni c cr
                              С
 NΙ
                                                                CR
   DEFINED
APP: rej ph * all
BCC_A2
                               FCC_A1
                                                               CEMENTITE
 LIQUID:L REJECTED
APP: res ph fcc,m7c3,m3c2,grap

*** ERROR M7C3 INPUT IGNORED

*** ERROR M3C2 INPUT IGNORED

*** ERROR GRAP INPUT IGNORED
 FCC_A1 RESTORED

APP: get
ELEMENTS ....
 SPECIES .....
```

```
PARAMETERS ...
    FUNCTIONS ....
   Use the command LIST_REFERENCES to see the list of references for assessed data
   -OK-
 APP:
APP: 00
APP: 00 ENTER THE DICTRA MONITOR
 APP: @@
 APP: go d-m
 APP: go d-m
15:08:48,098 [Thread-0] INFO StandaloneLicenseController: Checking out license for: Diffusion (DICTRA)
NO TIME STEP DEFINED
*** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE
*** ENTERING M3C2 AS A DIFFUSION NONE PHASE

*** ENTERING M7C3 AS A DIFFUSION NONE PHASE
 DIC>
DIC> @@
 DIC> @@ ENTER THE GLOBAL CONDITION T
DIC> @@
 DIC> set-cond glob T 0 1123; * N
DTC>
 DIC> @@
\ensuremath{\mathsf{DIC}}\xspace \ensuremath{\mathsf{@}}\xspace \ensuremath{\mathsf{@}}\xspace \ensuremath{\mathsf{ETT}}\xspace \ensuremath{\mathsf{ETT}}\xsp
DIC> set-reference-state
Component: C
Reference state: grap
 Temperature /*/: *
Pressure /100000/: 101325
DIC>
 DIC> @@
 DIC> @@ ENTER THE REGION aus
 DIC> @@
DIC> enter-region aus
DIC>
DIC> @@
DIC> @@ ENTER A GEOMETRICAL GRID INTO THE REGION DIC> @@
DIC> enter-grid aus 3e-3 geo 100 1.02
DIC>
DIC> @@
 DIC> @@ ENTER A MATRIX PHASE IN THE REGION
DIC> @@
 DIC> enter-phase act aus matrix fcc_a1#1
DIC>
 DIC> @@
DIC> @@ ENTER THE START COMPOSITION FOR THE MATRIX PHASE
 DIC> @@
DIC> enter-composition

REGION NAME : /AUS/: aus

PHASE NAME : /FCC_AL#1/: fcc#1

DEPENDENT COMPONENT ? /NI/: ni

COMPOSITION TYPE /MOLE_FRACTION/: w-p

PROFILE FOR /C/: cr
 TYPE /LINEAR/: lin 25 25
PROFILE FOR /CR/: c
 TYPE /LINEAR/: lin 1e-4 1e-4
 DIC>
 DIC> @@
DIC> @@ ENTER SPHEROIDAL PHASES IN THE REGION DIC> @@
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
 REGION NAME : /AUS/: aus
PHASE TYPE /MATRIX/: sph
 PHASE NAME: /NONE/: m7c3
INFO: EQUILIBRIUM COMPOSITION AND FRACTION OF SPHEROID PHASES USED AS DEFAULT
DIC> @@
DIC> 00 ENTER A STOICHOMETRIC SPHEROIDAL PHASE IN THE REGION DIC> 00
 DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /AUS/: aus
PHASE TYPE /MATRIX/: sph
PHASE NAME : /NONE/: m3c2
   INFO: EQUILIBRIUM COMPOSITION AND FRACTION OF SPHEROID PHASES USED AS DEFAULT
DIC>
 DIC> @@
 DIC> @@ ENTER A START COMPOSITION FOR THE SPHEROIDAL PHASES
 DIC> @@
 DIC> enter-composition
REGION NAME: /AUS/: aus
PHASE NAME: /FCC_AI#1/: m7c3
USE EQUILIBRIUM VALUE /Y/: Y
 DIC> enter-composition
 REGION NAME : /AUS/: aus
PHASE NAME: /FCC_A1#1/: m3c2
USE EQUILIBRIUM VALUE /Y/: Y
 DIC>
 DIC> @@
 DIC> @@ SET THE BOUNDARY CONDITION
DIC> 00
DIC> set-cond
 GLOBAL OR BOUNDARY CONDITION /GLOBAL/: boundary BOUNDARY /LOWER/: lower CONDITION TYPE /CLOSED_SYSTEM/: mixed
Dependent substitutional element:NI
Dependent interstitial element:VA
TYPE OF CONDITION FOR COMPONENT C /ZERO_FLUX/: activity
LOW TIME LIMIT /O/: 0
ACR(C) (TIME) = 1;
 HIGH TIME LIMIT /*/:
 ANY MORE RANGES /N/: N
 TYPE OF CONDITION FOR COMPONENT CR /ZERO_FLUX/: zero-flux
 DIC>
DIC> @@ SELECT THE HOMOGENIZATION FUNCTION
```

Creating a new composition set FCC A1#3

```
DIC> @@
 DIC> enter-homo

ENTER HOMOGENIZATION FUNCTION # /5/: 8

SELECTED FUNCTION IS LABYRINTH FACTOR f**2 WITH PRESCRIBED MATRIX PHASE
  PHASE NAME: fcc#1
PHASE NAME: ICC#1
DIC>
DIC> @@
DIC> @@
DIC> @@ SET THE SIMULATION TIME. REMEMBER TO BE CAREFUL WITH THE
DIC> @@ TIMESTEP WHEN SPHEROIDAL PHASES ARE PRESENT. IN THIS CASE
DIC> @@ THE TIMESTEP IS NOT ALLOWED TO BE LARGER THAN 1800s.
 DIC> @@
DIC> set-simulation-time
 DIC> set-simulation-time
END TIME FOR INTEGRATION /.1/: 3600000
AUTOMATIC TIMESTEP CONTROL /YES/: YES
MAX TIMESTEP DURING INTEGRATION /360000/:
INITIAL TIMESTEP : /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
 DIC>
 DIC>
 DIC> @@
 DIC> 00 TO SAVE SOME SPACE ON THE DISK THE RESULTS ARE STORED SELECTIVELY, DIC> 00 OTHERWISE THE STORE-RESULT-FILE FROM THIS EXAMPLE WOULD BE
 DIC> @@ VERY LARGE.
 DIC> 00
DIC> set-simulation-condition
DIC> set-simulation-condition
NS01A PRINT CONTROL: //O/:
FLUX CORRECTION FACTOR: /1/:
NUMBER OF DELTA TIMESTEPS IN CALLING MULDIF: /2/:
CHECK INTERFACE POSITION /AUTO/:
VARY POTENTIALS OR ACTIVITIES OR LNAC: /ACTIVITIES/:
ALLOW AUTOMATIC SWITCHING OF VARYING ELEMENT: /YES/:
SAVE WORKSPACE ON FILE (YES,NO,0-999) /YES/: 99
DEGREE OF IMPLICITY WHEN INTEGRATING PDES (AUTO, 0 -> 0.5 -> 1): /AUTO/:
MAX TIMESTEP CHANGE PER TIMESTEP: /2/:
USE FORCED STARTING VALUES IN EQUILIBRIUM CALCULATION /AUTO/:
ALWAYS CALCULATE STIFFNES MATRIX IN MULDIF /YES/:
CALCULATE RESIDUAL FOR DEPENDENT COMPONENT /NO/:
DIC>
DIC> @@
 DIC> 00 SAVE THE SETUP TO A NEW STORE FILE AND EXIT DIC> 00 DIC> save exd1 y
 DIC>
DIC> set-inter
 --OK---
```

exd1b-run

```
NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exd1b\run.DCM DIC>
DIC>
DIC> @@ exd1_run.DCM
DIC>
DIC> @@ READ THE SETUP FILE AND START THE SIMULATION
DIC> @@
DIC> go d-m
TIME STEP AT TIME 0.00000E+00
 *** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE

*** ENTERING M3C2 AS A DIFFUSION NONE PHASE

*** ENTERING M7C3 AS A DIFFUSION NONE PHASE
DIC> read exd1
 OK
DTC> sim
 DEGREE OF IMPLICITY SET TO EULER BACKWARD
 INFO: not solving in latticefixed frame of reference STARTING SIMULATION USING HOMOGENIZATION MODEL
INFO: PHASE WITH LIMITED SOLUBILITY OF ELEMENT(S) EXIST A FALLBACK PHASE ZZDICTRA_GHOST WILL BE DEFINED ALONG WITH THE FOLLOWING PARAMETERS:

G(ZZDICTRA_GHOST,C;0)-H298 (GRAPHITE,C;0)

G(ZZDICTRA_GHOST,CR;0)-H298 (BCC_A2,CR;0)

G(ZZDICTRA_GHOST,NI;0)-H298 (FCC_A1,NI;0)

L(ZZDICTRA_GHOST,C,CR;0)
 L(ZZDICTRA_GHOST,C,NI;0)
L(ZZDICTRA_GHOST,CR,NI;0)
  WARNING:M7C3 HAS NO VOLUME FRACTION, CREATING ONE
WARNING:M3C2 HAS NO VOLUME FRACTION, CREATING ONE
Starting time-step t0= 0.0000000 dt= 0.10000000E-06
                            0.10000000E-06 dt=
Starting time-step t0=
                                                     0 20000000E-06
                             0.30000000E-06 dt=
                                                     0.4000000E-06
Starting time-step t0=
Starting time-step t0=
                             0 70000000E-06 dt=
                                                     0 80000000E-06
Starting time-step t0=
                             0.15000000E-05 dt=
                                                     0.16000000E-05
Starting time-step t0=
                             0.31000000E-05 dt=
                                                     0.32000000E-05
Starting time-step t0=
                             0.63000000E-05 dt=
                                                     0.64000000E-05
                             0.12700000E-04 dt=
Starting time-step t0=
                                                     0.12800000E-04
Starting time-step t0=
                             0 25500000E-04 dt=
                                                     0 25600000E-04
Starting time-step
                             0.51100000E-04 dt=
                                                     0.51200000E-04
Starting time-step t0=
                             0.10230000E-03 dt=
                                                     0.10240000E-03
Starting time-step t0=
                             0.20470000E-03 dt=
                                                     0 20480000E-03
Starting time-step t0=
                             0.40950000E-03 dt=
                                                     0.40960000E-03
Starting time-step t0=
                             0 81910000E-03 dt=
                                                     0 81920000E-03
Starting time-step
                             0.16383000E-02 dt=
Starting time-step t0=
                             0.32767000E-02 dt=
                                                     0.32768000E-02
                            0.65535000E-02 dt=
0.13107100E-01 dt=
Starting time-step t0=
                                                     0.65536000E-02
Starting time-step t0=
                                                     0.13107200E-01
Starting time-step t0=
Starting time-step t0=
                             0 26214300E-01 dt=
                                                     0 26214400E-01
                              0.10485750
                                                dt= 0.52428800E-01
dt= 0.52428800E-01
Starting time-step t0=
Starting time-step t0=
                              0.15728630
Starting time-step t0=
                              0 20971510
                                                dt=
                                                       0 52428800E=01
Starting time-step t0=
Starting time-step t0=
                              0.31457270
                                                dt=
                                                       0.52428800E-01
Starting time-step t0=
Starting time-step t0=
                             0.36700150
0.47185910
                                                dt=
dt=
                                                       0.10485760
                                                       0.20971520
Starting time-step t0=
Starting time-step t0=
                              0.68157430
                                                dt=
                                                       0 41943040
                               1.1010047
                                                dt=
Starting time-step t0=
                               1.5204351
                                                dt=
                                                       0.83886080
                                                dt=
dt=
Starting time-step t0=
Starting time-step t0=
                               3.1981567
                                                       0.83886080
Starting time-step t0=
Starting time-step t0=
                               4.0370175
                                                dt=
                                                       0.83886080
                               4.8758783
                                                       0.83886080
                                                dt=
Starting time-step t0=
                               5.7147391
                                                dt=
                                                       0.83886080
                                                dt=
dt=
Starting time-step t0=
Starting time-step t0=
                               7.3924607
                                                       0.83886080
Starting time-step t0=
                               8.2313215
                                                dt=
                                                       0.83886080
                                                       0.83886080
Starting time-step t0=
                                                dt=
Starting time-step t0=
                               9.9090431
                                                dt=
                                                       0.83886080
                                                dt=
dt=
Starting time-step t0=
Starting time-step t0=
                               11.586765
                                                       0.83886080
Starting time-step t0=
                               12.425625
                                                dt=
                                                       0.83886080
                               13.264486
                                                dt=
                                                       0.83886080
Starting time-step t0=
Starting time-step t0=
                               14.103347
                                                dt=
                                                       0.83886080
Starting time-step t0=
                               14.942208
Starting time-step t0=
                               15.781069
                                                dt=
                                                       0.83886080
Starting time-step t0=
                               16.619929
                                                dt=
                                                       0.83886080
                               17.458790
                                                       0.83886080
Starting time-step t0=
                                                dt=
Starting time-step t0=
                               18 297651
                                                dt=
                                                       0.83886080
Starting time-step t0=
Starting time-step t0=
                               19.975373
                                                dt=
                                                       0.83886080
                                                       0.83886080
Starting time-step t0=
                               20.814233
                                                 dt=
                                                dt=
Starting time-step t0=
                               21.653094
                                                       0.83886080
Starting time-step t0=
Starting time-step t0=
                               22.491955
23.330816
                                                 dt=
                                                       0 83886080
                                                dt=
                                                       0.83886080
Starting time-step t0=
                               24.169677
                                                dt=
                                                       0.83886080
Starting time-step t0=
                                                dt=
Starting time-step t0=
                               25.847398
                                                       0.83886080
Starting time-step t0=
Starting time-step t0=
                               26.686259
27.525120
                                                 dt=
                                                       0.83886080
                                                dt=
                                                       0.83886080
Starting time-step t0=
                               28.363981
                                                dt=
                                                       0.83886080
Starting time-step t0=
                                                dt=
Starting time-step t0=
                               30.041702
                                                       0.83886080
                                                dt=
dt=
Starting time-step t0=
                               30.880563
                                                       0.83886080
Starting time-step t0=
                               31.719424
                                                       0.83886080
Starting time-step t0=
                               32.558285
                                                dt=
                                                       0.83886080
Starting time-step t0=
                                                dt=
Starting time-step t0=
                               34.236006
                                                       0.83886080
                               35.074867
35.913728
                                                dt=
dt=
                                                       0.83886080
Starting time-step t0=
Starting time-step t0=
                                                       0.83886080
Starting time-step t0=
                               36.752589
                                                dt=
                                                       0.83886080
                                                dt=
Starting time-step t0=
Starting time-step t0=
                               38.430310
                                                dt=
                                                        1.6777216
                                                dt=
dt=
                               40.108032
                                                        1.6777216
Starting time-step t0=
                               41.785753
Starting time-step t0=
Starting time-step t0=
                               43.463475
                                                dt=
                                                        1.6777216
                                                dt=
Starting time-step t0=
                                                        1.6777216
                               46.818918
                                                dt=
```

time-step	t0=	48.496640	dt=	1.6777216
time-step	t0=	50.174361	dt=	1.6777216
time-step	t0=	51.852083	dt=	1.6777216
time-step	t0=	53.529805	dt=	1.6777216
time-step	t0=	55.207526	dt=	1.6777216
time-step	t0=	56.885248	dt=	1.6777216
time-step	t0=	58.562969	dt=	1.6777216
time-step	t0=	60.240691	dt=	1.6777216
time-step	t0=	61.918413	dt=	1.6777216
time-step	t0=	63.596134	dt=	1.6777216
time-step	t0=	65.273856	dt=	1.6777216
time-step	t0=	66.951577	dt=	1.6777216
time-step	t0=	68.629299	dt=	1.6777216
time-step	t0=	70.307021	dt=	1.6777216
time-step	t0=	71.984742	dt=	1.6777216
time-step	t0=	73.662464	dt=	1.6777216
time-step	t0=	75.340185	dt=	1.6777216
time-step	t0=	77.017907	dt=	3.3554432
time-step	t0=	80.373350	dt=	3.3554432
time-step	t0=	83.728793	dt=	3.3554432
time-step	t0=	87.084237	dt=	3.3554432
time-step	t0=	90.439680	dt=	3.3554432
	time-step time-step	time-step t0=	time-step t0= 50.174361 time-step t0= 51.852083 time-step t0= 53.529805 time-step t0= 55.207526 time-step t0= 56.885248 time-step t0= 66.240691 time-step t0= 61.918413 time-step t0= 65.273856 time-step t0= 66.951577 time-step t0= 66.951577 time-step t0= 70.307021 time-step t0= 77.307021 time-step t0= 77.362464 time-step t0= 77.362464 time-step t0= 78.340185 time-step t0= 77.017907 time-step t0= 80.373350 time-step t0= 80.373350 time-step t0= 83.728793 time-step t0= 83.728793 time-step t0= 83.728793	time-step t0= 50.174361 dt= time-step t0= 51.852083 dt= time-step t0= 53.529805 dt= time-step t0= 55.207526 dt= time-step t0= 55.207526 dt= time-step t0= 56.885248 dt= time-step t0= 60.240691 dt= time-step t0= 61.918413 dt= time-step t0= 63.596134 dt= time-step t0= 65.273856 dt= time-step t0= 66.921577 dt= time-step t0= 66.622999 dt= time-step t0= 70.307021 dt= time-step t0= 77.307021 dt= time-step t0= 77.3662464 dt= time-step t0= 77.3662464 dt= time-step t0= 77.017907 dt= time-step t0= 77.017907 dt= time-step t0= 83.728793 dt= time-step t0= 83.728793 dt= time-step t0= 83.728793 dt=

output ignored...

... output resumed

DELETING TIME-RECORD FOR TIME 2287724.2 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 2294596.2 2301468.1 DELETING TIME-RECORD FOR TIME 2308340 1 DELETING TIME-RECORD FOR TIME 2315212.0 DELETING TIME-RECORD FOR TIME 2322084.0 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 2328955.9 DELETING TIME-RECORD FOR TIME 2342699.8 2349571.8 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 2356443.7 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 2363315. 2370187.6 DELETING TIME-RECORD FOR TIME 2377059.6 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 2390803.5 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 2397675.4 2404547.3 DELETING TIME-RECORD FOR TIME 2411419.3 2418291.2 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 2425163.2 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 2432035.1 2438907.1 DELETING TIME-RECORD FOR TIME 2445779.0 2452651.0 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 2459522 9 DELETING TIME RECORD FOR TIME DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 2466394.9 2473266.8 DELETING TIME-RECORD FOR TIME 2480138.8 DELETING TIME-RECORD FOR TIME 2487010.7 DELETING TIME-RECORD FOR TIME 2493882 1 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 2507626.6 DELETING TIME-RECORD FOR TIME 2514498.5 DELETING TIME-RECORD FOR TIME 2521370.5 DELETING TIME-RECORD FOR TIME 2528242 4 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 2541986.3 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 2548858.3 2555730.2 DELETING TIME-RECORD FOR TIME 2562602.1 2569474.1 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 2576346.0 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 2583218.0 2593525.9 DELETING TIME-RECORD FOR TIME 2600397.9 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 2614141.8 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 2621013.7 2627885.6 DELETING TIME-RECORD FOR TIME 2634757.6 DELETING TIME-RECORD FOR TIME 2641629.5 DELETING TIME-RECORD FOR TIME 2648501.5 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 2655373.4 2662245.4 DELETING TIME-RECORD FOR TIME 2669117.3 DELETING TIME-RECORD FOR TIME 2675989.3 DELETING TIME-RECORD FOR TIME 2682861.2 DELETING TIME-RECORD FOR TIME 2689733.2 DELETING TIME-RECORD FOR TIME 2696605.1 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 2703477.1 2710349.0 DELETING TIME-RECORD FOR TIME 2717221.0 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 2730964.9 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 2737836.8 2744708.8 DELETING TIME-RECORD FOR TIME 2758452.7 DELETING TIME-RECORD FOR TIME 2772196.6 DELETING TIME-RECORD FOR TIME 2785940.4 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 2813428.2 DELETING TIME-RECORD FOR TIME 2827172. DELETING TIME-RECORD FOR TIME 2840916.0 DELETING TIME-RECORD FOR TIME 2854659.9 DELETING TIME-RECORD FOR TIME 2868403.8 DELETING TIME-RECORD FOR TIME 2875275.8 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 2882147. 2895891.6 DELETING TIME-RECORD FOR TIME 2909635.5 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 2937123.3 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 2950867.2 2964611.1 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 2978355.0 2992098.9

```
DELETING TIME-RECORD FOR TIME
                                                     3005842.8
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                     3019586.7
3033330.6
DELETING TIME-RECORD FOR TIME
                                                      3047074.5
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                      3060818.4
                                                      3074562.2
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                      3088306.1
                                                      3102050.0
DELETING TIME-RECORD FOR TIME
                                                      3115793 9
DELETING TIME RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                      3143281.7
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                     3157025.6
3170769.5
                                                     3184513.4
3198257.3
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                      3212001.2
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                     3225745.1
3239489.0
DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                      3253232.9
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                      3280720.7
                                                     3294464.6
3308208.5
DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                     3321952.4
3335696.3
DELETING TIME-RECORD FOR TIME
                                                      3349440.2
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                     3363184.1
3376927.9
DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                      3390671.8
DELETING TIME-RECORD FOR TIME
                                                      3418159.6
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                     3431903.5
3445647.4
DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                      3459391.3
                                                      3473135.2
DELETING TIME-RECORD FOR TIME
                                                      3486879.1
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                      3500623.0
                                                      3514366.9
DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                     3528110.8
3541854.7
DELETING TIME-RECORD FOR TIME
                                                      3555598.6
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                      3562470.5
                                                      3567624.5
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                      3572349.0
KEEPING TIME-RECORD FOR TIME
                                                   3596400.8
AND FOR TIME
                                                    3600000.0
AND FOR TIME 3600000.0

WORKSPACE RECLAIMED

INTERPOLATION SCHEME USED THIS FRACTION OF
THE ALLOCATED MEMORY: 5.119531976024998E-002
EFFICIENCY FACTOR: 65.7005540833534
DEALLOCATING
TIMESTEP AT
                     3600000.00
                                              SELECTED
```

DIC>
DIC> set-inter
--OK--DIC>

exd1b-plot

POST-1: s-s-s y n 0 0.4

POST-1: app n
POST-1:
POST-1: set-tit d1.2
POST-1: plot

```
DIC>About
NO SUCH COMMAND, USE HELP
 DIC>DIC>MACRO exd1b\plot.DCM DIC>
DIC>
DIC> @@ exd1_plot.DCM
DIC>
DIC> 00 FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE exd1b
DIC>
DIC> @@
DIC> 00
DIC> 00 GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> 00
DIC> 00 d-m
TIME STEP AT TIME 3.60000E+06
*** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE
*** ENTERING M3C2 AS A DIFFUSION NONE PHASE
*** ENTERING M7C3 AS A DIFFUSION NONE PHASE
DIC> read exd1
OK
DIC>
DIC> @@
DIC> @@
DIC> @@ GO TO THE POST PROCESSOR
DIC> @@
DIC> post
POST PROCESSOR VERSION 1.7
Implemented by Bjorn Jonsson
POST-1: @@
POST-1: 00 PLOT THE TOTAL CARBON CONCENTRATION PROFILE POST-1: 00
POST-1: s-d-a y w-p c
POST-1: s-d-a x distance global
INFO: Distance is set as independent variable POST-1: s-s-s x n 0 2e-3
POST-1: s-p-c time 3600000
POST-1:
POST-1: app y exd1.exp
PROLOGUE NUMBER: /0/: 1
DATASET NUMBER(s): /-1/: 1
POST-1: 00
POST-1: @@ SET A TITLE ON THE PLOT POST-1: @@
 POST-1: set-tit d1.1
 POST-1:
 POST-1: plot
                                                                d1.1
          3.0 -
                                                                       \triangle Bongartz et al.
                             Δ
          2.0
      Mass percent C
          1.5
                                             Δ
                                                   Δ
          1.0
                                                         Δ
                                                              Δ
          0.5
           0.00000 0.00020 0.00040 0.00060 0.00080 0.00100 0.00120 0.00140 0.00160 0.00180 0.00200
                                                                  Distance
  POST-1:
POST-1:
POST-1:
POST-1:@?<_hit_return_to_continue_>
POST-1: @@
POST-1: @@ PLOT THE AMOUNT OF CARBIDES FORMED POST-1: @@ POST-1: s-d-a y npm(*)
```


POST-1:

Example exd2a

Diffusion couple of Fe-Ni-Cr alloys: Step-profile

This example calculates the interdiffusion in a diffusion couple between a two-phase (FCC+BCC) and a single-phase (FCC) Fe-Ni-Cr alloy. Initially it uses a step profile. This simulation can be run with either the DISPERSED SYSTEM MODEL or the HOMOGENIZATION MODEL. In this example the DISPERSED SYSTEM MODEL is used.

This case is from A. Engström: Scand. J. Met., vol. 24, 1995, pp.12-20.

T = 1473 K

4E-3

SYS: About

```
Thermo-Calc / DICTRA is software package for calculation of phase diagrams, simulation of phase transformation kinetics and much more.
 Copyright Foundation for Computational Thermodynamics,
 Stockholm, Sweden
 Software running on Windows 64-bit wordlength
 Compiler: unknown compiler
License library version: 9.7.0.0036
Linked: Fri Oct 18 11:32:56 2024
SYS:SYS:MACRO exd2a\setup.DCM
SYS: @@
SYS: @@ Diffusion in dispersed systems.
SYS: 00 Diffusion in dispersed systems.

SYS: 00 Diffusion couple of Fe-Cr-Ni alloys: Dispersed system model

SYS: 00 This example calculates the interdiffusion in a diffusion

SYS: 00 couple between a two-phase (FCC+BCC) and a single-phase (FCC)

SYS: 00 Fe-Ni-Cr alloy. This case is from A. Engstrå¶m: Scand. J. Met., v. 24,
{\tt SYS}: @@ 1995, pp.12-20. This simulation can be run with either the DISPERSED {\tt SYS}: @@ SYSTEM MODEL or the HOMOGENIZATION MODEL.
{\tt SYS}\colon 00 In this example the DISPERSED SYSTEM MODEL is used, which requires {\tt SYS}\colon 00 that the default HOMOGENIZATION MODEL is disabled.
SYS: @@ With the DISPERSED SYSTEM MODEL the command SYS: @@ ENTER_LABYRINTH_FUNCTION is used to take into account the
SYS: @@ impeding effect of dispersed phases on long-range diffusion. SYS: @@ For the HOMOGENIZATION MODEL the command
SYS: @@ ENTER_HOMOGENIZATION_FUNCTION should be used.
SYS: -
 NO SUCH COMMAND, USE HELP
SYS:
SYS: 00 exd2_setup.DCM
SYS:
SYS: @@
SYS: @@ RETRIEVE DATA FROM THE DATABASE
SYS: @@
SYS: go da
15:13:08,706 [Thread-0] INFO LicenseManager: Initializing user: jenkins.integrationtest@thermocalc.se
15:13:08,719 [Thread-0] INFO LicenseController: Running License Spring in DEV environment.
15:13:09,777 [Thread-0] INFO LicenseManager: There is an activated standalone license for jenkins.integrationtest@thermocalc.se for TC-
 THERMODYNAMIC DATABASE module
 C:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples\databases\da
 Current database: Steels/Fe-Alloys v12.0
DICTRA_FCC_A1 REJECTED

TDB_TCFE12: sw fedemo

Current databases
 Current database: Iron Demo Database v5.0
                                      DEFINED
TDB_FEDEMO: def-sys fe ni cr
 FΕ
    DEFINED
TDB_FEDEMO: rej ph * all
 BCC_A2
CUB_A13
HCP_A3
                                 CBCC_A12
FCC_A1
LAVES_PHASE_C14
                                                                  CHI A12
                                                                   LIQUID:L
 SIGMA REJECTED
TDB_FEDEMO: res ph fcc,bcc
                                BCC_A2 RESTORED
FCC_A1
TDB_FEDEMO: get
15:13:10,867 [Thread-0] INFO JavaWrapper: *** Invoking Gibbs Energy System v6 *** REINITIATING GES .....
 ELEMENTS .....
 SPECIES .....
 PARAMETERS ...
 FUNCTIONS ....
 Use the command LIST REFERENCES to see the list of references for assessed data
 -ok-
TDB_FEDEMO:
TDB_FEDEMO: 00 TDB_FEDEMO: 00 SWITCH TO A MOBILITY DATABASE TO RETRIEVE MOBILITY DATA
TDB_FEDEMO: @@
TDB_FEDEMO: app mfedemo
 Current database: Fe-Alloys Mobility demo database v4.0
 VA DEFINED
APP: def-sys fe ni cr
 FE
                                 NT
                                                                   CR
    DEFINED
APP: rej ph * all BCC_A2
                                 FCC_A1
                                                                  LIOUID:L
    REJECTED
APP: get
ELEMENTS ....
                                 BCC A2 RESTORED
 SPECIES .....
 PHASES ......
PARAMETERS ...
 FUNCTIONS ....
 Use the command LIST_REFERENCES to see the list of references for assessed data
 -ok-
APP:
APP: @@
APP: @@ ENTER THE DICTRA MONITOR
APP: @@
APP: go d-m
15:13:11,406 [Thread-0] INFO StandaloneLicenseController: Checking out license for: Diffusion (DICTRA) NO TIME STEP DEFINED
```

```
DIC>
 DIC> @@
DIC> @@ ENTER THE GLOBAL CONDITION T
DIC> set-cond glob T 0 1473; * N
DIC> @@
DIC> @@ ENTER THE REGION fer
DIC> @@
DIC> enter-region fer
DIC>
DIC>
DIC> @@
DIC> 00 ENTER A DOUBLE GEOMETRICAL GRID INTO THE REGION
DIC> 00 THIS GIVES A SHORT DISTANCE BETWEEN THE GRIDPOINTS
DIC> 00 IN THE MIDDLE OF THE REGION WHERE THE INITIAL INTERFACE IS
DIC> enter-grid fer
WIDTH OF REGION /1/: 4e-3
TYPE /LINEAR/: double
NUMBER OF POINTS /50/: 200
VALUE OF R IN THE GEOMETRICAL SERIE FOR LOWER PART OF REGION: 0.97 VALUE OF R IN THE GEOMETRICAL SERIE FOR UPPER PART OF REGION: 1.03093
DTCS
DIC> @@
DIC> 00 ENTER A MATRIX PHASE IN THE REGION DIC> 00
ACTIVE OR INACTIVE PHASE /ACTIVE/: act fer matrix fcc
 DIC>
DIC> @@
 DIC> @@ ENTER THE START COMPOSITION FOR THE MATRIX PHASE FROM FILES
DIC> @@
 DIC> enter-composition
PREGION NAME: /FER/: fer
PHASE NAME: /FCC_AI/: fcc
DEPENDENT COMPONENT ? /NI/: fc
COMPOSITION TYPE /MOLE_FRACTION/: w-p
PROFILE FOR /CR/: cr
TYPE /LINEAR/: read d2cr.dat
PROFILE FOR /NI/: ni
TYPE /LINEAR/: read d2ni.dat
DIC> @@
 DIC> 00 ENTER FERRITE AS THE SPHEROIDAL PHASE IN THE REGION.
DIC> 00 SINCE THE FRACTION OF FERRITE IS SMALL, AND THESE APPEAR DIC> 00 AS ISOLATED PARTICLES, FERRITE IS ENTERED AS A SPHEROIDAL PHASE
DIC> 00
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /FER/: fer
PHASE TYPE /MATRIX/: sph
PHASE NAME: /NONE/: bcc
  INFO: EQUILIBRIUM COMPOSITION AND FRACTION OF SPHEROID PHASES USED AS DEFAULT
DIC> @@
DIC> @@ ENTER A COMPOSITION FOR THE SPHEROIDAL PHASE
 DIC> @@ USE THE EQUILIBRIUM VALUE
DIC> @@
DIC> enter-composition
REGION NAME : /FER/: fer
PHASE NAME: /FCC_A1/: bcc
USE EQUILIBRIUM VALUE /Y/: y
DIC>
 DIC> @@
DIC> 00 ENTER A LABYRINTH FACTOR
DIC> 00 IN THIS CASE THE LOW DIFFUSIVITY PHASE IS THE MATRIX AND THE
DIC> 00 "EFFECTIVE" DIFFUSIVITY IN THE AUSTENITE+FERRITE TWO-PHASE
DIC> 00 REGION IS EXPECTED TO BE HIGHER THAN THE DIFFUSIVITY IN THE
DIC> @@ AUSTENITE.
DIC> enter-lab
 REGION NAME : fer
 f(T,P,VOLFR,X) = 1+3*(1-volfr)/volfr;
DIC> @@
 DIC> @@ SET THE SIMULATION TIME AND OTHER SIMULATION PARAMETERS
DIC> 00
DIC> set-simulation-time
END TIME FOR INTEGRATION /.1/: 720000
AUTOMATIC TIMESTEP CONTROL /YES/: YES
MAX TIMESTEP DURING INTEGRATION /72000/: 5000
INITIAL TIMESTEP: /1E-07/:
 SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DIC>
 DIC> set-simulation-condition
NSOLA PRINT CONTROL : /0/:
FLUX CORRECTION FACTOR : /1/:
NUMBER OF DELTA TIMESTEPS IN CALLING MULDIF: /2/:
CHECK INTERFACE POSITION /AUTO/:
CHECK INTERFACE POSITION /AUTO/:
VARY POTENTIALS OR ACTIVITIES OR LNAC : /ACTIVITIES/:
ALLOW AUTOMATIC SWITCHING OF VARYING ELEMENT : /YES/:
SAVE WORKSPACE ON FILE (YES,NO,0-999) /YES/: 99
DEGREE OF IMPLICITY WHEN INTEGRATING PDES (AUTO, 0 -> 0.5 -> 1): /AUTO/:
MAX TIMESTEP CHANGE PER TIMESTEP : /2/:
USE FORCED STARTING VALUES IN EQUILIBRIUM CALCULATION /AUTO/:
ALWAYS CALCULATE STIFFNES MATRIX IN MULDIF /YES/:
CALCULATE RESIDUAL FOR DEPENDENT COMPONENT /NO/:
DIC> @@ BY DEFAULT THE "HOMOGENIZATION MODEL" IS USED WHEN MULTIPLE PHASES
DIC> @@ ARE ENTERED IN A SINGLE REGION. THE HOMOGENIZATION MODEL, NEEDS TO P
\overline{\text{DIC}}> 00 ARE ENTERED IN A SINGLE REGION. THE HOMOGENIZATION MODEL NEEDS TO BE \overline{\text{DIC}}> 00 DISABLED FOR THIS EXAMPLE.
DIC> ho n
  HOMOGENIZATION DISABLED
DTC>
DIC> @@
DIC> 00 SAVE THE SET UP TO A NEW STORE FILE AND EXIT DIC> 00
DTC>
DIC> save exd2 v
DTC>
```

DIC> set-inter --OK---DIC>

```
NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exd2a\run.DCM DIC>
DIC>
DIC> @@ exd2_run.DCM
DIC>
DIC> @@ FILE FOR RUNNING THE SIMULATION OF EXAMPLE D2
DIC> @@
DIC>
DIC> @@
\overline{\text{DIC}}\text{>}\ \mbox{\footnotemark}{0.0} Read the setup from file and start the simulation \overline{\text{DIC}}\text{>}\ \mbox{\footnotemark}{0.0}
DTC>
DIC> ao d-m
 TIME STEP AT TIME 0.00000E+00
DIC> read exd2
DIC> sim
 DEGREE OF IMPLICITY SET TO TRAPEZOIDAL RULE
U-FRACTION IN SYSTEM: CR = .297842647391914 FE = .517227320517284
                                                                                                                                    NI = .184930032090802
                                                                                                                     TOTAL SIZE OF SYSTEM: .004 [m]
WARNING:BCC_A2 HAS NO VOLUME FRACTION, CREATING ONE
U-FRACTION IN SYSTEM: CR = .297842647391914 FE = .517227320517284
NI = .184930032090802

TOTAL SIZE OF SYSTEM: .004 [m]
TIME = 0.100000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.00
U-FRACTION IN SYSTEM: CR = .29784264735407 FE = .517227320607451
                                                                                                                                     NI = .184930032038479
                                                                                                                     TOTAL SIZE OF SYSTEM: .004 [m]
 CPU time used in timestep 0 seconds
TIME = 0.10010000E-03 DT = 0.10000000E-03 SUM OF SQUARES = 0.0000000
U-FRACTION IN SYSTEM: CR = .297842648053526 FE = .51722731894091
0.0000000
 TOTAL SIZE OF SYSTEM: .004 [m]

CPU time used in timestep

TIME = 271.88387 DT = 271.48377 SUM OF SQUARES = 0.00

-FRACTION IN SYSTEM: CR = .297847795079484 FE = .51721624145468

NI = .184935963465835

TOTAL SIZE OF SYSTEM: .004 [m]
                                                                                                  0.0000000
0.0000000
                                                                                                  0.0000000
                                                                                                  0.0000000
                                                                                                  0.0000000
 TOTAL SIZE OF SYSTEM: .004 [m]

CPU time used in timestep

TIME = 13416.397 DT = 5000.0000 SUM OF SQUARES = 0.000

U-FRACTION IN SYSTEM: CR = .297851736213304 FE = .517209776489761
                                                                                                  0.0000000
 0.0000000
0.0000000
 0.0000000
 ON - .29/852026282483
NI = .184938509876335
TOTAL SIZE OF SYSTEM: .004 [m]
 CPU time used in timestep 0 seconds

TIME = 33416.397 DT = 5000.0000 SUM OF SQUARES = 0.000

U-FRACTION IN SYSTEM: CR = .297852041585337 FE = .517209416417482
                                                                                                 0.0000000
 CPU time used in timestep 1 seconds
TIME = 38416.397 DT = 5000.0000 SUM OF SQUARES = 0.0000000
U-FRACTION IN SYSTEM: CR = .297852041308091 FE = .517209383465791
 . C_N = .297852041308091 NI = .184938575226117 TOTAL SIZE OF SYSTEM: .004 [m]
 CPU time used in timestep 0 seconds
TIME = 43416.397 DT = 5000.0000 SUM OF SQUARES = 0.000
U-FRACTION IN SYSTEM: CR = .297852052435151 FE = .517209358433594
                                                                                                  0.0000000
 . CA = .29/852052435151
NI = .184938589131255
TOTAL SIZE OF SYSTEM: .004 [m]
 CPU time used in timestep 0 seconds
TIME = 48416.397 DT = 5000.0000 SUM OF SQUARES = 0.000
U-FRACTION IN SYSTEM: CR = .297852064191602 FE = .517209339986068
 .. C_{\rm K} = .297852064191602 NI = .18493859582233 TOTAL SIZE OF SYSTEM: .004 [m] CPU time very ...
 CPU time used in timestep 0 seconds

TIME = 53416.397 DT = 5000.0000 SUM OF SQUARES = 0.000

U-FRACTION IN SYSTEM: CR = .297852067109212 FE = .517209327487742
 NI = .184938605403047
TOTAL SIZE OF SYSTEM: .004 [m]
```

```
TIME = 58416.397 DT = 5000.0000 SUM OF SQUARES = 0.000
U-FRACTION IN SYSTEM: CR = .297852077817661 FE = .517209313736656
NI = .184938608445684

TOTAL SIZE OF SYSTEM: .004 [m]
CPU time used in timeter
                                                                                                             0.0000000
 TOTAL SIZE OF SYSTEM: .004 [m]
  CPU time used in timestep
FIME = 73416.397 DT = 5000.0000
                                                                                        seconds
                                                                        SUM OF SQUARES = 0.0000000
output ignored...
... output resumed
U-FRACTION IN SYSTEM: CR = .297852053448001 FE = .517209174262072 NI = .184938772289927 TOTAL SIZE OF SYSTEM: .004 [m]
0 seconds
U-FRACTION IN SYSTEM: CR = .297852057961433 FE = .517209173665085
NI = .184938768373483

TOTAL SIZE OF SYSTEM: .004 [m]
CPU time used in timestar
 0 seconds
U-FRACTION IN SYSTEM: CR = .297852061283561 FE = .51720917357851
NI = .184938765137929

TOTAL SIZE OF SYSTEM: .004 [m]
 1 seconds
U-FRACTION IN SYSTEM: CR = .297852063346543 FE = .517209173965083
NI = .184938762688374

TOTAL SIZE OF SYSTEM: .004 [m]
 CPU time used in timestep 0 seconds

TIME = 623416.40 DT = 5000.0000 SUM OF SQUARES = 0.0000000

U-FRACTION IN SYSTEM: CR = .297852063998468 FE = .517209174903867
 NI = .184938761097665
TOTAL SIZE OF SYSTEM: .004 [m]
TIME = 628416.40 DT = 5000.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .297852063172889 FE = .517209176410902 NI = .184938760416209

TOTAL SIZE OF SYSTEM: .004 [m]
CPU time used in timester
TJMF = .001
 CPU time used in timestep 0 seconds
TIME = 633416.40 DT = 5000.0000 SUM OF SQUARES = 0.0000000
U-FRACTION IN SYSTEM: CR = .297852061575864 FE = .517209175951883
 -.. cimestep 0 seconds
TIME = 638416.40 DT = 5000.0000 SUM OF SQUARES = 0.0000000
U-FRACTION IN SYSTEM: CR = .297852058357297 FE = .517209176189083
NI = .18493876545362
TOTAL SIZE OF SYSTEM: .004 [m]
CPU time used in +i--
 -.. cimestep 0 seconds
TIME = 643416.40 DT = 5000.0000 SUM OF SQUARES = 0.0000000
U-FRACTION IN SYSTEM: CR = .297852053514545 FE = .517209177039924
NI = .184938769445531
TOTAL SIZE OF SYSTEM: .004 [m]
CPU time used in +i--
 ... CIMESCEP 1 seconds
TIME = 648416.40 DT = 5000.0000 SUM OF SQUARES = 0.0000000
U-FRACTION IN SYSTEM: CR = .297852047033294 FE = .517209178463695
NI = .184938774503011
TOTAL SIZE OF SYSTEM: .004 [m]
CPU time used in **:
 ... CIMESCEP 0 seconds
TIME = 653416.40 DT = 5000.0000 SUM OF SQUARES = 0.0000000
U-FRACTION IN SYSTEM: CR = .297852038894178 FE = .517209180441844
NI = .184938780663978
TOTAL SIZE OF SYSTEM: .004 [m]
CPU time used in **:
 TIME = 658416.40 DT = 5000.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .297852029075284 FE = .517209182967747 NI = .184938787956969

TOTAL SIZE OF SYSTEM: .004 [m]

CPU time used in +in-
TIME = 668416.40 DT = 5000.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .297852026842133 FE = .517209184685555 NI = .184938788472312
 TOTAL SIZE OF SYSTEM: .004 [m]
CPU time used in timestep
TIME = 673416.40 DT = 5
                                                                            SUM OF SQUARES = 0.00
8 FE = .517209184531521
                                                   5000.0000
                                                                                                              0.0000000
 U-FRACTION IN SYSTEM: CR = .297852032363208
NI = .184938783105271
TOTAL SIZE OF SYSTEM: .004 [m]
                                                 .184938783105271
 0.0000000
 TOTAL SIZE OF SYSTEM: .004 [m]
CPU time used in timestep
TIME = 683416.40 DT = 5
 U-FRACTION IN SYSTEM: CR = .297852046052987 FE = .517209180294763

TOTAL SIZE OF SYSTEM: .004 [m]
                                                                                                              0.0000000
 TOTAL SIZE OF SYSTEM: .004 [m]

CPU time used in timestep

TIME = 688416.40 DT = 5000.0000

U-FRACTION IN SYSTEM: CR = .297852052167002
                                                                                 0 seconds
                                       DT = 5000.0000 SUM OF SQUARES = 0.0
CR = .297852052167002 FE = .51720917880267
NI = .184938769030328
                                                                                                          0.0000000
 0.0000000
```

```
0.0000000
                                                                             0 0000000
                                                                             0 0000000
                                                                             0 0000000
                                                                             0 0000000
                                                                             0 0000000
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                       0.10000000E-06
0.10010000E-03
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                         468416.40
708416.40
                                         713416.40
 KEEPING TIME-RECORD FOR TIME
                                        718416.40
 AND FOR TIME
WORKSPACE RECLAIMED
                                       720000.00
 TIMESTEP AT 720000.000 SELECTED
DTC>
DIC>
DTC>
DIC>
DIC> set-inter
```

--OK---

exd2a-plot


```
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:@?<_hit_return_to_continue_>
POST-1:@@
POST-1:@@
POST-1:@@ NOW PLOT HOW THE AVERAGE Cr-CONCENTRATION VARIES WITH DISTANCE
POST-1: s-d-a y w-p cr
POST-1: s-p-c time last
POST-1: set-tit Figure D2.2
POST-1: plot
```

```
40

35-

20-

20-

0,0000 0,0005 0,0010 0,0015 0,0020 0,0025 0,0030 0,0035 0,0040

Distance
```

```
POST-1:
POST-1:
POST-1:
POST-1:
POST-1: @?
POST-1: @?
POST-1: @@
POST-1: @@
POST-1: @@
POST-1: @@
POST-1: @@
POST-1: ##
P
```

Figure D2.3

```
50

45

40

35

30

25

10

5

0,00100 0,00120 0,00140 0,00160 0,00180 0,00200 0,00220 0,00240 0,00260 0,00280 0,00300

Distance
```

```
POST-1:
POST-1:
POST-1:
POST-1:
POST-1: @@
POST-1: @@
POST-1: @@
POST-1: @@
POST-1: @@
POST-1: @@
POST-1: #
POST-1: s-d-a y w-p ni
POST-1: app y exd2.exp
PROLOGUE NUMBER: /1/: 1
DATASET NUMBER(s): /-1/: 5
POST-1:
POST-1: s-s-s x n 10e-4 30e-4
POST-1: s-s-s y n 0 40
POST-1: plot
```

```
35-
30-
IV 25-
10-
0.00100 0.00120 0.00140 0.00160 0.00180 0.00200 0.00220 0.00240 0.00260 0.00280 0.00300

Distance
```

Figure D2.5


```
POST-1:
POST-1:
POST-1:
POST-1:
POST-1: set-interactive
--OK---
POST-1:
```


Example exd2b

Diffusion couple of Fe-Ni-Cr alloys: Homogenization model

This example calculates the interdiffusion in a diffusion couple between a two-phase (FCC+BCC) and a single-phase (FCC) Fe-Ni-Cr alloy. Initially it has a step profile. It is similar to exd2a except the default HOMOGENIZATION MODEL is used and then ENTER_HOMOGENIZATION_FUNCTION is used instead of ENTER_LABYRINTH_FUNCTION.

This case is from A. Engström: Scand. J. Met., vol. 24, 1995, pp.12-20.

$$T = 1473 K$$

4E-3

exd2b-setup

SYS: About

```
Thermo-Calc / DICTRA is software package for calculation of phase diagrams, simulation of phase transformation kinetics and much more.
  Copyright Foundation for Computational Thermodynamics,
  Stockholm, Sweden
  Software running on Windows 64-bit wordlength
  Compiler: unknown compiler
License library version: 9.7.0.0036
Linked: Fri Oct 18 11:32:56 2024
SYS:SYS:MACRO exd2b\setup.DCM
SYS: i>;@@
  NO SUCH COMMAND, USE HELP
SYS: @@ Diffusion in dispersed systems.
{\tt SYS:} @@ Diffusion couple of Fe-Cr-Ni alloys: Homogenization model {\tt SYS:} @@ This example calculates the interdiffusion in a diffusion
SYS: 00 couple between a two-phase (FCC+BCC) and a single-phase (FCC) SYS: 00 Fe-Ni-Cr alloy. This case is from A. Engstrålm: Scand. J. Met., SYS: 00 v. 24, 1995, pp.12-20. This simulation can be run with either SYS: 00 the DISPERSED SYSTEM MODEL or the HOMOGENIZATION MODEL.
SYS: @@ Here the default HOMOGENIZATION MODEL is used and then
SYS: 00 ENTER HOMOGENIZATION FUNCTION should be used instead of SYS: 00 ENTER_LABYRINTH_FUNCTION.
SYS: --
  NO SUCH COMMAND, USE HELP
SYS:
SYS: @@
SYS: @@ RETRIEVE DATA FROM THE DATABASE
SYS: @@
SYS: go da
15:16:28,186 [Thread-0] INFO LicenseManager: Initializing user: jenkins.integrationtest@thermocalc.se
15:16:28,189 [Thread-0] INFO LicenseController: Running License Spring in DEV environment.
15:16:29,285 [Thread-0] INFO LicenseManager: There is an activated standalone license for jenkins.integrationtest@thermocalc.se for TC-
Application
   THERMODYNAMIC DATABASE module
  Database folder:
  {\tt C:\jenkins\workspace\dev\_pipeline\generate\_dictra\_console\_examples\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\databases\data
  Current database: Steels/Fe-Allovs v12.0
                                                         /- DEFINED
DICTRA_FCC_A1 REJECTED
TDB_TCFE12: sw fedemo
  Current database: Iron Demo Database v5.0
                                                         /- DEFINED
TDB_FEDEMO: def-sys fe ni cr
  FE
                                                                                                               CR
      DEFINED
TDB_FEDEMO: rej ph * all
BCC_A2
CUB_A13
                                                         CBCC_A12
FCC_A1
LAVES_PHASE_C14
                                                                                                                CHT A12
                                                                                                                GAS:G
LIQUID:L
  HCP A3
SIGMA REJECTED

TDB_FEDEMO: res ph fcc,bcc
FCC_A1
TDB_FEDEMO: get
                                                         BCC_A2 RESTORED
T5:16:30,365 [Thread-0] INFO JavaWrapper: *** Invoking Gibbs Energy System v6 *** REINITIATING GES .....
  ELEMENTS .....
  SPECIES .....
  PARAMETERS ..
  Use the command LIST_REFERENCES to see the list of references for assessed data
  -OK-
TDB_FEDEMO
TDB_FEDEMO: 00 TDB_FEDEMO: 00 SWITCH TO A MOBILITY DATABASE TO RETRIEVE MOBILITY DATA
TDB_FEDEMO: @@
TDB FEDEMO: app mfedemo
  Current database: Fe-Alloys Mobility demo database v4.0
  VA DEFINED
APP: def-sys fe ni cr
  FE
                                                         NT
                                                                                                                CR
      DEFINED
APP: rej ph * all
BCC_A2
                                                         FCC_A1
                                                                                                             LIQUID:L
      REJECTED
APP: res ph fcc,bcc
                                                        BCC_A2 RESTORED
  FCC A1
APP: get
ELEMENTS ....
  SPECIES .....
PHASES .....
PARAMETERS ...
  Use the command LIST_REFERENCES to see the list of references for assessed data
  -0K-
APP:
APP: @@
APP: @@ ENTER THE DICTRA MONITOR
APP: @@
APP: go d-m
15:16:31,018 [Thread-0] INFO StandaloneLicenseController: Checking out license for: Diffusion (DICTRA) NO TIME STEP DEFINED
DIC>
DIC> @@
DIC> @@ ENTER THE GLOBAL CONDITION T
DIC> set-cond glob T 0 1473; * N
```

```
DIC>
DIC> @@
DIC> @@ ENTER THE REGION fer
DIC> enter-region fer
DIC>
DIC> @@
DIC> 00 ENTER A DOUBLE-GEOMETRICAL GRID INTO THE REGION
DIC> 00 THIS GIVES A SHORT DISTANCE BETWEEN THE GRIDPOINTS
DIC> 00 IN THE MIDDLE OF THE REGION WHERE THE INITIAL INTERFACE IS
DIC> 00
DIC> enter-grid fer
WIDTH OF REGION /1/: 4e-3
TYPE /LINEAR/: double
NUMBER OF POINTS /50/: 200
VALUE OF R IN THE GEOMETRICAL SERIE FOR LOWER PART OF REGION: 0.97 VALUE OF R IN THE GEOMETRICAL SERIE FOR UPPER PART OF REGION: 1.03093
DIC> @@
DIC> @@ ENTER A MATRIX PHASE IN THE REGION
DIC> 00
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: act fer matrix fcc
DIC>
DIC> @@
DIC> @@ ENTER THE START COMPOSITION FOR THE MATRIX PHASE FROM FILES
DIC> @@
DIC> enter-composition
DICS enter-composition
REGION NAME: /FER/: fer
PHASE NAME: /FCC_A1/: fcc
DEPENDENT COMPONENT ? /NI/: fe
COMPOSITION TYPE /MOLE_FRACTION/: w-p
PROFILE FOR /CR/: cr
TYPE /LINEAR/: read d2cr.dat
PROFILE FOR /NI/: ni
TYPE /LINEAR/: read d2ni.dat
DIC>
DIC> @@
DIC> @@ ENTER FERRITE AS THE SPHEROIDAL PHASE IN THE REGION
DIC> 00 SINCE THE FRACTION OF FERRITE IS SMALL, AND THESE APPEAR
DIC> 00 AS ISOLATED PARTICLES, FERRITE IS ENTERED AS A SPHEROIDAL PHASE
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /FER/: fer
PHASE TYPE /MATRIX/: sph
PHASE NAME: /NONE/: bcc
INFO: EQUILIBRIUM COMPOSITION AND FRACTION OF SPHEROID PHASES USED AS DEFAULT
DIC>
DIC> @@
DIC> 00 ENTER THE COMPOSITION FOR THE SPHEROIDAL PHASE DIC> 00 USE THE EQUILIBRIUM VALUE
DIC> @@
DIC> enter-composition
PREGION NAME: /FER/: fer
PHASE NAME: /FCC_A1/: bcc
USE EQUILIBRIUM VALUE /Y/: y
DIC>
DIC> @@ SELECT A HOMOGENIZATION FUNCTION
DIC> @@ IN THIS CASE THE LOWER HASHIN-SHTRIKMAN BOUND
DIC> en-ho 1
 SELECTED FUNCTION IS HASHIN-SHTRIKMAN BOUND: GENERAL LOWER
DIC>
DIC> @@ SET THE SIMULATION TIME AND OTHER SIMULATION PARAMETERS
DIC> @@
DIC> set-simulation-time
DICS set-simulation-time end time for integration /.1/: 720000 AUTOMATIC TIMESTEP CONTROL /YES/: YES MAX TIMESTEP DURING INTEGRATION /72000/: INITIAL TIMESTEP : /1E-07/: SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DIC>
DIC> set-simulation-condition
DIC> set-simulation-condition

NSO1A PRINT CONTROL : /0/: 0

FLUX CORRECTION FACTOR : /1/: 1

NUMBER OF DELTA TIMESTEPS IN CALLING MULDIF: /2/: 2

CHECK INTERFACE POSITION /AUTO/: n

VARY POTENTIALS OR ACTIVITIES OR LNAC : /ACTIVITIES/: act

ALLOW AUTOMATIC SWITCHING OF VARYING ELEMENT : /YES/: y

SAVE WORKSPACE ON FILE (YES, NO, 0-999) /YES/: 99
DEGREE OF IMPLICITY WHEN INTEGRATING PDES (AUTO, 0 -> 0.5 -> 1): /AUTO/: 1
MAX TIMESTEP CHANGE PER TIMESTEP: /2/: 2
USE FORCED STARTING VALUES IN EQUILIBRIUM CALCULATION /AUTO/: n
ALWAYS CALCULATE STIFFNES MATRIX IN MULDIF /YES/: y
CALCULATE RESIDUAL FOR DEPENDENT COMPONENT /NO/: n
DIC>
DIC>
DIC> 00 SAVE THE SETUP TO A NEW STORE FILE AND EXIT DIC> 00
DIC>
DIC> save exd2 y
DIC>
DIC> set-inter
  --OK---
DIC>
```

exd2b-run

```
NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exd2b\run.DCM DIC>
DIC>
DIC> @@ exd2_run.DCM
DIC>
DIC> @@ FILE FOR RUNNING THE SIMULATION OF EXAMPLE D2
DIC> @@
DIC>
DIC> @@
DIC> @@ READ THE SETUP FROM FILE AND START THE SIMULATION
DIC> @@
DTC>
DIC> ao d-m
 TIME STEP AT TIME 0.00000E+00
DIC> read exd2
DIC> sim
 INFO: not solving in latticefixed frame of reference STARTING SIMULATION USING HOMOGENIZATION MODEL
 WARNING: BCC A2 HAS NO VOLUME FRACTION, CREATING ONE
 Starting time-step t0= 0.0000000 dt= Starting time-step t0= 0.10000000E-06 dt= Starting time-step t0= 0.30000000E-06 dt=
                                                      0.10000000E-06
                                                      0.20000000E-06
0.40000000E-06
 Starting time-step t0=
                             0.70000000E-06 dt=
                                                      0.80000000E-06
 Starting time-step t0=
Starting time-step t0=
                             0.15000000E-05 dt=
0.31000000E-05 dt=
                                                      0.32000000E-05
                             0.63000000E-05 dt=
0.12700000E-04 dt=
                                                      0.64000000E-05
0.12800000E-04
 Starting time-step t0=
 Starting time-step t0=
 Starting time-step t0=
                             0.25500000E-04 dt=
                                                      0.25600000E-04
                             0.51100000E-04 dt=
0.10230000E-03 dt=
 Starting time-step t0=
 Starting time-step t0=
                                                      0.10240000E-03
 Starting time-step t0=
                              0.20470000E-03 dt=
0.40950000E-03 dt=
                                                      0.20480000E-03
 Starting time-step t0=
                                                      0.40960000E-03
 Starting time-step t0=
                              0.81910000E-03 dt=
                                                      0.81920000E-03
                             0.16383000E-02 dt=
0.32767000E-02 dt=
 Starting time-step t0=
                                                      0.16384000E-02
 Starting time-step t0=
                                                      0.32768000E-02
 Starting time-step t0=
                             0.65535000E-02 dt=
0.13107100E-01 dt=
                                                      0.65536000E-02
 Starting time-step t0=
                                                      0.13107200E-01
 Starting time-step t0=
Starting time-step t0=
                             0.26214300E-01 dt=
                                                      0.26214400E-01
                             0.52428700E-01 dt=
                                                      0.52428800E-01
Starting time-step t0=
                             0.10485750
                                                      0.10485760
                                                dt=
Starting time-step t0=
                             0.20971510
                                                      0.20971520
Starting time-step t0=
Starting time-step t0=
                             0.41943030
                                                dt=
                                                      0.41943040
                                                dt=
                             0.83886070
                                                      0.83886080
Starting time-step t0=
                               1.6777215
                                                dt=
                                                        1.6777216
Starting time-step t0=
                                                dt=
Starting time-step t0=
                               6.7108863
                                                dt=
                                                        6.7108864
Starting time-step t0=
Starting time-step t0=
                               13.421773
                                                d+=
                                                        13.421773
                                                dt=
                                                        26.843546
                               26.843545
Starting time-step t0=
                               53.687091
                                                dt=
                                                        26.843546
Starting time-step t0=
                                                dt=
Starting time-step t0=
                               107.37418
                                                dt=
                                                        26.843546
Starting time-step t0=
Starting time-step t0=
                               134.21773
                                                dt=
                                                        26.843546
                               161.06127
                                                dt=
                                                        26.843546
Starting time-step t0=
                               187.90482
                                                dt=
                                                        26.843546
Starting time-step t0=
                                                dt=
Starting time-step t0=
                               268.43546
                                                        53.687091
Starting time-step t0=
Starting time-step t0=
                               322.12255
375.80964
                                                dt=
                                                        53.687091
                                                dt=
                                                        53.687091
Starting time-step t0=
                               429.49673
                                                dt=
                                                        53.687091
Starting time-step t0=
                                                dt=
Starting time-step t0=
                               536.87091
                                                        53.687091
Starting time-step t0=
Starting time-step t0=
                               590.55800
697.93219
                                                        107.37418
                                                dt=
                                                dt=
Starting time-step t0=
                               805.30637
                                                dt=
                                                        107.37418
Starting time-step t0=
                                                dt=
Starting time-step t0=
                               1020.0547
                                                        107.37418
                               1127.4289
Starting time-step t0=
                                                dt=
                                                        214.74836
                                                dt=
Starting time-step t0=
                                                        214.74836
Starting time-step t0=
                               1556.9256
                                                dt=
                                                        214.74836
Starting time-step t0=
                                                dt=
                               1986.4224
                                                dt=
Starting time-step t0=
                                                        214.74836
                               2201.1707
2415.9191
Starting time-step t0=
                                                dt=
                                                dt=
Starting time-step t0=
                                                        214.74836
Starting time-step t0=
                               2630.6675
                                                dt=
                                                        429.49673
Starting time-step t0=
                                                dt=
Starting time-step t0=
                               3489.6609
                                                dt=
                                                        429.49673
Starting time-step t0=
                               3919.1577
                                                dt=
                                                        429.49673
429.49673
                                                dt=
                               4348.6544
Starting time-step t0=
Starting time-step t0=
                               4778.1511
                                                dt=
                                                        429.49673
Starting time-step t0=
                                                dt=
Starting time-step t0= Starting time-step t0=
                               6066 6413
                                                dt=
                                                        858 99346
Starting time-step t0=
                               7784.6282
                                                dt=
                                                        858.99346
Starting time-step t0=
                               8643.6217
                                                dt=
                                                        858.99346
Starting time-step t0=
                               9502.6151
                                                dt=
                                                        858.99346
Starting time-step t0=
Starting time-step t0=
                               10361 609
                                                dt=
                                                        858 99346
Starting time-step t0=
                               12079.596
                                                dt=
                                                        1717.9869
Starting time-step t0=
                               13797 582
                                                dt=
                                                        1717 9869
                                                        1717.9869
Starting time-step t0=
                               15515.569
                                                dt=
Starting time-step t0=
Starting time-step t0=
                               17233.556
                                                dt=
                                                        1717.9869
Starting time-step t0=
                               20669.530
                                                dt=
                                                        1717.9869
                                                        3435.9738
3435.9738
Starting time-step t0=
                               22387.517
                                                dt=
                               25823.491
Starting time-step t0=
                                                dt=
Starting time-step t0=
Starting time-step t0=
                                                        3435.9738
3435.9738
                               29259.465
                                                dt=
Starting time-step t0=
                               36131.412
                                                dt=
                                                        3435.9738
Starting time-step t0=
                               39567.386
                                                dt=
                                                        3435.9738
Starting time-step t0=
                               43003.360
                                                dt=
                                                        3435.9738
Starting time-step t0=
Starting time-step t0=
                               46439.334
53311.282
                                                dt=
                                                        6871.9477
                                                dt=
Starting time-step t0=
                               60183.229
                                                dt=
                                                        6871.9477
Starting time-step t0=
                               67055.177
73927.125
                                                dt=
                                                dt=
                                                        6871.9477
Starting time-step t0=
Starting time-step t0=
Starting time-step t0=
                               80799 072
                                                dt=
                                                        6871.9477
6871.9477
```

```
Starting time-step t0=
Starting time-step t0=
                                101414.92
115158.81
                                                   dt=
dt=
                                                           13743.895
13743.895
Starting time-step t0=
                                 122030.76
                                                   dt=
                                                           6871.9477
Starting time-step
                                                   dt=
Starting time-step t0=
                                 142646.60
                                                   dt=
                                                           13743.895
                                149518.55
163262.44
                                                           13743.895
13743.895
Starting time-step t0=
                                                   dt=
Starting time-step t0=
                                                   dt=
Starting time-step t0=
                                 177006 34
                                                   dt=
                                                           13743 895
Starting time-step t0=
                                 183878.29
Starting time-step t0=
                                 197622.18
                                                   dt=
                                                           13743.895
                                211366.08
238853.87
                                                           27487.791
27487.791
Starting time-step t0=
                                                   dt=
Starting time-step t0=
                                                   dt=
                                                           27487.791
27487.791
Starting time-step t0=
                                 266341.66
                                                   dt=
Starting time-step t0=
                                 293829.45
                                                           27487.791
27487.791
13743.895
Starting time-step t0=
                                 321317.24
                                                   dt=
Starting time-step t0=
                                 335061.14
                                                   dt=
Starting time-step t0=
                                 348805.03
                                                   dt=
                                                           27487.791
27487.791
Starting time-step t0=
                                 362548.93
                                                   dt=
Starting time-step t0=
                                 390036.72
Starting time-step t0=
                                 396908.67
                                                   dt=
                                                           13743.895
                                 410652.56
424396.46
                                                           13743.895
27487.791
Starting time-step t0=
                                                   dt=
Starting time-step t0=
                                                   dt=
                                                           27487.791
27487.791
Starting time-step t0=
                                 451884 25
                                                   dt=
Starting time-step t0=
                                 465628.14
                                                   dt=
Starting time-step t0=
                                 479372.04
                                                   dt=
                                                           13743.895
Starting time-step t0=
Starting time-step t0=
                                493115.93
520603.72
                                                           27487.791
54975.581
                                                   dt=
                                                   dt=
Starting time-step t0=
Starting time-step t0=
                                548091.51
575579.30
                                                           27487.791
54975.581
                                                   dt=
                                                   dt=
                                                           54975.581
27487.791
34469.532
Starting time-step t0=
                                 630554.89
                                                   dt=
Starting time-step t0=
Starting time-step t0=
                                 658042.68
                                                   dt=
                                 685530.47
MUST SAVE WORKSPACE ON FILE WORKSPACE SAVED ON FILE
 RECLAIMING WORKSPACE
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                           0.0000000
0.10000000E-06
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                            805.30637
1556.9256
 DELETING TIME-RECORD FOR TIME
                                             2415.9191
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                             3489.6609
                                             4348.6544
 DELETING TIME-RECORD FOR TIME
                                            5207.6478
6066.6413
 DELETING TIME-RECORD FOR TIME
 DELETING TIME-RECORD FOR TIME
                                             6925.6348
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                             7784.6282
                                             8643.6217
 DELETING TIME-RECORD FOR TIME
                                             9502.6151
10361.609
 DELETING TIME-RECORD FOR TIME
 DELETING TIME-RECORD FOR TIME
                                             11220.602
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                             12079.596
                                             13797.582
 DELETING TIME-RECORD FOR TIME
                                            15515.569
17233.556
 DELETING TIME-RECORD FOR TIME
 DELETING TIME-RECORD FOR TIME
                                             18951.543
 DELETING TIME RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                             22387.517
 DELETING TIME-RECORD FOR TIME
                                             25823.491
 DELETING TIME-RECORD FOR TIME
                                             29259.465
 DELETING TIME-RECORD FOR TIME
                                             32695.439
 DELETING TIME-RECORD FOR TIME
                                             36131.412
 DELETING TIME-RECORD FOR TIME
                                             39567.386
 DELETING TIME-RECORD FOR TIME
                                             43003.360
 DELETING TIME-RECORD FOR TIME
                                             46439.334
                                            53311.282
60183.229
 DELETING TIME-RECORD FOR TIME
 DELETING TIME-RECORD FOR TIME
 DELETING TIME-RECORD FOR TIME
                                             67055.177
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                             73927.125
80799.072
                                            87671.020
94542.968
 DELETING TIME-RECORD FOR TIME
 DELETING TIME-RECORD FOR TIME
 DELETING TIME-RECORD FOR TIME
                                             101414.92
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                             115158.81
                                            128902.71
142646.60
 DELETING TIME-RECORD FOR TIME
 DELETING TIME-RECORD FOR TIME
 DELETING TIME-RECORD FOR TIME
                                             149518.55
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                             163262.44
                                             177006.34
                                            183878.29
197622.18
 DELETING TIME-RECORD FOR TIME
 DELETING TIME-RECORD FOR TIME
 DELETING TIME-RECORD FOR TIME
                                             211366.08
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                             266341.66
 DELETING TIME-RECORD FOR TIME
                                            293829.45
321317.24
 DELETING TIME-RECORD FOR TIME
 DELETING TIME-RECORD FOR TIME
                                             335061.14
 DELETING TIME-RECORD FOR TIME
                                             348805.03
 DELETING TIME-RECORD FOR TIME
                                             362548.93
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                             390036.72
                                             396908.67
 DELETING TIME-RECORD FOR TIME
                                             410652.56
 DELETING TIME-RECORD FOR TIME
                                             424396.46
 DELETING TIME-RECORD FOR TIME
                                             451884.25
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                             479372.04
 DELETING TIME-RECORD FOR TIME
                                             493115.93
 DELETING TIME-RECORD FOR TIME
                                             520603.72
 DELETING TIME-RECORD FOR TIME
                                             548091.51
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                             575579.30
630554.89
 DELETING TIME-RECORD FOR TIME
                                             658042.68
                                           685530.47
 KEEPING TIME-RECORD FOR TIME
 WORKSPACE RECLAIMED
 INTERPOLATION SCHEME USED THIS FRACTION OF
THE ALLOCATED MEMORY: 3.445374607681511E-002
EFFICIENCY FACTOR: 25.1644713836111
 DEALLOCATING
```

Starting time-step t0=

94542.968

6871.9477

dt=

TIMESTEP AT 720000.000 SELECTED

DIC>
DIC>
DIC>
DIC>
DIC>
DIC> set-inter
--OK--DIC>

exd2b-plot

```
DIC>About
NO SUCH COMMAND, USE HELP
 DIC>DIC>MACRO exd2b\plot.DCM DIC>
DIC>
 DIC> @@ exd2_plot.DCM
DIC>
DIC> 00 FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE D2
DIC> 00
DIC> 00 ENTER THE DICTRA MODULE AND SPECIFY THE STORE-RESULT FILE
DIC> 00
DIC>
DIC> go d-m
TIME STEP AT TIME 7.20000E+05
DIC> read exd2
OK
DIC>
DIC> 00
DIC> 00 ENTER THE DICTRA POST PROCESSOR
DIC> 00
DIC> post
POST PROCESSOR VERSION 1.7
 Implemented by Bjorn Jonsson
POST-1:
POST-1:
POST-1: 00
POST-1: 00
POST-1: 00 LET US FIRST SEE HOW THE FRACTION OF FERRITE HAS CHANGED
POST-1: 00 AS A RESULT OF THE DIFFUSION
POST-1: 00
POST-1: s-d-a y npm(bcc)
 POST-1: s-d-a x distance global
INFO: Distance is set as independent variable POST-1: s-p-c time 0 720000
POST-1: set-tit Figure D2.1
POST-1: plot
                                                                Figure D2.1
```



```
POST-1:
POST-1:
POST-1:
POST-1:@?<_hit_return_to_continue_>
POST-1: 00

POST-1: 00

POST-1: 00

POST-1: 00

POST-1: 00

POST-1: 00

POST-1: s-d-a y w-p or

POST-1: s-p-c time last

POST-1: set-tit Figure D2.2

POST-1: plot
POST-1: plot
```

```
POST-1:
POST-1:
POST-1:
POST-1:
POST-1:@?< hit_return_to_continue_>
POST-1:@@
POST-1:@@
POST-1:@@ WE SELECT A BETTER SCALING AND APPEND EXPERIMENTAL DATA
POST-1:@@
POST-1:
POST-1: app y exd2.exp
PROLOGUE NUMBER: /0/: 1
DATASET NUMBER(s): /-1/: 4
POST-1:
POST-1: s-s-s y n 0 50
POST-1: s-s-s x n 10e-4 30e-4
POST-1: s-s-s x n 10e-4 30e-4
POST-1: plot
```

Figure D2.3


```
POST-1:
POST-1:
POST-1:
POST-1:
POST-1: 00
POST-1:
POST-1:
POST-1:
POST-1:
POST-1: app y exd2.exp
PROLOGUE NUMBER: /1/: 1
DATASET NUMBER: /1/: 5
POST-1:
POST-1: s-s-s x n 10e-4 30e-4
POST-1: s-s-s y n 0 40
POST-1: set-tit Figure D2.4
POST-1: plot
```

Figure D2.5


```
POST-1:
POST-1:
POST-1:
POST-1:
POST-1: set-interactive
--0K---
POST-1:
```


Example exd3

Diffusion couple of Fe-Ni-Cr alloys: Homogenization Model

This example shows the use of the homogenization model. It is taken from H. Larsson and A. Engström, Acta. Mater. v.54 (2006), pp. 2431-2439. Experimental data from A. Engström, Scand J Metall, v.243 (1995), p.12. The homogenization model can be used for multiphase simulations like the dispersed system model, but unlike the dispersed system model there is no need to have a single continuous matrix phase and, furthermore, there is no need to limit the size of time-steps. The setup is performed in the same manner as for the dispersed system model, which means that a certain phase is entered as the matrix phase and the other phases are entered as spheroidal, but the choice of matrix phase will not affect the simulation.

T = 1373 K

3E-3m

exd3-setup

SYS: About

```
Thermo-Calc / DICTRA is software package for calculation of phase diagrams, simulation of phase transformation kinetics and much more.
 Copyright Foundation for Computational Thermodynamics,
 Stockholm, Sweden
 Software running on Windows 64-bit wordlength
 Compiler: unknown compiler
License library version: 9.7.0.0036
Linked: Fri Oct 18 11:32:56 2024
SYS:SYS:MACRO exd3\setup.DCM
SYS: i>;@@
 NO SUCH COMMAND, USE HELP
SYS: @@ Diffusion in dispersed systems.
{\tt SYS}\colon @@ Diffusion couple of Fe-Cr-Ni alloys: Homogenization model {\tt SYS}\colon @@ This example uses the homogenization model. It is taken from
SYS: 00 Inls example uses the homogenization model. It is taken from SYS: 00 H. Larsson and A. Engstrå¶m, Acta. Mater. v.54 (2006), pp. 2431-2439.

SYS: 00 Experimental data from A. Engstrå¶m, Scand J Metall, v.243 (1995), p.12.

SYS: 00 The homogenization model can be used for multiphase simulations

SYS: 00 like the dispersed system model, but unlike the dispersed system model
SYS: 00 there is no need to have a single continuous matrix phase and, furthermore, SYS: 00 there is no need to limit the size of time-steps.

SYS: 00 The set-up is performed in the same manner as for the dispersed system
SYS: 00 model, which means that a certain phase is entered as the matrix phase SYS: 00 and the other phases are entered as spheroidal, but the choice of matrix
SYS: @@ phase will not affect the simulation.
SYS:
 NO SUCH COMMAND, USE HELP
SYS:
SYS: @@ exd3_setup.DCM
SYS:
SYS:
SYS: go da
15:19:43,047 [Thread-0] INFO LicenseManager: Initializing user: jenkins.integrationtest@thermocalc.se
15:19:43,061 [Thread-0] INFO LicenseController: Running License Spring in DEV environment.
15:19:44,146 [Thread-0] INFO LicenseManager: There is an activated standalone license for jenkins.integrationtest@thermocalc.se for TC-
  THERMODYNAMIC DATABASE module
 Database folder:
C:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples\databases\da
 Current database: Steels/Fe-Alloys v12.0
VA /- DEFINED
DICTRA_FCC_A1 REJECTED
TDB_TCFE12: sw fedemo
Current database: Iron Demo Database v5.0
TDB_FEDEMO: def-sys fe cr ni
 FE DEFINED
                                                                              NI
TDB_FEDEMO: rej-ph *
BCC_A2
CUB_A13
HCP_A3
                                        CBCC A12
                                                                              CHI A12
                                       FCC_A1
LAVES_PHASE_C14
                                                                              GAS:G
                                                                              LIQUID:L
           REJECTED
  SIGMA
TDB_FEDEMO: rest-ph bcc,fcc
BCC_A2 FCC_A1 RESTORED
BCC_AI RESTORED

TDB_FEDEMO: get

15:19:45,197 [Thread-0] INFO JavaWrapper: *** Invoking Gibbs Energy System v6 ***

REINITIATING GES .....

ELEMENTS .....
 SPECIES .....
PHASES .....
PARAMETERS ...
 Use the command LIST REFERENCES to see the list of references for assessed data
  -OK-
TDB_FEDEMO:
TDB FEDEMO: app mfedemo
 Current database: Fe-Alloys Mobility demo database v4.0
 VA DEFINED
APP: def-sys fe cr ni
 FE
                                        CR
                                                                              NT
    DEFINED
APP: rej-ph *
BCC_A2
                                                                             LIQUID:L
                                        FCC A1
    REJECTED
APP: rest-ph bcc,fcc
                                       FCC_A1 RESTORED
 BCC A2
APP: get
ELEMENTS ....
 SPECIES .....
PHASES .....
PARAMETERS ...
 Use the command LIST_REFERENCES to see the list of references for assessed data
 -OK-
APP:
APP: go -m
15:19:45,725 [Thread-0] INFO StandaloneLicenseController: Checking out license for: Diffusion (DICTRA)
 NO TIME STEP DEFINED
DIC>
DIC> set-cond glob T 0 1373.15; * N
DIC>
DIC> ent-geo 0
DIC> ent-reg
REGION NAME : fecrni
DIC>
```

```
DIC> ent-grid
REGION NAME : /FECRNI/: fecrni
WIDTH OF REGION /1/: 3e-3
TYPE /LINEAR/: doubl
NUMBER OF POINTS /50/: 60
VALUE OF R IN THE GEOMETRICAL SERIE FOR LOWER PART OF REGION: 0.85
VALUE OF R IN THE GEOMETRICAL SERIE FOR UPPER PART OF REGION: 1.15
DIC> ent-ph
DICS ent-pn
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /FECRNI/: fecrni
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: fcc#1
DIC>
DIC> ent-ph
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /FECRNI/: fecrni
PHASE TYPE /MATRIX/: sph
PHASE NAME: /NONE/: bcc
 INFO: EQUILIBRIUM COMPOSITION AND FRACTION OF SPHEROID PHASES USED AS DEFAULT
DIC> ent-comp
PHASE NAME: /FECRNI/: fecrni
PHASE NAME: /FCC_A1/: fcc#1
DEPENDENT COMPONENT ? /NI/: fe
COMPOSITION TYPE /MOLE_FRACTION/: m-f
PROFILE FOR /CR/: cr
TYPE /LINEAR/: read cr.dat
PROFILE FOR /NI/: ni
TYPE /LINEAR/: read ni.dat
DIC>
DIC>
DIC> ent-comp
REGION NAME : /FECRNI/: fecrni
PHASE NAME: /FCC_A1/: bcc
USE EQUILIBRIUM VALUE /Y/: y
DIC> se-si-ti
END TIME FOR INTEGRATION /.1/: 3.6e5
AUTOMATIC TIMESTEP CONTROL /YES/: yes MAX TIMESTEP DURING INTEGRATION /36000/: 3.6e4
INITIAL TIMESTEP : /1E-07/: 1
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/: 1e-7
DIC>
DIC> @@ SIMULATIONS ARE FASTER WHEN THE RESULTS ARE NOT SAVED
DIC> 00 FOR EVERY TIME STEP
DIC> s-s-c
NS01A PRINT CONTROL : /0/: 0
NSULA PRINT CONTROL: /0/: 0
FLUX CORRECTION FACTOR: /1/: 1
NUMBER OF DELTA TIMESTEPS IN CALLING MULDIF: /2/: 2
CHECK INTERFACE POSITION /AUTO/: n
VARY POTENTIALS OR ACTIVITIES OR LNAC: /ACTIVITIES/: act
ALLOW AUTOMATIC SWITCHING OF VARYING ELEMENT : /YES/: y SAVE WORKSPACE ON FILE (YES,NO,0-999) /YES/: 99
DEGREE OF IMPLICITY WHEN INTEGRATING PDES (AUTO, 0 -> 0.5 -> 1): /AUTO/: .5

MAX TIMESTEP CHANGE PER TIMESTEP: /2/: 2

USE FORCED STARTING VALUES IN EQUILIBRIUM CALCULATION /AUTO/: n

ALWAYS CALCULATE STIFFNES MATRIX IN MULDIF /YES/: y

CALCULATE RESIDUAL FOR DEPENDENT COMPONENT /NO/:
DIC>
DIC> @@ There are a several options available for the homogenization
DIC> 00 model. There is also an interpolation scheme that may reduce DIC> 00 simulation times. However, for this example, the default settings
\ensuremath{\text{DIC}}\xspace \ensuremath{\text{@Q}} are kept and the interpolation scheme is turned off.
DIC> @@
DIC> homogen yes yes
INFO: HOMOGENIZATION MODEL ENABLED
DTC>
DIC> @@ There are a large number of homogenization functions
DIC> @@ available. These determine how the average kinetics DIC> @@ of the multiphase mixture is evaluated. For this example
DIC> 00 the General lower Hashin-Shtrikman bound is a good choice. DIC> en-ho
ENTER HOMOGENIZATION FUNCTION # /5/: 1
SELECTED FUNCTION IS HASHIN-SHTRIKMAN BOUND: GENERAL LOWER
DIC>
DIC>
DIC> save exd3 Y
DIC>
DIC>
DIC> set-inter
  --OK---
DIC>
```

```
DIC>About
 NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exd3\run.DCM DIC>
DIC>
DIC> @@ exd3_run.DCM
DIC>
DIC> @@ READ THE SETUP FROM FILE AND START THE SIMULATION
DIC> @@
DIC>
DIC> go d-m
TIME STEP AT TIME 0.00000E+00
DIC> read exd3
 OK
DIC> sim
 INFO: not solving in latticefixed frame of reference
 STARTING SIMULATION USING HOMOGENIZATION MODEL
WARNING:BCC_A2 HAS NO VOLUME FRACTION, CREATING ONE Starting time-step t0= 0.0000000 dt= 1.000000
                                                         1.0000000
                                                dt=
dt=
Starting time-step t0=
                                1 0000000
                                                          2 0000000
Starting time-step t0=
                                3.0000000
Starting time-step t0=
                                7.0000000
                                                  dt=
                                                          8.0000000
Starting time-step t0=
                                15.000000
                                                  dt=
                                                          16.000000
Starting time-step t0=
                                31.000000
                                                          32.000000
                                                  dt=
Starting time-step t0= Starting time-step t0=
                                63 000000
                                                  dt=
                                                          64 000000
                                255.00000
Starting time-step t0=
                                                  dt=
                                                         256.00000
                                511.00000
767.00000
Starting time-step t0=
                                                  dt=
                                                          256.00000
Starting time-step t0=
                                                          256.00000
                                                  dt=
Starting time-step t0=
Starting time-step t0=
                                                          512.00000
512.00000
                                1023.0000
                                                  dt=
Starting time-step t0=
                                2047.0000
3071.0000
4095.0000
                                                  dt=
                                                          1024.0000
Starting time-step t0=
                                                  dt=
                                                          1024.0000
                                                          2048.0000
Starting time-step t0=
                                                  dt=
Starting time-step t0=
Starting time-step t0=
                                6143.0000
8191.0000
                                                  dt=
                                                          2048.0000
Starting time-step t0=
                                12287.000
16383.000
                                                  dt=
                                                          4096.0000
Starting time-step t0=
                                                  dt=
                                                          8192.0000
Starting time-step t0=
                                24575.000
                                                          8192.0000
                                                  dt=
Starting time-step t0=
Starting time-step t0=
                                                          8192.0000
8192.0000
                                32767.000
                                                  dt=
                                                  dt=
Starting time-step t0=
                                49151.000
                                                  dt=
                                                          8192.0000
                                57343.000
65535.000
                                                          8192.0000
8192.0000
Starting time-step t0=
                                                  dt=
Starting time-step t0=
                                                  dt=
Starting time-step t0=
Starting time-step t0=
                                73727.000
90111.000
                                                  dt=
                                                          16384.000
                                                  dt=
Starting time-step t0= Starting time-step t0=
                                122879.00
                                                  dt=
                                                          32768.000
                                                          32768.000
32768.000
                                155647.00
                                                  dt=
                                188415.00
Starting time-step t0=
                                                  dt=
Starting time-step t0=
Starting time-step t0=
                                221183.00
253951.00
                                                  dt=
                                                          32768.000
                                                  dt=
                                                          32768.000
Starting time-step t0= Starting time-step t0=
                                286719.00
                                                  dt=
                                                          32768.000
                                319487.00
                                352255.00
Starting time-step t0=
                                                  dt=
                                                          7745.0000
 MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
 RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                           0.0000000
                                            1.0000000
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                            511.00000
                                            1023.0000
 DELETING TIME-RECORD FOR TIME
                                            1535.0000
2047.0000
 DELETING TIME-RECORD FOR TIME
 DELETING TIME-RECORD FOR TIME
                                            3071.0000
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                            4095.0000
6143.0000
 DELETING TIME-RECORD FOR TIME
                                            8191.0000
12287.000
 DELETING TIME-RECORD FOR TIME
 DELETING TIME-RECORD FOR TIME
                                            16383.000
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                            24575.000
32767.000
 DELETING TIME-RECORD FOR TIME
                                            40959 000
 DELETING TIME-RECORD FOR TIME
 DELETING TIME-RECORD FOR TIME
                                            57343.000
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                            65535.000
73727.000
 DELETING TIME-RECORD FOR TIME
                                            90111.000
 DELETING TIME-RECORD FOR TIME
 DELETING TIME-RECORD FOR TIME
                                            155647.00
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                            188415.00
                                            221183.00
 DELETING TIME-RECORD FOR TIME
                                            253951 00
 DELETING TIME-RECORD FOR TIME
                                            286719.00
 DELETING TIME-RECORD FOR TIME
                                           319487.00
                                          352255.00
 KEEPING TIME-RECORD FOR TIME
 AND FOR TIME
WORKSPACE RECLAIMED
                                          360000.00
 INTERPOLATION SCHEME USED THIS FRACTION OF
 THE ALLOCATED MEMORY: 2.363429568829154E-002
EFFICIENCY FACTOR: 6.52636977519446
 DEALLOCATING
 TIMESTEP AT 360000.000 SELECTED
DIC>
DIC>
DIC> set-inter
  --OK---
DIC>
```

exd3-plot

```
DIC>About
NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exd3\plot.DCM DIC>
DIC>
DIC> @@ exd3_plot.DCM
DIC>
DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE d3
DIC> @@
DIC> @@ ENTER THE DICTRA MODULE AND SPECIFY THE STORE-RESULT FILE
DIC> @@
DTC>
DIC> go d-m
TIME STEP AT TIME 3.60000E+05
DIC> read exd3
OK
DIC>
DIC> 00
DIC> 00 ENTER THE DICTRA POST PROCESSOR
DIC> 00
DIC> post
  POST PROCESSOR VERSION 1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1:
POST-1: @@
POST-1: @@ First study the composition profiles of Cr and Ni
POST-1: @@
POST-1: s-d-a x distance global
INFO: Distance is set as independent variable POST-1: s-d-a y w-p Cr POST-1: s-p-c time 0 360000
POST-1: set-tit Figure D3.1
POST-1:
POST-1: app yes k5k7cr.exp 0; 1
POST-1:
POST-1: s-s-s x n 1e-3 2e-3
POST-1:
POST-1: s-s-s y n 20 45 POST-1:
POST-1:
POST-1: SET_EXP_FILE_FORMAT 3
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
POST-1: SET_EXP_FILE_FORMAT 10
POST-1:
POST-1: plot
                                             Figure D3.1
        45
        40
                                                                                   Δ
                                                                     Δ
                                                                          Δ
                                                                 Δ
                                                               Δ
        35
                                                             Δ
                                                                              Δ
                                                          4
```

```
Mass percent CR
       30
                             Δ
       25
              A Eng ström Soand J. Metall 243(1996)12
        Distance
POST-1:
POST-1:
POST-1:0?<_hit_return_to_continue>
POST-1: s-d-a y w-p Ni
POST-1: set-tit Figure D3.2
POST-1:
POST-1: app yes k5k7ni.exp 0; 1
POST-1:
POST-1: s-s-s y n 0 35 POST-1:
POST-1:
POST-1:
POST-1: SET_EXP_FILE_FORMAT 3
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
POST-1: SET_EXP_FILE_FORMAT 10
```

```
35
                                                                                                   Δ
    30
                                                                            ΔΔ
    25
Mass percent NI
    20
    15
    10
                                                  Δ
                                  Δ
     5
             A Eng cfr6m Soand J. Metall 243(1996)12
    0.0010 \quad 0.0011 \quad 0.0012 \quad 0.0013 \quad 0.0014 \quad 0.0015 \quad 0.0016 \quad 0.0017 \quad 0.0018 \quad 0.0019 \quad 0.0020
                                                             Distance
```

Figure D3.3


```
POST-1:
POST-1:@?<_hit_return_to_continue_>
POST-1: s-d-a y npm(bcc)
POST-1: set-tit Figure D3.4
POST-1:
POST-1: SET_EXP_FILE_FORMAT 3
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
POST-1: SET_EXP_FILE_FORMAT 10
POST-1:
POST-1: plot
```


POST-1:
POST-1:
POST-1: set-interactive
--OK--POST-1:

Cooperative Growth

Example exe1

Growth of pearlite in an Fe-Mn-C alloy

This is an example of pearlite growth in an Fe-0.50wt%C - 0.91wt%Mn steel.

SYS: About

```
Thermo-Calc / DICTRA is software package for calculation of phase diagrams, simulation of phase transformation kinetics and much more.
 Copyright Foundation for Computational Thermodynamics,
 Stockholm, Sweden
 Software running on Windows 64-bit wordlength
 Compiler: unknown compiler
License library version: 9.7.0.0036
Linked: Fri Oct 18 11:32:56 2024
SYS:SYS:MACRO exe1\setup.DCM
SYS: i>;@@
NO SUCH COMMAND, USE HELP SYS: @@ Cooperative growth.
SYS: 00 Growth of pearlite in an Fe-Mn-C alloy
SYS: 00 An example of pearlite growth in an Fe-0.50wt%C-0.91wt%Mn steel.
 NO SUCH COMMAND, USE HELP
SYS:
SYS: 00 exel setup.DCM
SYS:
SYS: 00
SYS: 00 RETRIEVE DATA FROM THE DATABASE
SYS: @@
THERMODYNAMIC DATABASE module
 C:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples\databases\da
 Current database: Steels/Fe-Alloys v12.0
VA /- DEFINED
DICTRA_FCC_A1 REJECTED
TDB_TCFE12: sw FEDEMO
Current database: Iron Demo Database v5.0
                           /- DEFINED
TDB_FEDEMO:
TDB_FEDEMO: @@
TDB_FEDEMO: @@ DEFINE THE SYSTEM
TDB_FEDEMO: @@
TDB_FEDEMO: def-sys fe c mn
                                                         MN
 FE
   DEFINED
TDB_FEDEMO: @@
TDB_FEDEMO: @@ KEEP ONLY THE AUSTENITE, FERRITE AND CEMENTITE PHASES
TDB_FEDEMO: @@
TDB FEDEMO: rej-ph /all
 BCC_A2
CUB_A13
                             CBCC_A12
DIAMOND_FCC_A4
GRAPHITE
                                                         CEMENTITE
                                                         FCC_A1
HCP A3
 GAS:G
KSI_CARBIDE
M23C6
                             LAVES_PHASE_C14
                            M5C2
                                                        M7C3
   REJECTED
TDB_FEDEMO: rest-ph fcc,bcc,cem
FCC_A1 BCC_A2
RESTORED
                                                       CEMENTITE
TDB_FEDEMO: 00
TDB_FEDEMO: 00 GET THE THERMODYNAMIC DATA
TDB_FEDEMO: 00
TDB_FEDEMO: get
15:22:51,941 [Thread-0] INFO JavaWrapper: *** Invoking Gibbs Energy System v6 ***
 REINITIATING GES ....
 ELEMENTS ....
 SPECIES .....
 PHASES
 PHASES ......
PARAMETERS ...
 FUNCTIONS ....
 Use the command LIST REFERENCES to see the list of references for assessed data
 -OK-
TDB_FEDEMO: 00
TDB FEDEMO: @@ APPEND THE KINETIC DATA FROM THE MOBILITY DATABASE
TDB_FEDEMO: @@
TDB_FEDEMO: append mobfe4
 Current database: Steels/Fe-Alloys Mobility v4.0
 VA DEFINED
B2_BCC REJECTED 
APP: def-sys fe c mn
FE DEFINED
                            C
                                                         MN
APP: rej-ph /all
BCC_A2
FE4N_LP1
                            CEMENTITE
                                                         LIOUID:L
                            HCP A3
   REJECTED
APP: rest-ph bcc,fcc,cem
BCC_A2
                            FCC_A1
                                                       CEMENTITE
   RESTORED
APP: get
 ELEMENTS ....
 SPECIES .....
 PHASES .....
PARAMETERS ...
 FUNCTIONS ..
```

Use the command LIST REFERENCES to see the list of references for assessed data

```
-OK-
APP:
APP: @@
APP: @@ ALL THE THERMODYNAMIC AND KINETIC DATA HAVE BEEN RETRIEVED.
APP: @@ GO TO THE DICTRA MONITOR TO SET UP YOUR PROBLEM.
APP: @@
APP: go d-m
15:22:52.738 [Thread-0] INFO StandaloneLicenseController: Checking out license for: Diffusion (DICTRA)
 NO TIME STEP DEFINED
DIC> @@
DIC> @@ SET THE CONDITION FOR TEMPERATURE
DIC> @@
DIC> set-cond glob t 0 900-time*10; * n
DIC>
DIC> @@
DIC> @@ ENTER A REGION
DIC> @@
DIC> enter-reg pearlite
DIC>
DIC> @@
DIC> @@ ENTER A SMALL INITIAL SIZE OF THE GRID IN THE 'PEARLITE' REGION
DIC> @@
DIC> enter-grid pearlite 5e-10 lin 5
DIC>
DIC> @@
DIC> @@ ENTER INTO THE 'PEARLITE' REGION THE PHASES 'BCC' AND 'CEM' AND SPECIFY
DIC> 00 THAT ARE PRESENT IN THE FORM OF A 'LAMELLAR AGGREGATE. SET THE STATUS
DIC> 00 TO 'ACTIVE'. SEVERAL PROMPTS FOLLOW ABOUT THE VALUES OF THE PARAMETERS
DIC> 00 IN THE PEARLITE GROWTH MODEL, FOR EXAMPLE AS SURFACE TENSION, OPTIMUM
DIC> @@ GROWTH RATE FACTOR. AND BOUNDARY DIFFUSION COEFFICIENTS.
DIC> @@ CARBON(C) IS TREATED IN A SPECIAL WAY. IF 'AUTOMATIC' IS ENTERED
DIC> 00 THE DIFFUSION OF C IS CALCULATED ACCORDING TO AN EQUATION FOR
DIC> @@ MIXED BOUNDARY AND VOLUME DIFFUSION. YOU CAN CHOOSE BETWEEN DIC> @@ MANUAL OR AUTOMATIC START VALUES FOR ALL VARIABLES EXCEPT THE GROWTH
DIC> @@ RATE. IN THIS EXAMPLE WE WILL TRY 1E-6
DIC> @@
DIC> @@ FOR MORE INFORMATION ABOUT THE PEARLITE GROWTH MODEL SEE
DIC> @@ B. JÃ-NSSON: TRITA-MAC-0478, 1992 (ROYAL INSTITUTE OF TECHNOLOGY)
DIC> @@ STOCKHOLM, SWEDEN, 1992.
DIC> @@
DIC> enter
ACTIVE OR INACTIVE PHASE /ACTIVE/: active
REGION NAME : /PEARLITE/: pearlite
PHASE TYPE /MATRIX/: lam
 PHASE TYPE /MATRIX/: lam

Eutectiod reaction is "GAMMA" ==> "ALPHA" + "BETA"

Enter name of "ALPHA" phase /BCC_A2/: bcc_a2

Enter name of "BETA" phase /CEMENTITE/: cementite

Enter name of "GAMMA" phase /FCC_A1/: fcc_a1

Enter "ALPHA"/"BETA" surface tension
LOW TIME LIMIT /0/: 0
LOW TIME LIMIT /0/: 0

Surface tension(T,P,TIME) = 1;
HIGH TIME LIMIT /*/: 1000

ANY MORE RANGES /N/: N

Enter "ALPHA"/"GAMMA" surface tension

LOW TIME LIMIT /0/: 0
Surface tension(T,P,TIME) = 1;
HIGH TIME LIMIT /*/: 1000
ANY MORE RANGES /N/: N
Enter "BETA"/"GAMMA" surface tension
LOW TIME LIMIT /0/: 0
 Surface tension(T,P,TIME) = 1;
HIGH TIME LIMIT /*/: 1000
ANY MORE RANGES /N/: N
 NAMY MORE KANGES /N/: N
Optimum growth condition factor /2/: 2
Name of dependent element /FE/: fe
INPUT OF DIFFUSION DATA
Growth model (VOLUME/BOUNDARY/KIRKALDY) for element C /BOUNDARY/: boundary
    DF(C) = /value/AUTOMATIC/MIXED/: auto
Growth model (VOLUME/BOUNDARY/KIRKALDY) for element MN /BOUNDARY/: boundary
       DF(MN) = /value/MIXED/: 5.4e-14
DQ(MN): 155000
  Automatic start values for the SO determination /Y/: Y
 Growth rate V: 1E-6
 Automatic start values on other variables /Y/: Y
DIC>
DIC> @@
DIC> @@ INITIATE THE COMPOSITION RECORDS FOR THE 'PEARLITE' DIC> @@
DIC> enter-composition
REGION NAME : /PEARLITE/: pearlite
DIC>
DIC> @@
DIC> @@ NOW CONTINUE BY DEFINING A MATRIX PHASE INTO WHICH THE PEARLITE
DIC> @@ WILL GROW. START BY ENTERING A REGION NAME, 'AUSTENITE
DIC> @@
DIC> enter-region austenite
ATTACH TO REGION NAMED /PEARLITE/:
ATTACHED TO THE RIGHT OF PEARLITE /YES/:
DIC> @@
DIC> 00 SPECIFY WHAT PHASE 'FCC' WILL BE PRESENT IN THE 'AUSTENITE' REGION
DIC> 00 AND WHAT TYPE OF PHASE 'MATRIX' IT IS AND ITS INITIAL STATE 'ACTIVE'
DTC> @@
DIC> enter-phase act austenite matrix fcc
DIC>
DIC> @@
DIC> 00 WE ALSO NEED TO HAVE A SPATIAL GRID IN THE 'AUSTENITE' REGION.
DIC> 00 CHOSE SIZE '4E-5' GRIDTYPE 'GEOMETRICAL', '30' GRIDPOINTS AND '1.5'
DIC> 00 AS VALUES FOR THE GEOMETRICAL FACTOR OF THE GRID.
DIC> @@
DIC> enter-grid austenite 4e-5 geo 30 1.5
DIC>
DIC>
DIC>
DIC> @@
DIC> 00 ENTER THE INITIAL CONCENTRATION PROFILES IN THE 'FCC' PHASE OF THE DIC> 00 'AUSTENITE' REGION. CONCENTRATIONS MUST BE GIVEN IN Y-FRACTIONS.
DIC> @@
```

```
NO SUCH COMMAND, USE HELP
 DIC>DIC>MACRO exe1\run.DCM DIC>
 DIC>
DIC> 00 exe1_run.DCM
 DIC>
DIC> @@ FILE FOR RUNNING EXAMPLE e1
 DIC> @@
DIC>
 DIC> @@
DIC> 00 ENTER THE DICTRA MONITOR DIC> 00
    TIME STEP AT TIME 0.00000E+00
DIC>
DIC> @@
 DIC> @@ READ SETUP FROM FILE
DIC> @@
DIC> read exel
   OK
DIC> @@
 DIC> @@ START THE SIMULATION
DIC> 00
DIC> sir
                  simulate
   DEGREE OF IMPLICITY SET TO TRAPEZOIDAL RULE
 Trying old scheme 4
U-FRACTION IN SYSTEM: C = .0233843320030518 FE = .990707670399293
MN = .0092923297312127
TOTAL SIZE OF SYSTEM: 2.68092626329E-13 [m^3]
U-FRACTION IN SYSTEM: C = .0233843320030518 FE = .990707670399293
MN = .0092923297312127
TOTAL SIZE OF SYSTEM: 2.68092626329E-13 [m^3]
17 GRIDPOINT(S) ADDED TO CELL #1 REGION: AUSTENITE
TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.000
CELL #1 VELOCITY AT INTERFACE # 2 IS 0.77954874E-05 AND 0.77954
POSITION OF INTERFACE PEARLITE / AUSTENITE IS 0.50077955E-09
U-FRACTION IN SYSTEM: C = .0233843320030518 FE = .990707670399295
MN = .00929232973121271
TOTAL SIZE OF SYSTEM: 2.68092626329E-13 [m^3]
10 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: AUSTENITE
        Trving old scheme
  CPU time used in timestep 2 seconds
4 GRIDPOINT(s) ADDED TO CELL #1 REGION: AUSTENITE

TIME = 0.10010000E-03 DT = 0.10000000E-03 SUM OF SQUARES = 0.0000000

CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.77957281E-05 AND 0.77957281E-05

POSITION OF INTERFACE PEARLITE / AUSTENITE IS 0.12803524E-08

U-FRACTION IN SYSTEM: C = .0233843320030518 FE = .990707670399295

MN = .00929232973121271

TOTAL SIZE OF SYSTEM: 2.68092626329E-13 [m^3]

CPU time used in timestep 0 seconds
1 GRIDPOINT(s) REMOVED FROM CELL# 1 REGION # 1

TIME = 0.13027344E-02 DT = 0.12026344E-02 SUM OF SQUARES = 0.0000000

CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.77986231E-05 AND 0.77986231E-05

POSITION OF INTERFACE PEARLITE / AUSTENITE IS 0.10659245E-07

U-FRACTION IN SYSTEM: C = .0233843320030518 FE = .990707670399294

MN = .0092923297312127

TOTAL SIZE OF SYSTEM: 2.68092626329E-13 [m^3]

CPU time used in timestep 1 seconds
                                                                                                                                                                                 1 seconds
       CPU time used in timestep
  CPU time used in timestep 1 seconds
2 GRIDPOINT(S) REMOVED FROM CELL# 1 REGION # 1
TIME = 0.37080032E-02 DT = 0.24052688E-02 SUM OF SQUARES = 0.0000000
CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.78044143E-05 AND 0.78044143E-05
POSITION OF INTERFACE PEARLITE / AUSTENITE IS 0.29430959E-07
U-FRACTION IN SYSTEM: C = .0233843320030517 FE = .990707670399294
MN = .00929232973121269
TOTAL SIZE OF SYSTEM: 2.68092626329E-13 [m^3]
  TOTAL SIZE OF SYSTEM: 2.68092626329E-13 [m^3]
CPU time used in timestep 0 seconds
1 GRIDPOINT(S) REMOVED FROM CELL# 1 REGION # 1
TIME = 0.85185408E-02 DT = 0.48105376E-02 SUM OF SQUARES = 0.00
CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.78160014E-05 AND 0.7816
POSITION OF INTERFACE PEARLITE / AUSTENITE IS 0.67030128E-07
U-FRACTION IN SYSTEM: C = .02338433203030517 FE = .990707670399295
MM = .00929232973121269
TOTAL SIZE OF SYSTEM: 2.68092626329E-13 [m^3]
                                                                                                                                                                                                                                   0.78160014E-05
  TOTAL SIZE OF SYSTEM: 2.68092626329E-13 [m^3]

CPU time used in timestep

1 GRIDPOINT(S) REMOVED FROM CELL# 1 REGION # 1

TIME = 0.18139616E-01 DT = 0.96210753E-02 SUM OF SQUARES = 0.0000000

CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.78391943E-05 AND 0.78391943E-05

POSITION OF INTERFACE PEARLITE / AUSTENITE IS 0.14245161E-06

U-FRACTION IN SYSTEM: C = .0233843320030517 FE = .990707670399294

MN = .00929232973121268

TOTAL SIZE OF SYSTEM: 2.68092626329E-13 [m^3]

CPU time used in timestep
   0.0000000
                                                                                                                                                                                                                                   0.78856550E-05
                                                                                                                                                                                    0.29418857E-06
                                                                                                                                                                                                 .990707670399294
  TOTAL SIZE OF SYSTEM: 2.68092626329E-13 [m^3]

CPU time used in timestep 1 seconds

TIME = 0.75866068E-01 DT = 0.38484301E-01 SUM OF SQUARES = 0.0000000

CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.79788730E-05 AND 0.79788730E-05

POSITION OF INTERFACE PEARLITE / AUSTENITE IS 0.60124992E-06

U-FRACTION IN SYSTEM: C = .0233843320030516 FE = .990707670399294

MN = .00929232973121267

TOTAL SIZE OF SYSTEM: 2.68092626329E-13 [m^3]
        CPU time used in timestep 0 seconds 1 GRIDPOINT(S) REMOVED FROM CELL# 1 REGION # 1
   I GRIDPOINT(S) REMOVED FROM CELL# 1 REGION # 1
TIME = 0.15283647 DT = 0.75968602E-01 SUM OF SQUARES =
CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.81664786E-05 AND 0
POSITION OF INTERFACE PEARLITE / AUSTENITE IS 0.12298124E-05
U-FRACTION IN SYSTEM: C = .0233843320030516 FE = .99070767031
                                                                                                                                                                                                                                           0.0000000
                                                                                                                                                                                                                                   0.81664786E-05
                                                                                                                                                                                                .990707670399295
     TOTAL SIZE OF SYSTEM: 2.68092626329E-13 [m^3]
   TOTAL SIZE OF SISTEM: 2.08092020329E-13 [m*3]

CPU time used in timestep 0 seconds

TIME = 0.25283467 DT = 0.10000000 SUM OF SQUARES = 0.0000000

CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.84124940E-05 AND 0.84124940E-05

POSITION OF INTERFACE PEARLITE / AUSTENITE IS 0.20710618E-05

U-FRACTION IN SYSTEM: C = .0233843320030516 FE = .990707670399295
```

output ignored ...

... output resumed

```
WORKSPACE RECLAIMED
 INFO: CELL
              1 REGION AUSTENITE
                                    DELETED
                       C = .0233843320030516 FE = .990707670399324
MN = .00929232973118255
U-FRACTION IN SYSTEM:
TOTAL SIZE OF SYSTEM: 2.68087982114E-13 [m<sup>3</sup>]
U-FRACTION IN SYSTEM: C = .0233843320030516
MN = .00929232973118255
TOTAL SIZE OF SYSTEM: 2.68087982114E-13 [m^3]
TIME = 3.2743779 DT = 0.10000000E-04 SUM OF SQUARES = 0.000
U-FRACTION IN SYSTEM: C = .023384332030516 FE = .990707670399324
MN = .00929232973118255
                                                                   0.0000000
TOTAL SIZE OF SYSTEM: 2.68087982114E-13 [m^3]
TOTAL SIZE OF SYSTEM: 2.08U8/98Z114E-13 [m^3]

CPU time used in timestep 0 seconds

TIME = 3.2843779 DT = 0.10000000E-01 SUM OF SQUARES = 0.000

U-FRACTION IN SYSTEM: C = .0233843320030516 FE = .990707670399324

MN = .00929232973118255
                                                                  0.0000000
0.0000000
0.0000000
CPU time used in timestep 0 seconds
TIME = 3.5843779 DT = 0.10000000 SUM OF SQUARES = 0.00
U-FRACTION IN SYSTEM: C = .0233843320030516 FE = .990707670399324
MN = .00929232973118255
                                                                  0.0000000
0.0000000
0.0000000
MN = .009Z9Z3Z9/3110233
TOTAL SIZE OF SYSTEM: 2.68087982114E-13 [m^3] 0 seconds
0.0000000
MN = .009Z9Z3Z9/3J10233
TOTAL SIZE OF SYSTEM: 2.68087982114E-13 [m^3] 0 seconds
0.0000000
MN = .009Z9Z3Z9/3110233
TOTAL SIZE OF SYSTEM: 2.68087982114E-13 [m^3] 0 seconds
0.0000000
0.0000000
TOTAL SIZE OF STSIEM: 2.00007922132 10 (...)
CPU time used in timestep 0 seconds
TIME = 4.2843779 DT = 0.10000000 SUM OF SQUARES = 0.001
U-FRACTION IN SYSTEM: C = .0233843320030516 FE = .990707670399324
MN = .00929232973118255
                                                                  0.0000000
CPU time used in timestep 0 seconds
TIME = 4.3843779 DT = 0.10000000 SUM OF SQUARES = 0.00
U-FRACTION IN SYSTEM: C = .0233843320030516 FE = .990707670399324
MN = .00929232973118255
                                                                  0.0000000
0.0000000
0.0000000
MN = .009292325733100000
TOTAL SIZE OF SYSTEM: 2.68087982114E-13 [m^3]
0.0000000
CPU time used in timestep 0 seconds
TIME = 4.7843779 DT = 0.10000000 SUM OF SQUARES = 0.000
U-FRACTION IN SYSTEM: C = .0233843320030516 FE = .990707670399324
                                                                  0.0000000
      TION IN SYSTEM: C = .023384332U05010 11 ... MN = .00929232973118255

SIZE OF SYSTEM: 2.68087982114E-13 [m^3]

0 seconds
CPU time used in timestep 0 seconds
TIME = 4.8843779 DT = 0.10000000 SUM OF SQUARES = 0.000
U-FRACTION IN SYSTEM: C = .0233843320030516 FE = .990707670399324
MN = .00929232973118255
TOTAL SIZE OF SYSTEM: 2.68087982114E-13 [m^3]
```

```
DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                            4.1843779
                                                            4.2843779
4.3843779
                                                            4.4843779
4.5843779
                                                            4.6843779
                                                            4.7843779
4.8843779
 KEEPING TIME-RECORD FOR TIME AND FOR TIME
                                                      4.9843779
5.0000000
  WORKSPACE RECLAIMED
 TIMESTEP AT
                        5.00000000 SELECTED
DIC>
DIC> 00 THE SIMULATION IS FINISHED DIC> 00
DIC>
DIC> set-inter
  --OK---
```

exe1-plot

```
DIC>About
NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exe1\plot.DCM DIC>
DIC>
DIC> @@ exe1_plot.DCM
DIC>
\overline{\text{DIC}}\text{>}\ \mbox{\for} Generating graphical output for example e1 \overline{\text{DIC}}\text{>}\ \mbox{\for}
DIC>
DIC> @@
DIC> 00 GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> 00 DIC> go d-m
TIME STEP AT TIME 5.00000E+00
DIC> read exel
 OK
DIC>
POST PROCESSOR VERSION 1.7
Implemented by Bjorn Jonsson
POST-1:
POST-1: @@
POST-1: @@ PLOT THE TEMPERATURE AS A FUNCTION OF TIME
POST-1: @@
POST-1: s-d-a x time
INFO: Time is set as independent variable
POST-1: s-d-a y t
POST-1: s-p-c interface first
POST-1:
POST-1:
POST-1: SET_EXP_FILE FORMAT 3
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
ORKING ...
POST-1:
                           OST-1: SET_EXP_FILE_FORMAT 10
POST-1: plot
        900
        895
        890
        885
        880
     ⊢ 875
        870
        865
        860
        855
        850
                                                                                                          5.0
            0.0
                     0.5
                              1.0
                                        1.5
                                                 2.0
                                                           2.5
                                                                    3.0
                                                                             3.5
                                                                                       4.0
                                                                                                4.5
                                                          Time
POST-1:
POST-1:
POST-1:
POST-1:Hit RETURN to continue
POST-1:
POST-1: @@
POST-1: 00 NOW PLOT THE FRACTION OF PEARLITE VS. TIME POST-1: 00
POST-1: s-d-a y ivv(pearlite)
POST-1:
POST-1:
POST-1:
POST-1:
SET_EXP_FILE_FORMAT 3
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
ORKING ... OST-1: SET_EXP_FILE_FORMAT 10
```

```
1.0
          0.9
          0.8
          0.7
     IW(PEARLITE)
          0.3
          0.2
          0.1
          0.0
             0.0
                        0.5
                                   1.0
                                              1.5
                                                         2.0
                                                                    2.5
                                                                               3.0
                                                                                          3.5
                                                                                                     4.0
                                                                                                                 4.5
                                                                                                                            5.0
                                                                   Time
POST-1:
POST-1:
POST-1:
POST-1:Hit RETURN to continue
POST-1:
POST-1: 00 PLOT THE LAMELLAR SPACING AS A FUNCTION OF TIME
POST-1: 00
POST-1: s-d-a
AXIS (X, Y OR Z): y
VARIABLE: lamellar-sp
IN REGION: /*/: pearlite
POST-1:
POST-1: s-p-c
CONDITION /INTEGRAL/: interface
INTERFACE : pearlite
UPPER OR LOWER INTERFACE OF REGION PEARLITE#1 /LOWER/: upper
POST-1:
POST-1:
POST-1: SET_EXP_FILE_FORMAT 3

POST-1: SET_EXP_FILE_FORMAT 3

POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y

ORKING ... OST-1: SET_EXP_FILE_FORMAT 10
POST-1: plot
          1.25
    ×10<sup>-7</sup>
           1.2
          1.15
      Lamellar spacing
           1.1
          1.05
          0.95
           0.9
         0.85
              0.0
                         0.5
                                    1.0
                                               1.5
                                                          2.0
                                                                     2.5
                                                                                3.0
                                                                                           3.5
                                                                                                     4.0
                                                                                                                 4.5
                                                                                                                            5.0
                                                                    Time
POST-1:
POST-1:
POST-1:Hit RETURN to continue
POST-1:
POST-1: @@
POST-1: @@ LET'S LOOK AT THE LAMELLAR SPACING VS. TEMPERATURE INSTEAD
POST-1: @@
POST-1: s-d-a x t
POST-1:
POST-1: s-p-c interface pearlite upper
POST-1:
POST-1:
POST-1: SET_EXP_FILE_FORMAT 3
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
ORKING ... OST-1: SET_EXP_FILE_FORMAT 10
POST-1:
POST-1: plot
```

```
1.25
   ×10<sup>-7</sup>
           1.2
          1.15
      Lamellar spacing
           1.1
          1.05
          0.95
           0.9
          0.85 -
              850
                         855
                                    860
                                               865
                                                           870
                                                                                            885
                                                                                                        890
                                                                                                                   895
                                                                                                                              900
                                                                      875
                                                                                 880
                                                                       Т
POST-1:
POST-1:
POST-1:
POST-1:Hit RETURN to continue
POST-1:
{\bf POST-1}\colon 00 AND THE C COMPOSITION IN THE FERRITE VS. TEMP {\bf POST-1}\colon 00
POST-1: s-d-a y w(bcc,c)
POST-1:
POST-1:
POST-1:
POST-1: SET_EXP_FILE_FORMAT 3

POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y

ORKING ... OST-1: SET_EXP_FILE_FORMAT 10
ORKING ...
POST-1:
POST-1: plot
  ×10<sup>-5</sup>
          9.6
          9.4
     M(BCC,C)
            9
          8.8
          8.6
            850
                        855
                                   860
                                               865
                                                          870
                                                                     875
                                                                                 880
                                                                                            885
                                                                                                       890
                                                                                                                   895
                                                                                                                              900
                                                                      Т
POST-1:
POST-1:
POST-1:
POST-1:Hit RETURN to continue
POST-1: @@
POST-1: 00 FINALLY, LET'S LOOK AT THE VELOCITY OF THE INTERFACE VS. TEMP POST-1: 00
POST-1: s-d-a y t
POST-1: s-d-a x velocity
POST-1: s-d-a x velocity
INTERFACE : pearlite
UPPER OR LOWER INTERFACE OF REGION PEARLITE#1 /LOWER/: upper
POST-1: set-ax-ty x log
POST-1: s-s-s x n le-6 le-4
POST-1:
POST-1
POST-1: POST-1: SET_EXP_FILE_FORMAT 3

POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y

ORKING ... OST-1: SET_EXP_FILE_FORMAT 10

POST-1:
POST-1: plot
```


Coarsening

Moving phase interface with α and β in local equilibrium.

 $\frac{2\sigma V_m}{r} \mbox{ Interfacial energy} \\ contribution for α phase$

Equilibrium as defined by the average composition in the system.

 $\frac{2\sigma V_m}{r_p} \mbox{ Interfacial energy} \\ \mbox{contribution for } \alpha \mbox{ phase}$

Example exf1

Coarsening of an M₆C precipitate in an Fe-Mo-C alloy

This example calculates the Ostwald-ripening of a spherical M6C carbide in an austenite matrix.

$$T = 1173K$$

$$r_p$$
= 0.228 μm

exf1-setup

SYS: About

```
Thermo-Calc / DICTRA is software package for calculation of phase diagrams, simulation of phase transformation kinetics and much more.
 Copyright Foundation for Computational Thermodynamics,
 Stockholm, Sweden
 Software running on Windows 64-bit wordlength
 Compiler: unknown compiler
License library version: 9.7.0.0036
Linked: Fri Oct 18 11:32:56 2024
SYS:SYS:MACRO exf1\setup.DCM
SYS: @@
SYS: @@ Coarsening problem.
SYS: 00 Coarsening of M6C precipitate in an Fe-Mo-C alloy
SYS: 00 This example calculates the Ostwald-ripening of a spherical
SYS: 00 M6C carbide in an austenite matrix.
 NO SUCH COMMAND, USE HELP
SYS: @@
SYS: @@ RETRIEVE DATA FROM THE DATABASES
SYS: @@
SYS: go da
15:25:51,107 [Thread-0] INFO LicenseManager: Initializing user: jenkins.integrationtest@thermocalc.se
15:25:51,122 [Thread-0] INFO LicenseController: Running License Spring in DEV environment.
15:25:52,170 [Thread-0] INFO LicenseManager: There is an activated standalone license for jenkins.integrationtest@thermocalc.se for TC-
Application
  THERMODYNAMIC DATABASE module
  Database folder:
 C:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples\databases\da
 Current database: Steels/Fe-Alloys v12.0
VA /- DEFINED DETTAL TO DEFINED TOB_TCFE12: switch TCFE9
Current database: Steels/Fe-Alloys v9.3
                                        /- DEFINED
                                                                          DICTRA_FCC_A1
 L12 FCC
                                       B2 BCC
    REJECTED
TDB_TCFE9: def-sys fe mo c
    DEFINED
TDB_TCFE9: rej ph * all
  GAS:G
                                       LIQUID:L
                                                                             BCC A2
 FCC_A1
CUB_A13
                                       HCP_A3
DIAMOND_FCC_A4
                                                                             CBCC_A12
GRAPHITE
                                                                            M7C3
M3C2
 CEMENTITE
                                       M23C6
 M6C
MC_ETA
Z_PHASE
SIGMA
                                       M5C2
MC_SHP
                                                                            KSI_CARBIDE
FECN CHI
                                       FE4N_LP1
MU_PHASE
                                                                             P_PHASE
                                                                            LAVES_PHASE_C14
 R PHASE
                                       CHI A12
R_PHASE
AL5FE4 REJECTED

TDB_TCFE9: res ph fcc m6c
FCC_A1

TDB_TCFE9: get
                                       M6C RESTORED
15:25:53,618 [Thread-0] INFO JavaWrapper: *** Invoking Gibbs Energy System v6 *** REINITIATING GES .....
 ELEMENTS ..... SPECIES .....
 PHASES ......
PARAMETERS ...
 FUNCTIONS ....
 Use the command LIST_REFERENCES to see the list of references for assessed data
  -OK-
TDB_TCFE9: @@
TDB TCFE9: @@ SWITCH TO A MOBILITY DATABASE TO RETRIEVE MOBILITY DATA
TDB_TCFE9: @@
TDB TCFE9: app
  Use one of these databases
 TCFE12 = Steels/Fe-Alloys v12.0
TCFE9 = Steels/Fe-Alloys v9.3
SSUB6 = SGTE Substances v6.0
 SSUB6 = SGTE Substances v6.0

FEDEMO = Iron Demo Database v5.0

MOB2 = Alloys Mobility v2.7

MOBFE2 = Steels/Fe-Alloys Mobility v2.0

MOBFE4 = Steels/Fe-Alloys Mobility v4.0

MOBFE7 = Steels/Fe-Alloys Mobility v7.1

MFEDEMO = Fe-Alloys Mobility demo database v4.0

USER = User defined Database
DATABASE NAME /TCFE9/: mobfe4
 Current database: Steels/Fe-Alloys Mobility v4.0
 VA DEFINED
B2_BCC REJECTED

APP: def-sys fe mo c
 FE
    DEFINED
APP: rej ph * all
BCC A2
                                       CEMENTITE
                                                                            FCC A1
 FE4N_LP1
REJECTED
                                      HCP_A3
                                                                            T.TOUTD.T.
APP: res ph fcc m6c

*** ERROR M6C INPUT IGNORED
FCC_A1 RESTORED
APP: get
 ELEMENTS ....
  SPECIES .....
  PHASES .....
  PARAMETERS ...
```

```
Use the command LIST_REFERENCES to see the list of references for assessed data
  -OK-
APP:
 APP:
APP: @@ ENTER THE DICTRA MONITOR APP: @@
APP: go d-m
15:25:55,591 [Thread-0] INFO StandaloneLicenseController: Checking out license for: Diffusion (DICTRA)
NO TIME STEP DEFINED
*** ENTERING M6C AS A DIFFUSION NONE PHASE
DIC>
 DIC> @@
DIC> @@ ENTER THE GLOBAL CONDITION T
DIC> s-cond glob t 0 1173; * N
DIC>
DIC> 00
DIC> 00 ENTER REGIONS part AND aus
DIC> @@
DIC> enter-region
REGION NAME : part
DIC> enter-region aus
ATTACH TO REGION NAMED /PART/:
ATTACHED TO THE RIGHT OF PART /YES/:
DIC> @@
DIC> @@ ENTER GEOMTRICAL GRIDS INTO THE REGIONS
 DIC> @@
DIC>
 DIC> @@
DIC> 00 THE INITIAL SIZE OF THE CARBIDE PARTICLE IS ASSUMED TO BE KNOWN
DIC> 00 (IN THIS CASE THE VALUE IS FROM NISHIZAWA ET. AL.). THE
DIC> 00 AVERAGE PARTICLE SIZE IS ASSUMED TO BE 0.152E-6 METERS. HOWEVER, THE
DIC> 00 CALCULATIONS ARE PERFORMED ON A MAXIMUM SIZE PARTICLE, WHICH IS ASSUMED
DIC> @@ TO BE 1.5 TIMES THE AVERAGE SIZE. THE SURROUNDING AUSTENITIC MATRIX DIC> @@ SIZE IS CHOOSEN TO MAINTAIN THE AVERAGE COMPOSITION.
DIC> 00
DIC> enter-grid
REGION NAME : /PART/: part
WIDTH OF REGION /1/: 0.228E-6
 TYPE /LINEAR/: AUTO
DIC>
DIC> enter-grid
REGION NAME : /AUS/: aus
WIDTH OF REGION /1/: 4.53147041E-7
 TYPE /LINEAR/: AUTO
DIC>
DIC> @@
DIC> @@ ENTER PHASES INTO REGIONS
DIC> @@
DIC> enter-phase active part matrix m6c
DIC> enter-phase active aus matrix fcc#1
DIC>
DIC> @@ ENTER THE INITIAL COMPOSITIONS IN THE PHASES
DIC> 00 DIC> 000 DIC>
COMPOSITION TYPE /MOLE_FRACTION/: w-f
PROFILE FOR /MO/: mo lin 6.20117E-01 6.20117E-01
DIC> ent-composition
PHASE NAME: /AUS/: aus
PHASE NAME: /FCC_A1/: fcc#1
DEPENDENT COMPONENT ? /MO/: fe
COMPOSITION TYPE /MOLE_FRACTION/: w-f
PROFILE FOR /C/: mo lin 1.82099E-02 1.82099E-02
PROFILE FOR /MO/: c lin 2.83351E-03 2.83351E-03
DIC>
DIC>
DIC> @@
DIC> @@ SET A SPHERICAL GEOMETRY
DIC> @@
DIC> ent-geo 2
DIC>
\tt DIC> 00 Enter the surface tension energy contribution as a function of \tt DIC> 00 The interface position (the radius of the particle).
DIC> @@ ALSO ENTER THE MOLAR VOLUME OF THE PHASE CORRECTED TO BE THE
DIC> @@ MOLAR VOLUME PER SUBSTITIONAL ATOM.
DIC> @@
DIC> 00 THE SURFACE TENSION IS 0.7, THE MOLAR VOLUME IS 0.71 AND THE
DIC> @@ TRANSFORMATION TO MOLAR VOLUME PER SUBSTITIONAL ATOM IS 7/6. DIC> @@  
DIC> set-surf 2*0.7*0.71*(7/6)/X;
ENTERED FUNCTION :2*.7*.71*7/6/X FOR CELL #1
DIC>
DIC> @@ ENABLE THE SIMPLIFIED MODEL FOR THE COARSENING (OSTWALD-RIPENING)
 DIC> @@
DIC> coarse YES
DIC>
DTC>
DIC> @@
\mbox{DIC>} @@ SET THE SIMULATION TIME AND OTHER SIMULATION PARAMETERS \mbox{DIC>} @@
DIC> set-simulation-time 1E6
AUTOMATIC TIMESTEP CONTROL /YES/:
MAX THESTEP DURING INTEGRATION /100000/:
INITIAL TIMESTEP: /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP: /1E-07/:
DIC>
```

DIC> @@ SAVE THE SET UP TO A NEW STORE FILE AND EXIT DIC> @@ DIC> save exfl Y DIC> DIC> set-inter _-OK--- DIC>

```
NO SUCH COMMAND, USE HELP
 DIC>DIC>MACRO exf1\run.DCM DIC> @@ exf1 run.DCM
DIC>
DIC> @@ READ THE SETUP FROM FILE AND START THE SIMULATION
 DIC> @@
DIC>
 DIC> go d-m
  TIME STEP AT TIME 0.00000E+00

*** ENTERING M6C AS A DIFFUSION NONE PHASE
 DIC> read exf1
OK
DIC> sim
   Region: PART
                                  0.719099
                                                                 dense at 0.228000E-06 99 points
   geometric
   Region: AUS
                                       1.05435
                                                                        dense at
                                                                                                           0.00000
   DEGREE OF IMPLICITY SET TO TRAPEZOIDAL RULE
Trying old scheme
                                                                                                                                                                                                                          DONE 6 OUT OF
2.564838682333877E-002
                                                                                                                                                 0.610226132878211
                                                                                                                                                                                                                                                                                                             2.189939524589856E-
                                                                                                                                                                                                                                                                           2.517633807956219E-
8.208470533441581E-
                                                                                                                                                                                                       1.218178721768246E-004
4.788525779255918E-009
 ULU 3.676297630615314E-010 7.952758759922585E-011 3.687325852901084E-014
019 TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.33271373E-18
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.33648562E-05 AND -0.33648562E-05
POSITION OF INTERFACE PART / AUS IS 0.22799966E-06
U-FRACTION IN SYSTEM: C = 0.190658079671791 FE = 0.970759854855068
MO = 0.0292401452754388
TOTAL SIZE OF SYSTEM: 1.32376016937E-18 [m^3]
12 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: PART
                                                                                                                                                                                                          3.414650428994940E-009
                                                                                                                                                                                                                                                                                               5.878095774070730E-
                                                                                                                                                                                                                                                                                               3.588852654267949E-
     CPU time used in timestep 2 Seconds 2.502011428410655E-005 2.502542753393348E-005 2.502542753393348E-017 2.034526710974865E-017
                                                                                                                                                 seconds
005 2.501395573147565E-005
CWITCHING ACTI
   2.502011428410655E-005 2.5029
07 3.589706400460076E-012
                                                                                                                                                                                                                                                                                                                                                      1.565931414482499E-
                                                                                                                                                                                                      SWITCHING ACTIVITIES FOR INTERFACE #2, CELL #1
  FROM: C TO: MO
TIME = 0.11986832E-05 DT = 0.10986832E-05 SUM OF SQUARES = 0.20314210E-16
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.53640186E-08 AND -0.53640186E-08
FOSITION OF INTERFACE PART / AUS IS 0.22799966E-06
U-FRACTION IN SYSTEM: C = .019066137551205 FE = .970759852766409
MO = .0292401473640975
TOTAL SIZE OF SYSTEM: 1.32376006672E-18 [m^3]
CPU time used in timestep 1 seconds
4.168511413044171E-008 4.169572472887800E-008 4.134060969262297E-008 1.321582351576341E-009 1.250003026153813E-
009 1.112310125600152E-009 8.613791096708145E-010 8.615258426197119E-010 4.552183932425979E-
010 2.808156382933142E-011 7.761149409047003E-017 TIME = 0.33960497E-05 DT = 0.21973664E-
TOTAL SIZE OF SYSTEM: 1.323/0003021E-10 [18 3]
CPU time used in timestep 0 seconds
8.617044278903503E-010 8.618851750855182E-010 8.798975513258887E-010 7.986939323110455E-010 7.971970954187355E-
010 7.942100180876864E-010 7.882168705758153E-010 7.882200457706786E-010 7.763334285740979E-
010 7.528033379241208E-010 7.068617315251412E-010 7.082747798572400E-010 6.192881314034981E-
010 4.615323619756609E-010 2.154560731003840E-010 2.165308435278966E-010 1.142576288744393E-
010 0.61532361975609E-010 2.154560731003840E-010 2.165308435278966E-010 1.142576288744393E-
010 0.61532361975609E-010 2.154560731003840E-010 2.165308435278966E-010 0.53260910E-22
 010
  1.14257628744393E-
1.14257628744394E-
1.14257628744394E-
1.14257628744493E-
1.14257628744493E-
1.14257628744494-
1.14257628744-
 010
  CELL # 1 VELOCITY AT INTERFACE # 2 15 -0.10.000...

POSITION OF INTERFACE PART / AUS IS 0.22799966E-06

U-FRACTION IN SYSTEM: C = .0190670799729191 FE = .970759852768178

MO = .0292401473623295

TOTAL SIZE OF SYSTEM: 1.32376002342E-18 [m^3]

CONTAIN used in timestep 1 seconds
  CPU time used in timestep 1 se
4.352313273852556E-011 4.353030179273932E-011
output ignored ...
2.U55568706087755E-011 2.415633539231364E-011 8.276071234257102E-013
023 TIME = 651001.87 DT = 100000.00 SUM OF SQUARES = 0.59772063E-22
CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.22741005E-13 AND 0.22741005E-13
POSITION OF INTERFACE PART / AUS IS 0.24360160E-06
U-FRACTION IN SYSTEM: C = .0195560141241856 FE = .970692207011243
MO = .0293077931192632
TOTAL SIZE OF SYSTEM: 1.6145336252E-18 [m^2]
18 GRIDPOINT(S) REMOVED TOTAL 17 COTA
                                                                                                                                                                                                                                                                 6.399087123628197E-014
                                                                                                                                                                                                                                                                                                                                                  6.793348128548265E-
     18 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: PART
17 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: AUS
 6.665993764812200E-
     CPU time used in timestep
                                                                                                                                                 seconds
CPU time used in timestep 1 seconds
5.048861318933851E-012 5.105914105529700E-012 6.732216105761729E-012 2.393338756081908E-012
012 6.058104325457034E-013 3.026363883286354E-
022 TIME = 851001.87 DT = 100000.00 SUM OF SQUARES = 0.13688634E-23
CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.21920390E-13 AND 0.21920390E-13
POSITION OF INTERFACE PART / AUS IS 0.24802577E-06
U-FRACTION IN SYSTEM: C = .0195609607450678 FE = .970695754580921
MO = .0293042455495858
                                                                                                                                                                                                                                                                                                                                                 1.709134423325863E-
```

```
TOTAL SIZE OF SYSTEM: 1.70410788906E-18 [m^3]
   25 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: PART 26 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: AUS
CPU time used in timestep 0 seconds
3.957557668768415E-012 3.814628526865988E-012 4.790207553171515E-012 3.345448982654202E-012
012 2.161112271217530E-012 8.448860052476941E-013 5.271705057892456E-
019 TIME = 951001.87 DT = 100000.00 SUM OF SQUARES = 0.22641349E-20
CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.21537016E-13 AND 0.21537016E-13
POSITION OF INTERFACE PART / AUS IS 0.25017947E-06
U-FRACTION IN SYSTEM: C = .0195633282771205 FE = .970697476918075
MO = .0293025232124324

TOTAL SIZE OF SYSTEM: 1.7488667212E-18 [m^3]
13 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: PART
12 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: AUS
                                                                                                                                                                                                                2.947447994739933E-
012
019
 9.885666630790687E-
 WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                           0.0000000
                                                       0.10000000E-06
0.11986832E-05
  DELETING TIME-RECORD FOR TIME
                                                         0.33960497E-05
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                         0.77907826E-05
0.16580248E-04
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                         0.34159180E-04
0.69317043E-04
  DELETING TIME-RECORD FOR TIME
                                                         0.13963277E-03
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                         0.28026422E-03
0.56152713E-03
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                         0.11240529E-02
0.22491046E-02
  DELETING TIME-RECORD FOR TIME
                                                         0.44992078E-02
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                         0.89994143E-02
                                                         0.17999827E-01
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                         0.36000653E-01
                                                         0.72002305E-01
  DELETING TIME-RECORD FOR TIME
                                                         0.14400561
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                         0.57602543
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                           1.1520519
  DELETING TIME-RECORD FOR TIME
                                                           4.6082104
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                           18.432845
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                           36.865691
                                                           73.731382
  DELETING TIME-RECORD FOR TIME
                                                           147 46277
  DELETING TIME-RECORD FOR TIME
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                           589.85106
                                                           1179.7021
2359.4043
  DELETING TIME-RECORD FOR TIME
                                                           4718.8085
  DELETING TIME-RECORD FOR TIME
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                           18875.234
                                                           37750.468
                                                            75500.936
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                           151001.87
251001.87
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                           351001.87
                                                           451001.87
551001.87
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                           651001.87
 DELETING TIME-RECORD FOR TIME
                                                          851001.87
  KEEPING TIME-RECORD FOR TIME 951001.87
  AND FOR TIME
                                                        1000000 0
  WORKSPACE RECLAIMED
 TIMESTEP AT 1000000.00 SELECTED
DTC>
DIC>
DIC> set-inter
```

--OK---

exf1-plot

```
NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exf1\plot.DCM DIC> @@ exf1_plot.DCM
DIC>
DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE f1
DIC> @@
DIC>
DIC> @@
DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 1.00000E+06
*** ENTERING M6C AS A DIFFUSION NONE PHASE
DIC> read exf1
 OK
DIC> @@
DIC> @@ GO TO THE POST PROCESSOR
DIC> 00
DIC> post
  POST PROCESSOR VERSION 1.7
Implemented by Bjorn Jonsson
POST-1: @@
POST-1: @@ PLOT THE AVERAGE PARTICLE SIZE (CUBED) AS THIS ASSUMED TO
POST-1: @@ SCALE LINEARLY WITH TIME. THEN A FUNCTION IS ENTERED SO POST-1: @@ THIS QUANTITY CAN BE ACCESSED. WE ALSO WANT TO PLOT THIS
POST-1: @@ QUANTITY VERSUS TIME (IN HOURS) SO A FUNCTION IS ENTERED.
POST-1: enter-symbol func rr3=(poi(part,u)/1.5)**3;
POST-1: enter-symbol func hours=time/3600;
POST-1: s-d-a x hours
POST-1: s-d-a y rr3
POST-1: @@
POST-1: 00 AS WE ARE PLOTTING FUNCTIONS ON BOTH AXES WE MUST EXPLICITLY POST-1: 00 DEFINE THE INDEPENDENT VARIABLE AND THE PLOT CONDITION
POST-1: @@
POST-1: s-ind time
 POST-1: s-p-c inter
INTERFACE : part upper
POST-1:
POST-1:
POST-1: set-axis-text-status x n
AXIS TEXT : Time [h]
POST-1:
POST-1: @@
POST-1: 00 WHEN THIS IS PLOTTED, THIS AXIS TEXT NOTATION WORKS WELL FOR
POST-1: 00 THE AVERAGE RADIUS CUBED. FOR MORE INFORMATION ABOUT HOW TO
POST-1: 00 ADJUST TEXT IN THE POST PROCESSOR USING THE DATAPLOT LANGUAGE,
POST-1: 00 SEARCH THE ONLINE HELP (FROM THE MAIN MENU -> HELP > ONLINE HELP)
POST-1:
POST-1:
POST-1: set-axis-text-status y n
 AXIS TEXT : \latex r^3\, [m^3]
POST-1:
POST-1:
POST-1: @@
POST-1: @@ COMPARE WITH EXPERIMENTAL DATA FROM NISHIZAWA ET AL.
POST-1: @@ TRANS. JPN. INST. MET. VOL. 22 1981 PP. 733-742.
POST-1: @@
POST-1:
POST-1: app y exf1
PROLOGUE NUMBER: /0/: 0
DATASET NUMBER(s): /-1/: 1
POST-1: POST-1: s-s-s y n 0 6e-21
POST-1:
POST-1: @@
 POST-1: @@ SET A TITLE ON THE PLOT
POST-1: @@
POST-1: set-title Figure f1.1
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
             OST-1: SET_EXP_FILE_FORMAT 10
POST-1:
POST-1: plot
```



```
POST-1:
POST-1:00  

POST-1:00
```


Kinetic Data

Example exg1

Checking diffusivities in an Fe-Ni alloy

This is an example file to check the mobilities and diffusivities in an Fe-Ni alloy.

exg1-setup

SYS: About

```
Thermo-Calc / DICTRA is software package for calculation of phase diagrams, simulation of phase transformation kinetics and much more.
 Copyright Foundation for Computational Thermodynamics,
 Stockholm, Sweden
 Software running on Windows 64-bit wordlength
 Compiler: unknown compiler
License library version: 9.7.0.0036
Linked: Fri Oct 18 11:32:56 2024
SYS:SYS:MACRO exg1\setup.DCM
SYS: @@
SYS: @@ Kinetic data example.
SYS: 00 Checking mobilities and diffusivities in an Fe-Ni alloy SYS: 00 This is an example file to check the mobilities and diffusivities
SYS: 00 in an Fe-Ni allov.
 NO SUCH COMMAND, USE HELP
SYS: 00 exg1 setup.DCM
SYS: @@
{\bf SYS}\colon 00 START BY GOING TO THE DATABASE MODULE {\bf SYS}\colon 00
SYS: go da
15:29:07,673 [Thread-0] INFO LicenseManager: Initializing user: jenkins.integrationtest@thermocalc.se
15:29:07,688 [Thread-0] INFO LicenseController: Running License Spring in DEV environment.
15:29:08,766 [Thread-0] INFO LicenseManager: There is an activated standalone license for jenkins.integrationtest@thermocalc.se for TC-
Application
 THERMODYNAMIC DATABASE module
 Database folder:
 C:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples\databases\da
 Current database: Steels/Fe-Alloys v12.0
 VA /- DEFINED
DICTRA_FCC_A1 REJECTED
TDB_TCFE12: @@
TDB_TCFE12: @@
SELECT A DATABASE FOR THERMODYNAMIC DATA
TDB_TCFE12: @@
TDB_TCFE12: sw fedemo
 Current database: Iron Demo Database v5.0
                                /- DEFINED
TDB_FEDEMO:
TDB_FEDEMO: @@
TDB FEDEMO: 00 DEFINE THE SYSTEM TO WORK WITH TDB FEDEMO: 00
TDB_FEDEMO: def-sys fe ni
FE NI DEFINED
TDB_FEDEMO: @@
\overline{\text{TDB}} fedemo: 00 exclude the thermodynamic data for the phases that are not needed \overline{\text{TDB}} fedemo: 00
TDB_FEDEMO: rej ph * all
BCC_A2
FCC_A1
                                  CBCC_A12
                             GAS:G
                                                                  HCP A3
TOB_FEDEMO: res ph fcc
FCC_A1 RESTORED
TDB_FEDEMO:
                                 LIQUID:L REJECTED
TDB_FEDEMO: @@
TDB FEDEMO: @@ RETRIEVE DATA FROM THE DATABASE FILE
TDB_FEDEMO: @@
TDB FEDEMO: get
15:29:09,858 [Thread-0] INFO JavaWrapper: *** Invoking Gibbs Energy System v6 *** REINITIATING GES .....
 ELEMENTS ....
 SPECIES .....
 PHASES ......
PARAMETERS ...
 FUNCTIONS ....
 Use the command LIST_REFERENCES to see the list of references for assessed data
 -OK-
TDB_FEDEMO: @@
TDB FEDEMO: @@ MOBILITY/DIFFUSIVITY DATA ARE STORED IN A SEPARATE DATABASE FILE.
TDB_FEDEMO: @@ SWITCH TO A MOBILITY DATABASE TO RETRIEVE DATA
TDB_FEDEMO: @@
TDB FEDEMO: app
 Use one of these databases
 TCFE12 = Steels/Fe-Alloys v12.0
TCFE9 = Steels/Fe-Alloys v9.3
SSUB6 = SGTE Substances v6.0
FEDEMO = Iron Demo Database v5.0
MOB2 = Alloys Mobility v2.7
MOBFE2 = Steels/Fe-Alloys Mobility v4.0
MOBFE4 = Steels/Fe-Alloys Mobility v4.0
MOBFE7 = Steels/Fe-Alloys Mobility v7.1
 MFEDEMO = Fe-Alloys Mobility demo database v4.0
USER = User defined Database
DATABASE NAME /FEDEMO/: mfedemo
Current database: Fe-Alloys Mobility demo database v4.0
 VA DEFINED
APP: def-sys fe ni
                              NI DEFINED
 FE
APP: rej ph * all
                                 FCC_A1
                                                                  LIQUID:L
 BCC
    REJECTED
APP: res ph fcc
```

```
FCC_A1 RESTORED
APP: get
 ELEMENTS ....
 SPECIES .....
 PHASES .....
 PARAMETERS ...
 Use the command LIST_REFERENCES to see the list of references for assessed data
 -OK-
APP: @@
APP: @@ ENTER THE DICTRA MONITOR WHERE THE SYSTEM IS SET UP
APP: @@
APP: go d-m
15:29:10,368 [Thread-0] INFO StandaloneLicenseController: Checking out license for: Diffusion (DICTRA) NO TIME STEP DEFINED
DIC> @@
DIC> @@ CHECK THE DIFFUSIVITES
DIC> @@
DIC> check-diffusion-matrix
OUTPUT TO SCREEN OR FILE /SCREEN/:
PHASE NAME : fcc
DEPENDENT COMPONENT ? /NI/: fe
CONCENTRATION OF NI IN U-FRACTION /1/: 0.3
Pressure /10000/: 101325
Temperature /298.15/: 1409
OPTION ( dlpbmx0ez or * ) /D/: dl
 Dkj (reduced ..
k / j NI
NI +4.86136E-15
L0kj = Uk*Mvak IF (kES) ELSE Uk*Yva*Mvak
k / j FE NI
1 00113E-19
  Dkj (reduced n=FE)
  Volume = 1.0000000000000E-005
DTC>
DIC>
DIC>@?<Hit_return_to_continue>
DIC>
DIC> @@
DIC> 00 USE STEPPING IN POLY-3 TO CALCULATE THE DIFFUSIVITIES VS. COMPOSITION
DIC> @@
DIC> ao p-3
15:29:10,640 [Thread-0] INFO StandaloneLicenseController: Checking out license for: Thermo-Calc 15:29:10,831 [Thread-0] INFO StandaloneLicenseController: Releasing license for: Diffusion (DICTRA)
POLY: s-c t=1409,p=101325,n=1,x(ni)=0.3 POLY: c-e
 Using global minimization procedure
Calculated 209 grid points in
Calculated POLY solution 0 s, total time
POLY:
POLY: s-a-v
Axis number: /1/: 1
Condition /NONE/: x(ni)
Min value /0/: 0
Max value /1/: 1
Increment /.025/: 1e-3
POLY:
POLY: step
Option? /NORMAL/: normal
No initial equilibrium, using default
Step will start from axis value 0.3
...oK
 Phase Region from 0.300000
                                               for:
 FCC_A1
Global test at 3.08000E-01 .... OK
 Global test at
Global test at
                       3.18000E-01 ... OK
3.28000E-01 ... OK
                       3.38000E-01 .... OK
 Global test at
 Global test at
Global test at
                       3.48000E-01 ... OK
3.58000E-01 ... OK
 Global test at
Global test at
                       3.68000E-01 ... OK
3.78000E-01 ... OK
                       3.88000E-01 ... OK
3.98000E-01 ... OK
4.08000E-01 ... OK
 Global test at
 Global test at
 Global test at
 Global test at
Global test at
                       4.18000E-01 .... OK
                        4.28000E-01 .... OK
 Global test at Global test at
                       4.38000E-01 ... OK
4.48000E-01 ... OK
                       4.58000E-01 ... OK
4.68000E-01 ... OK
 Global test at
 Global test at
                        4.78000E-01 .... OK
 Global test at
 Global test at
Global test at
                       4.88000E-01 ... OK
4.98000E-01 ... OK
                       5.08000E-01 ... OK
5.18000E-01 ... OK
5.28000E-01 ... OK
 Global test at
 Global test at
 Global test at
 Global test at
Global test at
                        5.38000E-01 ... OK
5.48000E-01 ... OK
                       5.58000E-01 ... OK
5.68000E-01 ... OK
 Global test at
 Global test at
                        5.78000E-01 .... OK
 Global test at
 Global test at
Global test at
                        5.88000E-01 ... OK
5.98000E-01 ... OK
                       6.08000E-01 ... OK
6.18000E-01 ... OK
6.28000E-01 ... OK
 Global test at
 Global test at
 Global test at
 Global test at
Global test at
                        6.38000E-01 ... OK
6.48000E-01 ... OK
 Global test at
                        6.58000E-01 .... OK
                       6.68000E-01 .... OK
6.78000E-01 .... OK
 Global test at
 Global test at
 Global test at
Global test at
                      6.88000E-01 ... OK
6.98000E-01 ... OK
```

```
Global test at 7.08000E-01 .... OK
                      7.18000E-01 ... OK
7.28000E-01 ... OK
 Global test at
 Global test at
 Global test at
                       7.38000E-01 .... OK
                       7.58000E-01 .... OK
 Global test at
                       7.68000E-01 ... OK
7.78000E-01 ... OK
 Global test at
 Global test at
                       7.88000E-01 ... OK
7.98000E-01 ... OK
 Global test at
 Global test at
                       8.08000E-01 ... OK
8.18000E-01 ... OK
8.28000E-01 ... OK
 Global test at
 Global test at
 Global test at
                       8.38000E-01 ... OK
8.48000E-01 ... OK
 Global test at
 Global test at
                       8.58000E-01 ... OK
8.68000E-01 ... OK
8.78000E-01 ... OK
 Global test at
 Global test at
 Global test at
 Global test at
                       8.88000E-01 .... OK
 Global test at
                       9.08000E-01 .... OK
9.18000E-01 .... OK
9.28000E-01 .... OK
 Global test at
 Global test at
Global test at
                       9.38000E-01 ... OK
9.48000E-01 ... OK
 Global test at
 Global test at
                      9.58000E-01 ... OK
9.68000E-01 ... OK
9.78000E-01 ... OK
 Global test at
 Global test at
 Global test at
 Global test at
Global test at
                     9.88000E-01 ... OK
9.98000E-01 ... OK
 Terminating at 1.00000
Calculated 703 equilibria
Phase Region Flow FCC Al Global test at 2.92000E-01 ... OK Global test at 2.82000E-01 ... OK Global test at 2.72000E-01 ... OK Global test at 2.72000E-01 ... OK
 Phase Region from 0.300000 for:
 Global test at
Global test at
                      2.62000E-01 .... OK
2.52000E-01 .... OK
 Global test at
                      2.42000E-01 .... OK
                      2.32000E-01 ... OK
2.22000E-01 ... OK
 Global test at
 Global test at
Global test at
                      2.12000E-01 ... OK
2.02000E-01 ... OK
                      1.92000E-01 ... OK
1.82000E-01 ... OK
1.72000E-01 ... OK
1.62000E-01 ... OK
 Global test at
 Global test at
 Global test at
 Global test at
                       1.52000E-01 .... OK
 Global test at
                      1.42000E-01 ... OK
1.32000E-01 ... OK
 Global test at
 Global test at
                      1.22000E-01 ... OK
1.12000E-01 ... OK
 Global test at
 Global test at
                       1.02000E-01 .... OK
 Global test at
                      9.20000E-02 ... OK
8.20000E-02 ... OK
 Global test at
 Global test at
                      7.20000E-02 ... OK
6.20000E-02 ... OK
 Global test at
 Global test at
                       5.20000E-02 .... OK
 Global test at
 Global test at
                       4.20000E-02 .... OK
 Global test at
                      2.20000E-02 .... OK
1.20000E-02 .... OK
 Global test at
 Global test at
                     2.00000E-03 .... OK
 Global test at
 0.100000E-11
 *** Buffer saved on file: C:\Users\azureuser\AppData\Local\Temp\RESULT 002.POLY3
POLY:
POLY: @@
POLY:
        @@ ENTER THE POST PROCESSOR AND PLOT THE RESULT
POLY: @@
POLY: post
  POLY-3 POSTPROCESSOR VERSION 3.2
POST:
POST:
POST:
        @@ PLOT THE MOBILITY OF Ni VS. X(Ni)
POST: @@
POST: s-d-a y m(fcc,ni)
POST: s-d-a x m-f ni
POST:
POST:
POST: SET_EXP_FILE_FORMAT 5

POST: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
POST: SET_EXP_FILE_FORMAT 10
POST: plot
```

```
×10<sup>19</sup>
                                                       6
                                                       5
                                M(FCC,NI)
                                                       2
                                                       0 -
                                                              0.0
                                                                                                                       0.1
                                                                                                                                                                                       0.2
                                                                                                                                                                                                                                                 0.3
                                                                                                                                                                                                                                                                                                              0.4
                                                                                                                                                                                                                                                                                                                                                                         0.5
                                                                                                                                                                                                                                                                                                                                                                                                                                     0.6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                0.7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              0.8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          0.9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       1.0
                                                                                                                                                                                                                                                                                                                          Mole fraction NI
 POST:

 POST: 00 THEN PLOT THE DIFFUSIVITY OF Ni VS. X(Ni) POST: 00 POST: s-d-a y dc(fcc,ni,ni,fe) POST:
POST:
POST:
FOST:

                 ×1014
                                                       1.5
                                DC(FCC,NI,NI,FE)
                                                       0.5
                                                                 0 -
                                                                                                                                                                                                                                                                                                                                                                                 0.5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                0.8
                                                                                                                                                                                                                                                                                                                                 Mole fraction NI
   POST:
POST:
POST:@?<Hit_return_to_continue>
   POST: @@
 POST: 00
POST: 00
POST: 00
POST: 00
POST: 00
POST: s-d-a y logdc(fcc,ni,ni,fe)
POST: post: app y feni.exp
POST: app y feni.exp
PROLOGUE NUMBER: /0/: 1
DATASET NUMBER(s): /-1/: 1
   POST: s-s-s y n -15.5 -13.5
   POST:
POST:
 POST: SET_EXP_FILE_FORMAT 5
POST: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
POST: SET_EXP_FILE_FORMAT 10
POST:
     POST: plot
```


Example exg2

Optimization of mobilities in Ni-Al fcc alloys

A file for reading thermodynamic data and setting up the kinetic parameters which are needed for an optimization of the FCC phase in the binary Ni-Al system. See also A. Engström and J. Ågren: ("Assessment of Diffusional Mobilities in Face-Centered Cubic Ni-Cr-Al Alloys" in Z. METALLKUNDE, Feb. 1996).

- tracer diffusivities
- chemical diffusivities
- etc.

```
SYS: About
```

```
Thermo-Calc / DICTRA is software package for calculation of phase diagrams, simulation of phase transformation kinetics and much more.
 Copyright Foundation for Computational Thermodynamics,
 Stockholm, Sweden
 Software running on Windows 64-bit wordlength
 Compiler: unknown compiler
License library version: 9.7.0.0036
Linked: Fri Oct 18 11:32:56 2024
SYS:SYS:MACRO exg2\setup.DCM
SYS: i>;@@
NO SUCH COMMAND, USE HELP SYS: @@ Kinetic data example.
SYS: @@ Optimization of mobilities in Ni-Al fcc alloys
SYS: 00 Optimization of mobilities in Ni-AI rcc alloys
SYS: 00 A file for reading thermodynamic data and setting up the kinetic
SYS: 00 parameters that are needed for an optimization of the FCC phase
SYS: 00 in the binary Ni-Al system.
SYS: 00 See also A. EngstrA¶m and J. Amgren: ("Assessment of Diffusional
SYS: 00 Mobilities in Face-Centered Cubic Ni-Cr-Al Alloys" in
SYS: @@ Z. Metallkunde, Feb. 1996).
SYS: -
 NO SUCH COMMAND, USE HELP
SYS:
SYS: 00 exg2_setup.DCM
SYS:
SYS:
SYS: @@
SYS: 00 EXPLICITLY SELECTING GES VERSION 5 BECAUSE PARAMETER OPTIMIZATION SYS: 00 IS NOT SUPPORTED IN GES VERSION 6
SYS: set-ges-version 5
SYS: @@
SYS: @@ RETRIEVE THERMODYNAMIC DATA FROM A USER-DEFINED DATABASE
SYS: @@
SYS: go data 15:30:10,584 [Thread-0] INFO LicenseManager: Initializing user: jenkins.integrationtest@thermocalc.se
15:30:10,597 [Thread-0] INFO LicenseController: Running License Spring in DEV environment.

15:30:11,694 [Thread-0] INFO LicenseManager: There is an activated standalone license for jenkins.integrationtest@thermocalc.se for TC-
Application
  THERMODYNAMIC DATABASE module
  Database folder:
 C:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples\databases\da
 Current database: Steels/Fe-Alloys v12.0
                                      /- DEFINED
VA
DICTRA_FCC_A1 REJECTED

TDB_TCFE12: sw us tdata.TDB

Current database: User defined Database
This database does not support the DATABASE_INFORMATION command
 VA DEFINED
TDB_USER: def-sys al ni
                                     NI DEFINED
 ΑL
TDB_USER: rej ph *
LIQUID
FCC_A1
TDB_USER: rest ph fcc_a1
                                      в2 всс
                                                                          BCC A2
                                      GAMMA_PRIME REJECTED
FCC_A1 RESTORED
TDB_USER: get
ELEMENTS ....
SPECIES .....
 PHASES .....
  PARAMETERS ...
 FUNCTIONS ....
  -OK-
TDB_USER:
TDB_USER: 00
TDB_USER: 00 APPEND THE KINETIC DATA FROM THE MOBILITY DATABASE IN ORDER TO
TDB_USER: @@ HAVE SOME DUMMY PARAMETERS.
TDB_USER: @@
TDB_USER: app mob2
 Current database: Alloys Mobility v2.7
       DEFINED
GAS:G REJECTED APP: def-sys al ni
                                     NI DEFINED
 AL
APP: rej ph *
                                      FCC A1
 BCC A2
                                                                          M4N
  HCP_A3
                                      LIQUID:L REJECTED
APP: res ph fcc_a1
FCC_A1 RESTORED
APP: get
  ELEMENTS ....
 SPECIES .....
 PHASES .....
 FUNCTIONS ....
 Use the command LIST_REFERENCES to see the list of references for assessed data
APP:
APP: @@
APP: 00 GO TO THE DICTRA MODULE AND DEFINE THE KINETIC PARAMETERS. THE
APP: 00 GO TO THE DICTRA MODULE AND DEFINE THE KINETIC PARAMETERS. APP: 00 VARIABLES V1,V2,V3 AND V4 ARE TO BE OPTIMIZED. NOTE THAT IF APP: 00 YOU ARE OPTIMIZING PARAMETERS FOR A PHASE WITH MAGNETIC APP: 00 CONTRIBUTION. I.E. USING BOTH MF- AND MQ-PARAMETERS, YOU APP: 00 MIGHT HAVE TO ENTER THE PARROT MODULE AND GO BACK BEFORE APP: 00 ENTERING PARAMETERS CONTAINING VARIABLES.
APP: @@
APP: go dic par
```

15:30:12,666 [Thread-0] INFO StandaloneLicenseController: Checking out license for: Diffusion (DICTRA)

```
PARROT VERSION 5.3d RUNNING ON PC / WINDOWS NT
  PARROI VERSION 5.3G ROWNING ON PC / WINDOWS NI
Developed at the Division of Physical Metallurgy
Royal Institute of Technology Stockholm, Sweden
  PARROT:
  PARROT:
  PARROT: go d-m
 NO TIME STEP DEFINED
DIC>
00 MOBILITY OF Al IN Al
  DIC> ENTER-MOB-DATA
 PARAMETER: MQ(FCC_A1&AL,AL:VA) 298.15 -142000+R*T*LN(1.71E-4); 6000 N MQ(FCC_A1&AL#1,AL:VA;0)
 DIC>
  DIC> @@ MOBILITY OF Al IN Ni
 DIC> ENTER-MOB-DATA
PARAMETER: MQ(FCC_A1&AL,NI:VA) 298.15 -284000+R*T*LN(7.5E-4); 6000 N
 MQ(FCC_A1&AL#1,NI:VA;0)
DIC>
DIC> @@ MOBILITY OF Al INTERACTION BETWEEN AL AND NI
DIC> ENTER-MOB-DATA
 PARAMETER: MQ(FCC_AlsAL,AL,NI:VA;0) 298.15 V1+V2*T; 6000 N
MQ(FCC_AlsAL#1,AL,NI:VA;0)
DIC> ENTER-MOB-DATA

PARAMETER: MQ(FCC_A1&NI,NI,AL:VA;0) 298.15 V3+V4*T; 6000 N
MQ(FCC_A1&NI#1,AL,NI:VA;0)
MQ (FCC_AL&NI#1,AL,NI.VA,O,DIC>DIC>DIC> 00
DIC> 00
PARROT VERSION 5.3d RUNNING ON PC / WINDOWS NT PARROT: create-new-store-file opt
 PARROT: set-inter
```

--OK-PARROT:

```
PARROT: About
  NO SUCH COMMAND, USE HELP
PARROT: PARROT: MACRO exg2\run.DCM PARROT: @@ exg2_run.DCM
PARROT:
PARROT:
PARROT:
                          @@ FILE FOR DOING THE OPTIMIZATION IN PARROT
PARROT: @@-
PARROT:
PARROT: @@
PARROT: 00 GO TO PARROT AND READ THE SETUP PARROT: 00
PARROT: go dic_parrot
PARROT VERSION 5.3d RUNNING ON PC / WINDOWS NT
PARROT: set-store-file opt
PARROT:
PARROT: @@
PARROT: @@ COMPILE THE EXPERIMENTAL DATA IN exp.DOP INTO STRUCTURED BINARY DATA.
PARROT: @@
PARROT: compile-experiments exp
OUTPUT TO SCREEN OR FILE /SCREEN/: INITIATE STORE FILE: /Y/:
  $ DOP-FILE CONTAINING EXPERIMENTAL INFORMATION USED DURING THE $ OTIMIZATION IN PARROT (COMPARE WITH POP-FILE USED WHEN EVALUATING $ THERMODYNAMIC DATA). THE EXPERIMENTAL DATA HERE STEAM FROM A STUDY BY $ YAMAMOTO ET AL. TRANS. JPN. INST. MET. VOL. 21,NO. 9 (1980), P. 601.
    .
$ CONSULT THE THERMO-CALC USER'S GUIDE TO LEARN MORE ABOUT SYNTAXES
    $ FOR OPTIMIZATION OF THERMODYNAMIC DATA.$-
  ENTER CONST P0=101325
   TABLE HEAD 10
  TABLE_HEAD 10
CREATE_NEW 0010,1
C-S PH FCC=ENT 1
S-C T=1573,N=1,P=P0
S-C X(AL)=.01055
EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.6:.1
  EXPERIMENT LOGDC (FCC_AI, AL, AL, AL, NI) =-12.6:.1
CREATE NEW 0011,1
C-S PH FCC=ENT 1
S-C T=1573,N=1, P=P0
S-C X(AL)=.02032
EXPERIMENT LOGDC (FCC_AI, AL, AL, NI) =-12.56:.1
  EXPERIMENT LOGDC (FCC_A1,AL,AL,AL,NI)=-12.30:.1

CREATE, DRW 0012,1

C-S PH FCC=ENT 1

S-C T=1573,N-1,P=P0

S-C X(AL)=.02957

EXPERIMENT LOGDC (FCC_A1,AL,AL,NI)=-12.65:.1
  EXPERIMENT LOGDC (FCC_A1, AL, AL, AL, N1) =-12.03..1

CREATE, DRW 0013,1

C-S PH FCC=ENT 1

S-C T=1573,N-1,P=P0

S-C X (AL)=.03884

EXPERIMENT LOGDC (FCC_A1, AL, AL, N1) =-12.52:.1
  EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.52:.1
CREATE_NEW 0014,1
C-S PH FCC=ENT 1
S-C T=1573,N=1,P=P0
S-C X(AL)=.03884
EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.52:.1
CREATE_NEW 0015,1
C-S PH FCC=ENT 1
S-C T=1573,N=1,P=P0
S-C X(AL)=.04927
EXPERIMENT LOGDC(FCC A1,AL,AL,NI)=-12.48:.1
C-S PH FCC=ENT 1
S-C T=1573,N=1,P=P0
S-C X(AL)=.04927
EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.48:.1
CREATE_NEW 0016,1
S-S PH FCC=ENT 1
S-C T=1573,N=1,P=P0
S-C X(AL)=.06062
EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.43:.1
CREATE_NEW 0017,1
C-S PH FCC=ENT 1
S-C T=1573,N=1,P=P0
S-C X(AL)=.07029
EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.41:.1
CREATE_NEW 0018,1
C-S PH FCC=ENT 1
S-C T=1573,N=1,P=P0
S-C X(AL)=.08113
EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.37:.1
CREATE_NEW 0019,1
C-S PH FCC=ENT 1
S-C T=1573,N=1,P=P0
S-C X(AL)=.09166
EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.32:.1
CREATE_NEW 0020,1
C-S PH FCC=ENT 1
S-C T=1573,N=1,P=P0
S-C X(AL)=.09945
EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.28:.1
CREATE_NEW 0021,1
C-S PH FCC=ENT 1
S-C T=1573,N=1,P=P0
S-C X(AL)=.1099
EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.24:.1
CREATE_NEW 0021,1
C-S PH FCC=ENT 1
S-C T=1573,N=1,P=P0
S-C X(AL)=.1099
EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.24:.1
CREATE_NEW 0021,1
C-S PH FCC=ENT 1
S-C T=1573,N=1,P=P0
S-C X(AL)=.1099
EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.24:.1
CREATE_NEW 0023,1
C-S PH FCC=ENT 1
S-C T=1573,N=1,P=P0
S-C X(AL)=.1207
EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.18:.1
CREATE_NEW 0023,1
C-S PH FCC=ENT 1
S-C T=1573,N=1,P=P0
S-C X(AL)=.1207
EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.18:.1
CREATE_NEW 0024,1
C-S PH FCC=ENT 1
S-C T=1573,N=1,P=P0
S-C X(AL)=.1392
EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.18:.1
```

```
CREATE NEW 0025.1
 C-S PH FCC=ENT 1
S-C T=1573, N=1, P=P0
 S-C X(AL)=.1503
EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.1:.1
 CREATE NEW 0026,1
 C-S PH FCC=ENT 1
 S-C T=1573, N=1, P=P0
 S-C X(AL)=.1589

EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.08:.1

CREATE_NEW 0027,1
 C-S PH FCC=ENT 1
 S-C T=1573, N=1, P=P0
output ignored ...
... output resumed
   = OPTIMIZING VARIABLES ==
 AVAILABLE VARIABLES ARE V1 TO V50
 VAR.
                                                                           SCALING FACTOR
-3.51365596E+04
                                             START VALUE
                                                                                                            REL.STAND.DEV
             VALUE
              -3.51365596E+04
                                           -3.51365596E+04
-9.53952154E+01
                                                                                                              2.46939568E+00
 V1
             -9.53952154E+01
-1.32972461E+05
                                                                            -9 53952154E+01
 V2
                                                                                                              6 29664194E-01
                                           -1.32959165E+05
7.81857790E+01
 V4
               7.81857790E+01
                                                                              7.81857790E+01
                                                                                                              4.46532149E+00
 NUMBER OF OPTIMIZING VARIABLES :
 ALL OTHER VARIABLES ARE FIX WITH THE VALUE ZERO
THE SUM OF SQUARES HAS CHANGED FROM 2.02977003E+01 TO 2.02976923E+01
DEGREES OF FREEDOM 113. REDUCED SUM OF SQUARES 1.79625595E-01
 Sorry, LIST-DATA disabled for this database
 ===== BLOCK NUMBER 1
 DEFINED CONSTANTS
P0=101325
10 LOGDC(F...,AL,NI)=-12.6
                                                                                               4.3827E-02 0.4383
1.2341E-02 0.1234
                                                         -12.56
    LOGDC (F..., AL, NI) = -12.56

LOGDC (F..., AL, NI) = -12.65

LOGDC (F..., AL, NI) = -12.52
                                                        -12.55
-12.53
11
                                                                             0.10
                                                                                                0.1167 1.167
5.8843E-03 5.8843E-02
                                                          -12.51
13
                                                                              0.10
14 LOGDC (F..., AL, NI) = -12.52
15 LOGDC (F..., AL, NI) = -12.48
                                                         -12.51
                                                                              0.10
                                                                                                5.8843E-03 5.8843E-02
-8.4123E-03 -8.4123E-02
                                                          -12.49
                                                                              0.10
    LOGDC (F..., AL, NI) =-12.43

LOGDC (F..., AL, NI) =-12.41

LOGDC (F..., AL, NI) =-12.37
                                                                                              -2.6851E-02 -0.2685
16
                                                         -12.46
                                                                              0.10
                                                                                              -1.7821E-02 -0.1782
-2.3493E-02 -0.2349
-3.8626E-02 -0.3863
18
                                                          -12.39
                                                                              0.10
    LOGDC (F..., AL, NI) =-12.32
LOGDC (F..., AL, NI) =-12.28
                                                         -12.36
                                                                              0.10
                                                                                               -5.1933E-02 -0.5193
                                                          -12.33
                                                                              0.10
    LOGDC (F..., AL, NI) =-12.24
LOGDC (F..., AL, NI) =-12.2
                                                                                              -5 4919E-02 -0 5492
21
                                                         -12.29
                                                                              0 10
                                                                                             -5.4919E-02 -0.5492

-5.5128E-02 -0.5513

-4.3400E-02 -0.4340

-2.2927E-02 -0.2293

-3.6888E-02 -0.3689
    LOGDC (F..., AL, NI) =-12.18
23
                                                          -12.22
                                                                              0.10
    LOGDC (F..., AL, NI) =-12.16
LOGDC (F..., AL, NI) =-12.1
                                                         -12.18
                                                                              0.10
                                                          -12.14
                                                                              0.10
    LOGDC (F..., AL, NI) =-12.08
LOGDC (F..., AL, NI) =-12.02
                                                         -12.10
-12.04
26
                                                                              0.10
                                                                                              -1 9703E-02 -0 1970
                                                                                              -2.2272E-02 -0.2227
-9.0917E-03 -9.0917E-02
    LOGDC (F..., AL, NI) =-11.98

LOGDC (F..., AL, NI) =-11.94

LOGDC (F..., AL, NI) =-13
28
                                                          -11.99
                                                                              0.10
                                                         -11.95
                                                                              0.10
                                                                                              -9.1618E-03 -9.1618E-02
30
                                                          -12.86
                                                                              0.10
                                                                                               0.1360
                                                                                                               1.360
    LOGDC (F..., AL, NI) =-12.96
LOGDC (F..., AL, NI) =-12.92
                                                         -12.85
-12.84
                                                                              0.10
31
                                                                                                0 1059
                                                                                                                      1 059
                                                                                             0.1059 1.059
8.4799E-02 0.8480
8.2549E-02 0.8255
-1.5173E-02 -0.1517
-1.1192E-02 -0.1119
    LOGDC (F..., AL, NI) =-12.9
33
                                                         -12.82
                                                                              0.10
    LOGDC (F..., AL, NI) =-12.77
LOGDC (F..., AL, NI) =-12.74
                                                         -12.79
-12.75
                                                                              0.10
35
                                                                              0.10
    LOGDC (F..., AL, NI) =-12.82
LOGDC (F..., AL, NI) =-12.82
                                                         -12.72
-12.72
                                                                              0.10
36
                                                                                                9.5223E-02
                                                                                                                     0.9522
    LOGDC (F..., AL, NI) =-12.69
38
                                                         -12.68
                                                                              0.10
                                                                                                5.7856E-03
                                                                                                                     5.7856E-02
    LOGDC (F..., AL, NI) =-12.65
LOGDC (F..., AL, NI) =-12.64
                                                         -12.65
                                                                              0.10
                                                                                                2.6229E-03
1.9222E-02
                                                          -12.62
                                                                              0.10
                                                                                                                     0.1922
40
    LOGDC (F..., AL, NI) =-12.61
LOGDC (F..., AL, NI) =-12.55
                                                         -12.58
-12.54
                                                                              0.10
41
                                                                                                2 8492E-02
                                                                                                                     0 2849
    LOGDC (F..., AL, NI) =-12.53
43
                                                         -12.51
                                                                              0.10
                                                                                                2.1034E-02
                                                                                                                     0.2103
    LOGDC (F..., AL, NI) =-12.47
LOGDC (F..., AL, NI) =-12.41
                                                         -12.47
                                                                                               2.0402E-03 2.0402E-02
-1.0621E-02 -0.1062
                                                          -12.42
                                                                              0.10
45
    LOGDC (F..., AL, NI) =-12.38
LOGDC (F..., AL, NI) =-12.36
                                                         -12.38
-12.32
                                                                              0.10
                                                                                             -1.6323E-04 -1.6323E-03
3.6256E-02 0.3626
46
    LOGDC (F..., AL, NI) =-12.36
48
                                                         -12.32
                                                                              0.10
                                                                                                3.6256E-02
                                                                                                                     0.3626
    LOGDC (F..., AL, NI) =-12.3
LOGDC (F..., AL, NI) =-13.23
                                                          -12.27
                                                                                                3.0494E-02
3.8416E-02
                                                          -13.19
50
                                                                              0.10
                                                                                                                     0.3842
51
    LOGDC (F..., AL, NI) =-13.23
LOGDC (F..., AL, NI) =-13.19
                                                         -13.19
-13.18
                                                                              0.10
                                                                                                3.8416E-02
                                                                                                                     0.3842
                                                                                              1.3209E-02 0.1321
-5.5530E-03 -5.5530E-02
    LOGDC (F..., AL, NI) = -13.15
53
                                                         -13.16
                                                                              0.10
    LOGDC (F..., AL, NI) = -13.12
                                                         -13.13
                                                                                              -1.4736E-02 -0.1474
-1.2913E-02 -0.1291
    LOGDC (F..., AL, NI) =-13.09

LOGDC (F..., AL, NI) =-13.06

LOGDC (F..., AL, NI) =-13.02
55
                                                         -13.10
                                                                              0.10
                                                                                              -6.9397E-03 -6.9397E-02
-1.5971E-02 -0.1597
-1.0672E-02 -0.1067
                                                         -13.07
                                                          -13.04
                                                                              0.10
    LOGDC (F..., AL, NI) =-12.99
LOGDC (F..., AL, NI) =-12.96
58
                                                         -13.00
                                                                              0.10
                                                                                              -1.0672E-02 -0.1067

8.0069E-04 8.0069E-03

-2.0470E-02 -0.2047

-7.3947E-03 -7.3947E-02

1.4312E-02 0.1431
                                                          -12.96
                                                                              0.10
    LOGDC (F..., AL, NI) =-12.91

LOGDC (F..., AL, NI) =-12.88

LOGDC (F..., AL, NI) =-12.86
60
                                                         -12.93
                                                                              0.10
                                                         -12.89
62
                                                          -12.85
                                                                              0.10
    LOGDC (F..., AL, NI) =-12.86
LOGDC (F..., AL, NI) =-12.83
                                                                                                                    0.1431
63
                                                         -12.85
                                                                              0.10
                                                                                               1.4312E-02
                                                                                                1.7076E-02
                                                          -12.81
                                                                              0.10
                                                                                                1.7076E-02 0.1708
2.9558E-02 0.2956
2.5293E-02 0.2529
2.6861E-02 0.2686
4.4033E-02 0.4403
-4.2456E-02 -0.4246
    LOGDC (F..., AL, NI) = -12.8

LOGDC (F..., AL, NI) = -12.75

LOGDC (F..., AL, NI) = -12.71
                                                         -12.77
-12.72
6.5
                                                                              0.10
                                                          -12.68
                                                                              0.10
    LOGDC (F..., AL, NI) =-12.67
LOGDC (F..., AL, NI) =-13.5
                                                         -12.63
                                                                              0.10
                                                                              0.10
                                                          -13.54
    LOGDC(F..., AL, NI) = -13.47

LOGDC(F..., AL, NI) = -13.45

LOGDC(F..., AL, NI) = -13.42
                                                                                              -5.5160E-02 -0.5516
                                                         -13.53
                                                                              0.10
                                                                                              -5.3160E-02 -0.5516
-5.0384E-02 -0.5038
-5.6139E-02 -0.5614
-5.3034E-02 -0.5303
-4.3865E-02 -0.4386
73
                                                         -13.48
                                                                              0.10
    LOGDC (F..., AL, NI) =-13.39
LOGDC (F..., AL, NI) =-13.36
                                                         -13.44
                                                                              0.10
                                                          -13.40
                                                                              0.10
                                                         -13.37
-13.33
                                                                                              -3.0943E-02 -0.3094
76
    LOGDC (F..., AL, NI) = -13.34
                                                                              0.10
                                                                                              -2.0539E-02 -0.2054
-5.0311E-02 -0.5031
    LOGDC (F..., AL, NI) =-13.24
78
                                                         -13.29
                                                                              0.10
    LOGDC (F..., AL, NI) =-13.22
LOGDC (F..., AL, NI) =-13.19
                                                         -13.26
-13.22
                                                                                              -4.1318E-02 -0.4132
-2.6230E-02 -0.2623
                                                                              0.10
81
    LOGDC (F..., AL, NI) = -13.13
LOGDC (F..., AL, NI) = -13.12
                                                         -13.17
                                                                              0.10
                                                                                             -4.3098E-02 -0.4310
-1.9773E-02 -0.1977
```

83 LOGDC(F, AL, NI) =-13.08	-13.09	0.10	-1.4457E-02 -0.1446
84 LOGDC(F, AL, NI) =-13.04	-13.05	0.10	-9.4618E-03 -9.4618E-02
85 LOGDC(F, AL, NI) =-13.03	-13.01	0.10	2.2404E-02 0.2240
90 LOGDC(F, AL, NI) =-13.97	-13.92	0.10	5.1241E-02 0.5124
91 LOGDC(F, AL, NI) =-13.92	-13.90	0.10	2.0497E-02 0.2050
92 LOGDC(F, AL, NI) =-13.88	-13.87	0.10	9.3920E-03 9.3920E-02
93 LOGDC(F, AL, NI) =-13.85	-13.84	0.10	5.2264E-03 5.2264E-02
94 LOGDC(F, AL, NI) =-13.82	-13.81	0.10	1.1044E-02 0.1104
95 LOGDC(F, AL, NI) =-13.78	-13.77	0.10	1.3352E-02 0.1335
96 LOGDC(F,AL,NI)=-13.9	-13.74	0.10	0.1640 1.640
97 LOGDC(F, AL, NI) =-13.85	-13.69	0.10	0.1576 1.576
98 LOGDC(F, AL, NI) =-13.65	-13.65	0.10	1.5604E-03 1.5604E-02
99 LOGDC (F, AL, NI) =-13.62	-13.62	0.10	4.9052E-03 4.9052E-02
100 LOGDC(F, AL, NI) =-13.57	-13.57	0.10	-9.5589E-04 -9.5589E-03
101 LOGDC(F, AL, NI) = -13.52	-13.53	0.10	-5.4819E-03 -5.4819E-02
102 LOGDC (F, AL, NI) =-13.47	-13.49	0.10	-2.0262E-02 -0.2026
103 LOGDC(F,AL,NI)=-13.47	-13.45	0.10	4.9628E-03 4.9628E-02
104 LOGDC(F,AL,NI)=-13.45	-13.45	0.10	2.8073E-03 2.8073E-02
110 LOGDC(F, AL, NI) =-14.32	-14.32	0.10	-3.9760E-03 -3.9760E-02
111 LOGDC (F, AL, NI) =-14.32	-14.30	0.10	1.9307E-02 0.1931
112 LOGDC (F, AL, NI) =-14.28	-14.27	0.10	1.0664E-02 0.1066
113 LOGDC(F, AL, NI) =-14.25	-14.24	0.10	8.9412E-03 8.9412E-02
114 LOGDC (F, AL, NI) =-14.22	-14.20	0.10	1.8329E-02 0.1833
115 LOGDC(F, AL, NI) =-14.17	-14.16	0.10	1.2994E-02 0.1299
116 LOGDC(F, AL, NI) =-14.15	-14.12	0.10	3.0489E-02 0.3049
117 LOGDC(F, AL, NI) =-14.1	-14.07	0.10	2.5593E-02 0.2559
118 LOGDC(F, AL, NI) =-14.03	-14.03	0.10	-1.4483E-03 -1.4483E-02
119 LOGDC(F, AL, NI) =-14	-14.00	0.10	2.7074E-03 2.7074E-02
120 LOGDC(F, AL, NI) =-13.95	-13.95	0.10	-1.9282E-03 -1.9282E-02
121 LOGDC(F, AL, NI) =-13.9	-13.91	0.10	-5.2349E-03 -5.2349E-02
122 LOGDC(F, AL, NI) =-13.85	-13.87	0.10	-1.6645E-02 -0.1665
130 LOGDC(F, AL, NI) =-14.73	-14.76	0.10	-3.0493E-02 -0.3049
131 LOGDC(F, AL, NI) =-14.71	-14.73	0.10	-2.3757E-02 -0.2376
132 LOGDC(F, AL, NI) =-14.68	-14.70	0.10	-1.9446E-02 -0.1945
133 LOGDC(F, AL, NI) =-14.66	-14.67	0.10	-8.5997E-03 -8.5997E-02
134 LOGDC (F, AL, NI) =-14.61	-14.63	0.10	-1.5314E-02 -0.1531
135 LOGDC(F, AL, NI) =-14.61	-14.63	0.10	-1.5314E-02 -0.1531
136 LOGDC(F, AL, NI) =-14.58	-14.58	0.10	3.4408E-03 3.4408E-02
137 LOGDC (F, AL, NI) =-14.54	-14.54	0.10	3.3897E-03 3.3897E-02
138 LOGDC (F, AL, NI) =-14.5	-14.49	0.10	9.2113E-03 9.2113E-02
139 LOGDC (F, AL, NI) =-14.46	-14.44	0.10	1.5390E-02 0.1539
140 LOGDC (F, AL, NI) =-14.41	-14.41	0.10	1.6005E-03 1.6005E-02
141 LOGDC(F, AL, NI) = -14.41	-14.36	0.10	-1.1351E-02 -0.1135
142 LOGDC(F,AL,NI)=-14.33	-14.31	0.10	-4.1487E-02 -0.4149
143 LOGDC(F,AL,NI)=-14.2	-14.27	0.10	-7.4774E-02 -0.7477
143 HOODE (F, AH, NI)14.2	17.41	0.10	/1/145 UZ U./4//

PARROT:
PARROT:
PARROT: set-inter
--OK--PARROT:

exg2-plot

```
PARROT: About
 NO SUCH COMMAND, USE HELP
PARROT: PARROT: MACRO exg2\plot.DCM
PARROT: @@ exg2_plot.DCM
PARROT: @@-----
PARROT: 00 FILE FOR PLOTTING THE RESULT AFTER THE OPTIMIZATION. HERE
PARROT: 00 DIFFUSIVITIES CALCULATED FROM THE OPTIMIZED VARIABLES ARE PARROT: 00 COMPARED WITH EXPERIMENTALLY MEASURED ONES.
PARROT: @@------PARROT:
PARROT: 00 PARROT AND READ THE FILE CONTAINING THE RESULT FROM
PARROT: @@ THE OPTIMIZATION.
PARROT: @@
PARROT: go dic_parrot
 PARROT VERSION 5.3d RUNNING ON PC / WINDOWS NT
PARROT: set-store-file opt
PARROT:
PARROT: @@
PARROT: @@ GO TO POLY3 AND STEP IN X(AL)
PARROT: @@
PARROT: go p-3
15:32:03,402 [Thread-0] INFO StandaloneLicenseController: Checking out license for: Thermo-Calc 15:32:03,622 [Thread-0] INFO StandaloneLicenseController: Releasing license for: Diffusion (DICTRA)
POLY: s-c n=1,p=101325,t=1573
POLY: s-c \times (al) = .1
POLY: c-e,,,,
Using global minimization procedure
Calculated 209 grid points in Found the set of lowest grid points in
                                                 0 s, total time 0 s
 Calculated POLY solution
POLY:
POLY: s-a-v 1 x(al) 0.0001 .20 0.001,,,,
POLY: step
Option? /NORMAL/:
 Step will start from axis value 0.100000
...OK
 Phase Region from 0.100000 for:
Phase Region --
FCC_A1
Global test at 1.08000E-01 ... OK
Global test at 1.18000E-01 ... OK
Global test at 1.28000E-01 ... OK
Global test at 1.38000E-01 ... OK
Global test at 1.38000E-01 ... OK
 Global test at
Global test at
                         1.58000E-01 ... OK
1.68000E-01 ... OK
 Global test at
                          1.78000E-01 .... OK
 Global test at 1.88000E-01 ... OK
Global test at 1.98000E-01 ... OK
Terminating at 0.200000
 Terminating at 0.200000
Calculated 103 equilibria
 Calculated
 Phase Region from 0.100000 for:
Phase Region --
FCC_A1
Global test at 9.20000E-02 ... OK
Global test at 8.20000E-02 ... OK
Global test at 7.20000E-02 ... OK
Global test at 6.20000E-02 ... OK
Global test at 6.20000E-02 ... OK
                          5.20000E-02 ... OK
4.20000E-02 ... OK
3.20000E-02 ... OK
 Global test at
 Global test at
Global test at
 Global test at
                          2.20000E-02 .... OK
 Global test at
 Global test at 2.00000E-03 .... OK
 Terminating at 0.100000E-03
Calculated 103 equilibria
 Calculated
 *** Buffer saved on file: C:\Users\azureuser\AppData\Local\Temp\RESULT_002.POLY3
POLY: @@
POLY: @@ REPEATE THE PROCEDURE FOR SOME OTHER TEMPERATURES
POLY: @@
POLY: s-c t=1523,x(al)=.1
POLY: c-e,,,,,,
Using global minimization procedure
Calculated 209 grid points in
Found the set of lowest grid points in
Calculated POLY solution 0 s, total time
POLY: s-a-v 1 x(al) 0.0001 .20 0.001,,,,
POLY: step
Option? /NORMAL/:
 Step will start from axis value 0.100000
...OK
 Phase Region from 0.100000
                                                     for:
 FCC_A1
Global test at 1.08000E-01 .... OK
                         1.18000E-01 ... OK
1.28000E-01 ... OK
1.38000E-01 ... OK
 Global test at
 Global test at
 Global test at
 Global test at
Global test at
                          1.48000E-01 .... OK
1.58000E-01 .... OK
 Global test at
                           1.68000E-01 .... OK
Global test at 1.88000E-01 ... OK
Global test at 1.88000E-01 ... OK
Global test at 1.88000E-01 ... OK
Global test at 1.98000E-01 ... OK
Terminating at 0.200000
Calculated 103 equilibria
 Phase Region from 0.100000
                                                   for:
 FCC_A1
Global test at 9.20000E-02 .... OK
 Global test at 8.20000E-02 ... OK
Global test at 7.20000E-02 ... OK
Global test at 6.20000E-02 ... OK
 Global test at 6.20000E-02 ... OK
Global test at 4.20000E-02 ... OK
Global test at 4.20000E-02 ... OK
Global test at 3.20000E-02 ... OK
Global test at 2.20000E-02 ... OK
Global test at 1.20000E-02 ... OK
```

```
Global test at 2.00000E-03 .... OK
 Terminating at 0.100000E-Calculated 103 equilibria
                             0.100000E-03
 Calculated 103 equilibria *** Buffer saved on file: C:\Users\azureuser\AppData\Local\Temp\RESULT_002.POLY3
POLY: s-c t=1473, x(a1)=.1
POLY: c-e,,,,,,
  Using global minimization procedure
Calculated 209 grid points in Found the set of lowest grid points in Calculated POLY solution 0 s, tota

POLY: s-a-v 1 x(al) 0.0001 .20 0.001,,,,
                                                    0 s, total time 0 s
POLY: step
Option? /NORMAL/:
Step will start from axis value 0.100000
 Phase Region from 0.100000 for:
 1.38000E-01 ... OK
1.48000E-01 ... OK
1.58000E-01 ... OK
1.68000E-01 ... OK
1.78000E-01 ... OK
 Global test at Global test at
 Global test at
 Global test at
Global test at
 Global test at 1.88000E-01 .... OK Global test at 1.98000E-01 .... OK
 Terminating at 0.200000 Calculated 103 equilibria
 Calculated
 Phase Region from 0.100000 for:
 FCC_A1
Global test at 9.20000E-02 ... OK
Global test at 8.20000E-02 ... OK
Global test at 7.20000E-02 ... OK
 Global test at Global test at
                           6.20000E-02 .... OK
 Global test at 4.20000E-02 ... OK
Global test at 3.20000E-02 ... OK
Global test at 2.20000E-02 ... OK
 Global test at 1.20000E-02 ... OK
Global test at 2.00000E-03 ... OK
 Terminating at 0.100000E-03
Calculated 103 equilibria
*** Buffer saved on file: C:\Users\azureuser\AppData\Local\Temp\RESULT_002.POLY3
POLY: s-c t=1423,x(a1)=.1
POLY: c-e,,,,,
 Using global minimization procedure
Using global minimization procedure
Calculated 209 grid points in
Found the set of lowest grid points in
Calculated POLY solution 0 s, total time
POLY: s-a-v 1 x(al) 0.0001 .20 0.001,,,,
POLY: step
Option? /NORMAL/:
 Step will start from axis value 0.100000
...OK
 Phase Region from 0.100000
 FCC_A1

Global test at 1.08000E-01 ... OK

Global test at 1.28000E-01 ... OK

Global test at 1.28000E-01 ... OK

Global test at 1.28000E-01 ... OK

Global test at 1.38000E-01 ... OK
 Global test at
Global test at
                          1.48000E-01 ... OK
1.58000E-01 ... OK
 Global test at 1.68000E-01 ... OK
Global test at 1.78000E-01 ... OK
Global test at 1.88000E-01 ... OK
 Global test at 1.98000E-01 .... OK
 Terminating at 0.200000
Calculated 103 equilibria
 Phase Region from 0.100000
                                                     for:
 FCC_A1
Global test at 9.20000E-02 .... OK
 Global test at 8.20000E-02 ... OK
Global test at 7.20000E-02 ... OK
Global test at 6.20000E-02 ... OK
 Global test at 5.20000E-02 .... OK Global test at 4.20000E-02 .... OK
 Global test at 3.20000E-02 ... OK
Global test at 2.20000E-02 ... OK
Global test at 1.20000E-02 ... OK
 Global test at 2.00000E-03 .... OK
Terminating at 0.100000E-03
  Terminating at
  Terminating at 0.100000E-03

Calculated 103 equilibria

*** Buffer saved on file: C:\Users\azureuser\AppData\Local\Temp\RESULT_002.POLY3
 Calculated
POLY: s-c t=1373,x(al)=.1
Using global minimization procedure
Calculated 209 grid points in
Found the set of lowest grid points in
Calculated POLY solution 0 s, total time 0
POLY: s-a-v 1 x(al) 0.0001 .20 0.001,,,,
POLY: step
Option? /NORMAL/:
Step will start from axis value 0.100000 ... OK
  Phase Region from 0.100000 for:
1.58000E-01 ... OK
1.68000E-01 ... OK
 Global test at
Global test at
 Global test at
                           1.78000E-01 .... OK
 Global test at 1.88000E-01 ... OK
Global test at 1.98000E-01 ... OK
  Terminating at
                             0.200000
 Calculated 103 equilibria
```

```
Phase Region from 0.100000 for:
 FCC_A1
Global test at 9.20000E-02 .... OK
 Global test at 8.20000E-02 ... OK
Global test at 7.20000E-02 ... OK
 Global test at 6.20000E-02 ... OK
Global test at 5.20000E-02 ... OK
Global test at 4.20000E-02 ... OK
 Global test at 3.20000E-02 .... OK Global test at 2.20000E-02 .... OK
 Global test at 1.20000E-02 ... OK
Global test at 2.00000E-03 ... OK
Terminating at 0.100000E-03
 Terminating at 0.100000E-05
Calculated 103 equilibria
*** Buffer saved on file: C:\Users\azureuser\AppData\Local\Temp\RESULT_002.POLY3
 Calculated
POLY: s-c t=1323, x(a1)=.1
Using global minimization procedure
Calculated 209 grid points in
Found the set of lowest grid points of
                                                         0 s, total time 0 s
Calculated POLY solution 0 s, tota
POLY: s-a-v 1 x(al) 0.0001 .20 0.001,,,,
POLY: step
Option? /NORMAL/:
  Step will start from axis value 0.100000
...OK
 Phase Region from 0.100000 for:
 FCC_A1
Global test at 1.08000E-01 .... OK
Global test at 1.18000E-01 .... OK
 Global test at 1.38000E-01 ... OK
Global test at 1.28000E-01 ... OK
Global test at 1.38000E-01 ... OK
                               1.48000E-01 .... OK
 Global test at
 Global test at
Global test at
                              1.58000E-01 .... OK
1.68000E-01 .... OK
 Global test at 1.78000E-01 ... OK
Global test at 1.88000E-01 ... OK
Global test at 1.88000E-01 ... OK
Terminating at 0.200000
 Terminating at 0.200000
Calculated 103 equilibria
 Phase Region from 0.100000 for:
 FCC_A1
Global test at 9.2000E-02 ... OK
Global test at 7.20000E-02 ... OK
Global test at 6.2000E-02 ... OK
Global test at 6.2000E-02 ... OK
 Global test at 6.20000E-02 ... OK Global test at 4.20000E-02 ... OK Global test at 3.20000E-02 ... OK Global test at 2.20000E-02 ... OK Global test at 1.20000E-02 ... OK Global test at 1.20000E-02 ... OK Global test at 2.0000E-03 ... OK Terminating at 0.100000R-03
Terminating at 0.100000E-03
Calculated 103 equilibria

*** Buffer saved on file: C:\Users\azureuser\AppData\Local\Temp\RESULT_002.POLY3
POLY: s-c t=1273,x(al)=.1
POLY: c-e,,,,,,
Using global minimization procedure
Calculated 209 grid points in 0 s
Found the set of lowest grid points in 0 s
Calculated POLY solution 0 s, total time 0 s
POLY: s-a-v 1 x(al) 0.0001 .20 0.001,,,,
POLY: step
Option? /NORMAL/:
Step will start from axis value 0.100000
 Phase Region from 0.100000 for:
 FCC_A1
Global test at 1.08000E-01 ... OK
Global test at 1.18000E-01 ... OK
Global test at 1.28000E-01 ... OK
 Global test at 1.38000E-01 .... OK Global test at 1.48000E-01 .... OK
                             1.58000E-01 ... OK
1.68000E-01 ... OK
1.78000E-01 ... OK
 Global test at
  Global test at
 Global test at
 Global test at 1.88000E-01 .... OK Global test at 1.98000E-01 .... OK
 Terminating at 0.200000
Calculated 103 equilibria
 Phase Region from 0.100000 for:
        FCC_A1
 FCC_A1
Global test at 9.20000E-02 ... OK
Global test at 8.20000E-02 ... OK
Global test at 7.20000E-02 ... OK
Global test at 6.20000E-02 ... OK
Global test at 5.20000E-02 ... OK
 Global test at
Global test at
                             4.20000E-02 ... OK
3.20000E-02 ... OK
 Global test at 2.20000E-02 .... OK
 Global test at 1.20000E-02 ....
Global test at 2.00000E-03 ....
 Terminating at 0.10000010E-03

Calculated 103 equilibria

*** Buffer saved on file: C:\Users\azureuser\AppData\Local\Temp\RESULT_002.POLY3
POLY: @@
POLY: @@ ENTER THE POST MODULE, PLOT THE DIFFUSIVITY ON THE Y-AXIS
POLY: @@ AND MOLE-FRACTION Al ON THE X-AXIS.
POLY: @@
POLY: post
  POLY-3 POSTPROCESSOR VERSION 3.2
POST:
POST: s-d-a x m-f al
POST: s-d-a y logdc(fcc,al,al,ni)
POST:
          app y yama.exp
PROLOGUE NUMBER: /0/: 1
DATASET NUMBER(s): /-1/: 1 2 3 4 5 6 7
POST:
```

```
POST: s-t-m-s y
    COMMAND NOT SUPPORTED IN THIS PLOT DRIVER
POST: s-s-s y n -15 -11.7
POST: s-t-m-s y
    COMMAND NOT SUPPORTED IN THIS PLOT DRIVER
POST:
POST: SET_EXP_FILE_FORMAT 5
POST: SET_EXP_FILE_FORMAT 5
POST: SET_EXP_FILE_FORMAT 10
POST: SET_EXP_FILE_FORMAT 10
POST: plot
```


POST: @?<Hit_return_to_continue>
POST: post: set-inter
POST:

Deviation From Local Equilibrium

Example exh1

σ/γ diffusion couple with limited interface mobility

This example calculates the growth of ferrite (α) into austenite (γ) with a limited interface mobility. This is achieved by adding a Gibbs-energy contribution to the ferrite using the SET-SURFACE-ENERGY command.

exh1-setup

```
Thermo-Calc / DICTRA is software package for calculation of phase diagrams, simulation of phase transformation kinetics and much more.
 Copyright Foundation for Computational Thermodynamics,
 Stockholm, Sweden
 Software running on Windows 64-bit wordlength
 Compiler: unknown compiler
License library version: 9.7.0.0036
Linked: Fri Oct 18 11:32:56 2024
SYS:SYS:MACRO exh1\setup.DCM
SYS: @@
SYS: @@ Deviation from local equilibrium.
SYS: 00 Deviation from local equilibrium.
SYS: 00 Ferrite/austenite diffusion couple with interface mobility
SYS: 00 This example calculates the growth of ferrite into austenite with
SYS: 00 a limited interface mobility. this is done by adding a Gibbs-energy
SYS: 00 contribution to the ferrite using the SET-SURFACE-ENERGY command.
SYS:
 NO SUCH COMMAND, USE HELP
SYS:
SYS: @@
SYS: @@ RETRIEVE DATA FROM THE DATABASE
SYS: @@
SYS: go da
15:33:05,524 [Thread-0] INFO LicenseManager: Initializing user: jenkins.integrationtest@thermocalc.se
15:33:05,537 [Thread-0] INFO LicenseController: Running License Spring in DEV environment.
15:33:06,692 [Thread-0] INFO LicenseManager: There is an activated standalone license for jenkins.integrationtest@thermocalc.se for TC-
Application
 THERMODYNAMIC DATABASE module
 C:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples\databases\da
 Current database: Steels/Fe-Alloys v12.0
                                 /- DEFINED
 DICTRA_FCC_A1 REJECTED
TDB_TCFE12:
TDB_TCFE12: @@
TDB_TCFE12: @@ USE A THERMODYNAMIC DATABASE TO RETRIEVE THE DATA
TDB_TCFE12: @@
TDB_TCFE12: sw FEDEMO
 Current database: Iron Demo Database v5.0
                                 /- DEFINED
TDB_FEDEMO: def-sys fe c
                                C DEFINED
 FE
TDB_FEDEMO: rej ph * all
 BCC_A2
CUB_A13
                                 CBCC A12
                                                                 CEMENTITE
                                 DIAMOND_FCC_A4
GRAPHITE
                                                                 FCC_A1
HCP_A3
 GAS:G
 KSI_CARBIDE
M23C6
                                 LAVES_PHASE_C14
                                                                 T-TOUTD: I-
                                 M5C2
   REJECTED
TDB_FEDEMO: res ph bcc fcc
BCC_A2 FC
                                FCC_A1 RESTORED
TDB_FEDEMO: get
15:33:07,784 [Thread-0] INFO JavaWrapper: *** Invoking Gibbs Energy System v6 ***
 REINITIATING GES ....
 ELEMENTS ....
 SPECIES .....
 FUNCTIONS ....
 Use the command LIST REFERENCES to see the list of references for assessed data
 -OK-
TDB_FEDEMO: @@
TDB_FEDEMO: @@ SWITCH TO A MOBILITY DATABASE TO RETRIEVE MOBILITY DATA
TDB_FEDEMO: @@
TDB_FEDEMO: app mfedemo
Current database: Fe-Alloys Mobility demo database v4.0
 VA DEFINED
APP: def-sys fe c
                                C DEFINED
 FE
APP: rej ph * all
                                FCC_A1
                                                                CEMENTITE
 LIQUID:L REJECTED
APP: res ph bcc fcc
BCC_A2
APP: get
                                FCC_A1 RESTORED
 ELEMENTS ....
 SPECIES .....
 PARAMETERS ..
 FUNCTIONS ....
 Use the command LIST_REFERENCES to see the list of references for assessed data
 -OK-
APP:
APP · @@
APP: @@ ENTER THE DICTRA MONITOR
APP: @@
APP: go d-m
15:33:08,304 [Thread-0] INFO StandaloneLicenseController: Checking out license for: Diffusion (DICTRA) NO TIME STEP DEFINED
DIC>
DIC> @@
DIC> @@ ENTER THE GLOBAL CONDITION T
DIC> @@
DIC> set-cond glob T 0 1000; * N
DIC>
DIC> @@
```

```
DIC> @@ START BY ENTERING THE REGIONS ferrite AND austenite WHERE
  DIC> @@ THE BCC AND FCC PHASES ARE PUT, RESPECTIVELY. THE FERRITE REGION IS
DIC> @@ ASSUMED INITIALLY TO BE VERY THIN, 1E-9 METERS.
  DIC> @@
DIC> enter-region
    REGION NAME : ferrite
   DIC>
   DIC> enter-region
   REGION NAME : austenite
ATTACH TO REGION NAMED /FERRITE/:
  ATTACHED TO THE RIGHT OF FERRITE /YES/:
DIC>
DIC> @@
 DIC> 00
DIC> 00 ENTER GRIDS INTO THE REGIONS
DIC> 00
DIC> 00
DIC> enter-grid
REGION NAME : /FERRITE/: ferrite
WIDTH OF REGION /1/: 1e-9
TYPE /LINEAR/: AUTO
  DIC>
DIC> enter-grid austenite
  WIDTH OF REGION /1/: 0.999e-6
TYPE /LINEAR/: AUTO
   DTCS
DIC>
DIC> 00
DIC> 00 ENTER THE active PHASES INTO THE REGIONS
DIC> 00 ENTER THE active PHASES INTO THE REGIONS
DIC> 00
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: active
REGION NAME : /FERRITE/: ferrite
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: bcc
DIC>
   DIC>
   DIC> enter-phase
  ACTIVE OR INACTIVE PHASE /ACTIVE/: active REGION NAME : /AUSTENITE/: austenite PHASE TYPE /MATRIX/: matrix PHASE NAME: /NONE/: fcc#1
   DIC>
  DIC>
  DIC>
  DIC> @@
  DIC> 00 ENTER THE INITIAL COMPOSITION INTO BCC DIC> 00
   DIC> enter-composition
  PROFILE FOR /C/: C
  TYPE /LINEAR/: linear

VALUE OF FIRST POINT : 0.019091893

VALUE OF LAST POINT : /1.9091893E-2/: 0.019091893
VALUE OF LAST POINT: /1.9091893E-2/: 0.0190918
DIC> 01C> 08
DIC> 08
DIC> 08
DIC> 08
DIC> 08
DIC> 07
DIC> 08
DI
  DIC>
  DIC> @@
  DIC> 00 SAVE THE SET UP TO A NEW STORE FILE AND EXIT DIC> 00
    DIC> save exh1 y
  DIC>
   DIC> set-inter
 --OK---
```

```
NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exh1\run.DCM DIC>
DIC>
DIC> @@
DIC> @@ READ THE SETUP FROM FILE AND START THE SIMULATION
DIC> @@
DIC>
DIC> ao d-m
 TIME STEP AT TIME 0.00000E+00
DTC> read exh1
 OK
DTC>
DIC> @@
DIC> @@ SET THE SIMULATION TIME
DIC> @@
DTC> set-sim-time
END TIME FOR INTEGRATION /.1/: 2.5E-3
AUTOMATIC TIMESTEP CONTROL /YES/: YES MAX TIMESTEP DURING INTEGRATION /2.5E-04/:
INITIAL TIMESTEP : /1E-07/: 1E-7
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/: 1E-7
DIC>
DIC> @@
DIC> @@ START THE SIMULATION
DIC> @@
DIC> sim
 Region: FERRITE
 geometric 0.956340
Region: AUSTENITE
                                  dense at 0.100000E-08 76 points
                                                      0.00000
 geometric 1.15218 dense at 0.00000 DEGREE OF IMPLICITY SET TO TRAPEZOIDAL RULE
DEGREE OF IMPLICITY SET TO TRAPEZOIDAL RULE
TRYING Old scheme 3
U-FRACTION IN SYSTEM: C = 8.88253285685629E-04 FE = 1
TOTAL SIZE OF SYSTEM: 1E-06 [m]
U-FRACTION IN SYSTEM: C = 8.88253285685629E-04 FE = 1
TOTAL SIZE OF SYSTEM: 1E-06 [m]
7.938044190665376E-005 7.937710023253734E-005
05 7.8437875288771839E-005 7.877741336739401
                                                                                              6.82207097429483
                                                                                                                                  7.884164585500397E-005
                                                                                                                                                                                7.857293587000751E-
                                                       7.837170439911923E-005 7.830468457890465E-005 7.822878117532253E-7.777413367394015E-005 7.716999812574442E-005 7.596879372760469E-
                                                           6.885943489316783E-005 6.014126992561462E-005 4.431401477294380E-
6.18384998131949 1.982569952307290E-005 1.979069388320350E-
1.976445995211993E-005 1.975571917484897E-005 1.974655887752673E-
                7.359465172472982E-005
1.989580359734839E-005
                                                                                                                                                         1.974655887752673E-005
005
                1.977320266257898E-005
       ERROR RETURN FROM NS01A BECAUSE THERE HAVE BEEN 25 CALLS OF CALFUN
  RESCALING
2.088978290317390E-005
005 2.07622602888
005 2.07155208064
                                    2.088410267821287E-005
                                                                                             6.82207078779667
                                                                                                                                  2.081686503051677E-005
                                                                                                                                                                               2.078045390149663E-
           2.073455451312070E-
                                                                                                         2.044996663431713E-
                2.014857380023687E-005
1.214722235854371E-005
                                                              1.955250060679010E-005
5.832039126026385E-006
                                                                                                                                                         5.805288375497124E-006
006
                5.814275675509861E-006
                                                            5.811279136473229E-006
 ERROR RETURN FROM NS01a BECAUSE THERE HAVE BEEN 25 CALLS OF CALFUN

*** ERROR 1890 IN DCNS01: ERROR RETURN FROM NS01a

5.805288375497124E-006 5.805287774082395E-006 5.805288375497124E-006 6.82200513010403 5.805288375497124E-006 5.794592709589948E-006 5.789248574843406E-

006 5.794592709589948E-006 5.794592108571284E-006 5.794592709589948E-006 5.757235541621946E-

006 5.789248574843406E-006 5.778567701841365E-006 5.757235541621946E-
                                                                                                                                                                               5.805288375497124E-
006
                5.757235541621946E-006
                                                              5.714689564445564E-006
                                                                                                           5.714689564445564E-006
output ignored...
... output resumed
4.221403196081389E-012 3.949198343686763E-016 3.60033622248502
05 SUM OF SQUARES = 0.36003362E-21
CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.11004268E-02 AND 0.11004268E-02
POSITION OF INTERFACE FERRITE / AUSTENITE IS 0.90001287E-06
U-FRACTION IN SYSTEM: C = 8.95344150093146E-04 FE = 1
TOTAL SIZE OF SYSTEM: 1E-06 [m]
                                                                                          3.600336222485029E-022
                                                                                                                                     TIME = 0.24982362E-02 DT = 0.12087202E-
 1.245284115630167E-
  CPU time used in timestep
                                                                        Ω
                                                                             seconds
 1.082711783534734E-
   CPU time used in timestep
                                                                             seconds
 CPU time used in timestep 0 seconds 3.220677150312275E-007 3.216764126431214E-007 6.277603042024019E-010 018 TIME = 0.24997856E-02 DT = 0.27671917E-06 SUM OF SQUARES = 0.82876330E-17 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.16764408E-02 AND 0.16764408E-02 POSITION OF INTERFACE FERRITE / AUSTENITE IS 0.90216605E-06 U-FRACTION IN SYSTEM: C = 8.95588693064985E-04 FE = 1 TOTAL SIZE OF SYSTEM: 1E-06 [m]
                                                                                                                                         1.477813312473914E-012
                                                                                                                                                                                       8 287632968623834E-
  4 629023328487597E-013
                                                                                                                                                                                       5 097634227005877E-
 TOTAL SIZE OF SYSTEM: 1E-06 [m]

CPU time used in timestep 1 seconds
1.494146210671713E-006 1.492827264009228E-006 8.072576087545080E-010

D19 TIME = 0.25000000E-02 DT = 0.61325012E-07 SUM OF SQUARES = 0.16739187E-18

CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.23171219E-02 AND 0.23171219E-02

POSITION OF INTERFACE FERRITE / AUSTENITE IS 0.90260185E-06

U-FRACTION IN SYSTEM: C = 8.95818151685823E-04 FE = 1
                                                                                                                                         4.724474132079392E-013
                                                                                                                                                                                      1.673918727983957E-
```

```
TOTAL SIZE OF SYSTEM: 1E-06 [m]
 MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
 RECLAIMING WORKSPACE
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                           0.0000000
0.10000000E-06
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                           0.3000000E-06
                                           0.7000000E-06
 DELETING TIME-RECORD FOR TIME
                                           0 13445126E-05
 DELETING TIME-RECORD FOR TIME
                                           0.23899618E-05
 DELETING TIME-RECORD FOR TIME
                                           0.44808600E-05
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                           0.85492458E-05
0.14727284E-04
 DELETING TIME-RECORD FOR TIME
                                           0 23147820E-04
 DELETING TIME-RECORD FOR TIME
                                           0.33914169E-04
 DELETING TIME-RECORD FOR TIME
                                           0.47103506E-04
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                           0.62772814E-04
                                           0.80964909E-04
                                           0.10171456E-03
0.12505328E-03
 DELETING TIME-RECORD FOR TIME
 DELETING TIME-RECORD FOR TIME
 DELETING TIME-RECORD FOR TIME
                                           0.15101085E-03
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                           0.17963122E-03
0.21098410E-03
                                           0.24517078E-03
0.28232888E-03
 DELETING TIME-RECORD FOR TIME
 DELETING TIME-RECORD FOR TIME
 DELETING TIME-RECORD FOR TIME
                                           0.32259549E-03
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                           0.36612394E-03
0.41324568E-03
                                           0.46436785E-03
0.51988765E-03
 DELETING TIME-RECORD FOR TIME
 DELETING TIME-RECORD FOR TIME
 DELETING TIME-RECORD FOR TIME
                                           0.58039472E-03
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                           0.64682298E-03
0.71999684E-03
                                           0.80052972E-03
0.88885857E-03
 DELETING TIME-RECORD FOR TIME
 DELETING TIME-RECORD FOR TIME
 DELETING TIME-RECORD FOR TIME
                                           0.98610271E-03
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                           0.10932973E-02
0.12125955E-02
 DELETING TIME-RECORD FOR TIME
                                           0.13461997E-02
 DELETING TIME-RECORD FOR TIME
                                           0.14863550E-02
 DELETING TIME-RECORD FOR TIME
                                           0.16275333E-02
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                           0.17697526E-02
0.19131766E-02
 DELETING TIME-RECORD FOR TIME
                                           0.20576933E-02
 DELETING TIME-RECORD FOR TIME
                                           0.21862891E-02
 DELETING TIME-RECORD FOR TIME
                                           0.22778111E-02
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                           0.23431198E-02
                                           0.23895484E-02
 DELETING TIME-RECORD FOR TIME
                                           0.24227176E-02
0.24463076E-02
 DELETING TIME-RECORD FOR TIME
 DELETING TIME-RECORD FOR TIME
                                           0.24629439E-02
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                           0.24746306E-02
                                           0.24828278E-02
 DELETING TIME-RECORD FOR TIME
                                           0.24885597E-02
 DELETING TIME-RECORD FOR TIME
                                           0.24925298E-02
 DELETING TIME-RECORD FOR TIME
                                           0 24952173E-02
 DELETING TIME RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                           0.24970275E-02
                                           0.24982362E-02
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                           0.24990357E-02
0.24995089E-02
 DELETING TIME-RECORD FOR TIME
                                           0 24997856E-02
 KEEPING TIME-RECORD FOR TIME
                                          0.24999387E-02
 AND FOR TIME
WORKSPACE RECLAIMED
                                          0.25000000E-02
TIMESTEP AT 0.250000000E-02 SELECTED
DTC>
```

DIC>
DIC> set-inter
--OK--DIC>

exh1-plot

```
DIC>About
NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exh1\plot.DCM DIC>
DIC> 00 DIC> 00 TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 2.50000E-03
DIC>
DIC> read exh1
DTC>
DIC> @@
DIC> 00 GO TO THE POST PROCESSOR DIC> 00
DIC> post
POST PROCESSOR VERSION
                                     1.7
Implemented by Bjorn Jonsson POST-1:
POST-1: 00 POST-1: 00 SET THE DATA APPENDED FROM THE "EXP" FILE TO BE READ
POST-1: @@
POST-1: @@
POST-1: set-col for for red
COMMAND NOT SUPPORTED IN THIS PLOT DRIVER
POST-1:
POST-1: @@
POST-1: @@ COMPARE THE POSITION OF THE INTERFACE AS A FUNCTION OF TIME POST-1: @@ POST-1: s-d-a x time
POST-1: s-d-a x time
INFO: Time is set as independent variable
POST-1: s-d-a y posi aus low
POST-1:
POST-1: @@
POST-1: @@ APPEND THE SIMULATION (WITHOUT THE ENERGY CONTRIBUTION) FROM FILE
POST-1: @@
POST-1: app y noadd.exp 1; 1
POST-1:
POST-1: @@
POST-1: @@ SET A TITLE ON THE PLOT POST-1: @@
POST-1: set-title Figure h1
POST-1:
POST-1: 00
POST-1: 00 PLOT THE RESULTS
POST-1: @@
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5

POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
ORKING ... OST-1: SET_EXP_FILE_FORMAT 10
POST-1:
POST-1: plot
```


POST-1:
POST-1:
POST-1: set-inter
--OK--POST-1:

Example exh2

σ/γ para-equilibrium in an Fe-Ni-C alloy

This example calculates the growth of ferrite (α) into austenite (γ) in an Fe-2.02%Ni-0.0885%C alloy using the para-equilibrium model. The results are compared with experimental information from Hutchinson, C. R., A. Fuchsmann, and Yves Brechet. "The diffusional formation of ferrite from austenite in Fe-C-Ni alloys." Met. Mat. Trans A 35.4 (2004): 1211-1221.

exh2-setup

```
Thermo-Calc / DICTRA is software package for calculation of phase diagrams, simulation of phase transformation kinetics and much more.
 Copyright Foundation for Computational Thermodynamics,
 Stockholm, Sweden
 Software running on Windows 64-bit wordlength
 Compiler: unknown compiler
License library version: 9.7.0.0036
Linked: Fri Oct 18 11:32:56 2024
SYS:SYS:MACRO exh2\setup.DCM
SYS: @@
SYS: @@ Deviation from local equilibrium.
SYS: 00 Ferrite/austenite para-equilibrium in an Fe-Ni-C alloy
SYS: 00 This example calculates the growth of ferrite into austenite
SYS: @@ in an Fe-2.02%Ni-0.0885%C alloy using the para-equilibrium model.
SYS: 00 The results are compared with experimental information from
SYS: @@ Hutchinson, C. R., A. Fuchsmann, and Yves Brechet. "The diffusional SYS: @@ formation of ferrite from austenite in Fe-C-Ni alloys." Metall.
SYS: @@ Mat. Trans. A 35.4 (2004): 1211-1221.
SYS:
 NO SUCH COMMAND, USE HELP
SYS:
SYS: @@
SYS: @@ RETRIEVE DATA FROM THE DATABASE
SYS: @@
SYS: go da
15:36:24,130 [Thread-0] INFO LicenseManager: Initializing user: jenkins.integrationtest@thermocalc.se
15:36:24,145 [Thread-0] INFO LicenseController: Running License Spring in DEV environment.
15:36:25,285 [Thread-0] INFO LicenseManager: There is an activated standalone license for jenkins.integrationtest@thermocalc.se for TC-
Application
THERMODYNAMIC DATABASE module
 Database folder:
 C:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples\databases\da
 Current database: Steels/Fe-Alloys v12.0
 VA /- DEFINED DICTRA_FCC_A1 REJECTED PDB TCFF1?
TDB_TCFE12: 00
TDB TCFE12: @@ SELECT A DATABASE FOR THERMODYNAMIC DATA TDB TCFE12: @@
TDB_TCFE12: sw fedemo
 Current database: Iron Demo Database v5.0
                               /- DEFINED
TDB_FEDEMO: def-sys fe ni c
   DEFINED
TDB_FEDEMO: rej ph * all
BCC_A2
CUB_A13
                               CBCC_A12
                                                             CEMENTITE
                               DIAMOND_FCC_A4
GRAPHITE
                                                             FCC_A1
HCP A3
                               LAVES_PHASE_C14
 KSI CARBIDE
                                                             LIOUID:L
 M23C6
REJECTED
TDB_FEDEMO: res ph bcc fcc
BCC_A2 F0
                              FCC A1 RESTORED
TDB FEDEMO: get
T5:36:26,361 [Thread-0] INFO JavaWrapper: *** Invoking Gibbs Energy System v6 *** REINITIATING GES .....
 ELEMENTS ....
 SPECIES .....
 PHASES ......
PARAMETERS ...
 FUNCTIONS
 Use the command LIST REFERENCES to see the list of references for assessed data
 -OK-
TDB_FEDEMO: @@
TDB FEDEMO: @@ SWITCH TO A MOBILITY DATABASE TO RETRIEVE MOBILITY DATA
TDB FEDEMO: @@
TDB_FEDEMO: app mfedemo
 Current database: Fe-Alloys Mobility demo database v4.0
 VA DEFINED
APP: def-sys fe ni c
 FE
   DEFINED
APP: rej ph * all
BCC A2
                                                            CEMENTITE
                              FCC A1
 LIQUID:L REJECTED
APP: res ph bcc fcc BCC_A2
                               FCC_A1 RESTORED
APP: get
 FLEMENTS ....
 SPECIES .....
 FUNCTIONS ....
 Use the command LIST_REFERENCES to see the list of references for assessed data
 -OK-
APP:
APP: @@
APP: @@ ENTER THE DICTRA MONITOR
APP: @@
APP: go d-m
15:36:26,999 [Thread-0] INFO StandaloneLicenseController: Checking out license for: Diffusion (DICTRA)
NO TIME STEP DEFINED DIC>
DIC> @@
```

```
DIC> @@ ENTER THE GLOBAL CONDITION T
DIC> set-cond glob T 0 973; * N
DIC> @@
 DIC> @@ START BY ENTERING THE REGIONS ferrite AND austenite WHERE THE
DIC> @@ BCC AND FCC PHASES ARE PUT, RESPECTIVELY. THE FERRITE REGION IS DIC> @@ ASSUMED INITIALLY TO BE VERY THIN, 1E-9 METERS.
DIC> @@
DIC> enter-region
REGION NAME : ferrite
DIC> enter-region
REGION NAME: austenite
ATTACH TO REGION NAMED /FERRITE/:
ATTACHED TO THE RIGHT OF FERRITE /YES/:
DIC> @@
DIC> @@ ENTER GRIDS INTO THE REGIONS
DIC> @@
 DIC> enter-grid
REGION NAME : /FERRITE/: ferrite
WIDTH OF REGION /1/: 1e-9
 TYPE /LINEAR/: AUTO
DIC>
DIC> enter-grid austenite
WIDTH OF REGION /1/: 50e-6
 TYPE /LINEAR/: AUTO
DIC>
DIC> 00
DIC> 00 ENTER active PHASES INTO THE REGIONS
DIC> 00
DIC> enter-phase
DICS enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: active
REGION NAME : /FERRITE/: ferrite
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: bcc
DIC>
DIC> enter-phase
DICS enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: active
REGION NAME : /AUSTENITE/: austenite
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: fcc#1
DIC>
 DIC>
DIC>
DIC> 00 ENTER THE INITIAL COMPOSITION INTO BCC DIC> 00 ENTER THE INITIAL COMPOSITION INTO BCC DIC> 00 DIC> enter-composition REGION NAME : /FERRITE/: ferrite PHASE NAME : /BCC A2/: bcc DEPENDENT COMPONENT ? /NI/: fe
COMPOSITION TYPE /MOLE_FRACTION/: w-p
PROFILE FOR /C/: c
TYPE /LINEAR/: linear
VALUE OF FIRST POINT : 0.0885
VALUE OF LAST POINT : /8.85E-2/: 0.0885
PROFILE FOR /NI/: ni
TYPE /LINEAR/: linear
VALUE OF FIRST POINT : 2.02
VALUE OF LAST POINT : /2.02/: 2.02
DIC> @@
DIC> 00 ENTER THE INITIAL COMPOSITION INTO FCC DIC> 00
DIC> enter-composition
DIC> enter-composition
REGION NAME: /AUSTENITE/: austenite
PHASE NAME: /FCC A1/: fcc#1
DEPENDENT COMPONENT ? /NI/: fe
COMPOSITION TYPE /MOLE_FRACTION/: w-p
PROFILE FOR /C/: c
TYPE /LINEAR/: linear
VALUE OF FIRST POINT : 0.0885
VALUE OF LAST POINT : /8.85E-2/: 0.0885
PROFILE FOR /NI/: ni
PROFILE FOR /NI/: ni
TYPE /LINEAR/: linear
VALUE OF FIRST POINT : 2.02
VALUE OF LAST POINT : /2.02/: 2.02
DIC>
DIC>
DIC> @@
DIC> @@ SAVE THE SET UP TO A NEW STORE FILE AND EXIT
DIC> save exh2 y
DIC>
DIC> set-inter
--OK---
```

```
DIC>About
NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exh2\run.DCM DIC>
DIC>
DIC>
DIC> @@
 DIC> @@ FILE TO RUN EXAMPLE exh2
DIC> @@
DIC>
DIC> @@
DIC> @@ READ THE SETUP FROM FILE
DIC> @@
DIC>
DIC> go d-m
  TIME STEP AT TIME 0.00000E+00
DIC>
DIC> read exh2
DIC>
DIC> @@
DIC> @@ SET THE SIMULATION TIME
DIC> set-sim-time 50,,,,,,
DIC>
DIC>
DIC>
DIC> @@
DIC> @@ ENABLE THE PARA-EQUILIBRIUM MODEL
DIC> @@
DIC> para
U-FRACTION OF COMPONENT NI /AUTO/: AUTO
U-FRACTION OF COMPONENT NI /AUTO/: AUTO
DTCS
DIC> @@
DIC> @@ START THE SIMULATION DIC> @@
DIC> sim
  Region: FERRITE
  geometric 0.9563
Region: AUSTENITE
                                               dense at 0.100000E-08 76 points
                          0.956338
  geometric 1.25912 dense at 0.00000
DEGREE OF IMPLICITY SET TO TRAPEZOIDAL RULE
                            1.25912
                                                                           0.00000
                                                                                                      94 points
Trying old scheme 4

GENERATING STARTING VALUES FOR CELL # 1 INTERFACE # 2

DETERMINING INITIAL EQUILIBRIUM VALUES

CALCULATING STARTING VALUES: 9 EQUILIBRIUM CALCULATIONS

DETERMINED ACTIVITIES ACR(C) .161541295585

UNABLE TO OBTAIN GOOD STARTING VALUE USING THE OLD SCHEME
                                                                                                                                                                            6 OUT OF
                                                                                                                                                          DONE
USE NEW SCHEME /YES/:
Trying new scheme

GEMERATING STARTING VALUES FOR CELL # 1 INTERFACE # 2

DETERMINING INITIAL EQUILIBRIUM VALUES

CALCULATING STARTING VALUES: 18 EQUILIBRIUM CALCULATIONS

U-FRACTION IN SYSTEM: C = .00412262676333 FE = .980742621143593

NI = .0192573788564064

TOTAL SIZE OF SYSTEM: 5.0001E-05 [m]

U-FRACTION IN SYSTEM: C = .00412262676333 FE = .980742621143593

NI = .0192573788564064

TOTAL SIZE OF SYSTEM: 5.0001E-05 [m]

2232.10931178155 2232.10931178547 2228.1855172800

03 8.415416277377267E-003 6.710264020635073E-006

006 1.657225510608593E-006 1.065019577740872E-014

06 SUM OF SOUARES = 0.25940384E-20
   Trying new scheme
                                                                                                                                                          DONE 1 OUT OF 18
                                                                                                          2228.18551728005
                                                                                                                                                             2.32383489339861 1.946749851382089E-
                                                                    6.710264020635073E-006 1.891337182609781E-003 4.398065287394721E-
1.065019577740872E-014 TIME = 0.10000000E-06 DT = 0.10000000E-
006 1.657225510608593E-006 1.065019577740872E-014 TIME = 06 SUM OF SQUARES = 0.25940384E-20 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.69881845E-01 AND 0.69881845E-01 POSITION OF INTERFACE FERRITE / AUSTENITE IS 0.79881845E-08 U-FRACTION IN SYSTEM: C = .00412291487299393 FE = .980742621143594 NI = .0192573788564064 TOTAL SIZE OF SYSTEM: 5.0001E-05 [m] 39 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: FERRITE 4 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: AUSTENITE
   CPU time used in timestep 2189.02036583977
                                                                                           3 seconds
                                                                                                          2.185.12780796211 2.22490782887878 1.820835197641041E-
8538681E-006 1.895308042543652E-003 2.542966429567954E-
                      7.877350106897017E-003
                                                                                  3.917525998538681E-006
                                                                                                                                                                                                               2.542966429567954E-006
output ignored...
... output resumed
                                                                                            1189.62544963766
                                                                                                                                                          0.586696675278459 2.470347775651576E-
  1192.63240780067
                                                    1192.63240780318
1192.63240780067 1192.63240780318 1189.62544963766 0.586696675278459
004 1.644178107861449E-006 7.371594133648919E-010 2.065832855473172E-003
019 TIME = 36.119232 DT = 5.000000 SUM OF SQUARES = 0.50843153E-18
CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.20650414E-06 AND 0.20650414E-06
POSITION OF INTERFACE FERRITE / AUSTENITE IS 0.11799654E-04
U-FRACTION IN SYSTEM: C = .00412966835226155 FE = .980742621143593
NI = .0192573788564066

TOTAL SIZE OF SYSTEM: 5.0001E-05 [m]
                                                                                                                                                                                                             5.084320285003332E-
    21 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: FERRITE
CPU time used in timestep 1 seconds
1169.39662381185 1169.39662381330 1166.41547102204 0.562252758083153
004 1.516388173134960E-006 6.707143176389857E-010 2.068897440626551E-003
019 TIME = 41.119232 DT = 5.0000000 SUM OF SQUARES = 0.46777395E-18
CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.19501454E-06 AND 0.19501454E-06
POSITION OF INTERFACE FERRITE / AUSTENITE IS 0.12774727E-04
U-FRACTION IN SYSTEM: C = .00413078918298148 FE = .980742621143593
NI = .0192573788564067
TOTAL SIZE OF SYSTEM: 5.0001E-05 [m]
9 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: FERRITE
                                                                                                                                                      CPU time used in timestep 1146.60821641600
2.174786977267588E-
                                                                                                                                                                                                              4 288105449062012E-
```

NI = .0192573788564067
TOTAL SIZE OF SYSTEM: 5.0001E-05 [m]
9 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: FERRITE

CPU time used in timestep 1 seconds
1124.25873698305 1124.25873698208 1121.32867166880 0.516415116325854 2.040652216253534E004 1.016971856171830E-005 4.143310090003984E-009 2.110304149454083E-012 2.062994805027931E003 4.764560328683764E-022 TIME = 49.232182 DT = 3.1129497 SUM OF SQUARES = 0.47645603E-21
CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.19806331E-06 AND 0.19806331E-06
POSITION OF INTERFACE FERRITE / AUSTENITE IS 0.14316588E-04
U-FRACTION IN SYSTEM: C = .00413221468491343 FE = .980742621143594
NI = .0192573788564067

TOTAL SIZE OF SYSTEM: 5.0001E-05 [m]
7 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: FERRITE 004

CPU time used in timestep 1102.33989435877 1 seconds

0.0000000

WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME 0.10000000E-06 0.20000000E-06

DELETING TIME-RECORD FOR TIME 0.4000000E-06

DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 0.8000000E-06 0.16000000E-05

DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 0 32000000E-05

DELETING TIME-RECORD FOR TIME 0.12800000E-04

DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 0.25600000E-04 0.51200000E-04

0.10240000E-03

DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 0.20480000E-03

DELETING TIME-RECORD FOR TIME 0.40960000E-03

0.81920000E-03 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME

0.16230121E-02

DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 0.31209881E-02

0.61169400E-02

DELETING TIME-RECORD FOR TIME 0.12108844E-01

DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 0.24092651E-01

0.48060266E-01

DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME 0.95864768E-01

0.19147377 DELETING TIME-RECORD FOR TIME 0.38269178

DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME

1.5299998

DELETING TIME-RECORD FOR TIME 3 0597439

DELETING TIME-RECORD FOR TIME 6.1192320 DELETING TIME-RECORD FOR TIME 11 119232

DELETING TIME-RECORD FOR TIME

DELETING TIME-RECORD FOR TIME 21.119232 DELETING TIME-RECORD FOR TIME 26.119232

DELETING TIME-RECORD FOR TIME 31.119232

36.119232 41.119232

DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME 46.119232

50 000000

KEEPING TIME-RECORD FOR TIME 49.232182

WORKSPACE RECLAIMED

TIMESTEP AT 50.0000000 SELECTED

DIC> set-inter --OK---

AND FOR TIME

exh2-plot

POST-1: POST-1: set-inter

--OK--POST-1:

```
DIC>About
NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exh2\plot.DCM DIC>
DIC> 00 DIC> 00 TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 5.00000E+01
DIC>
DIC> read exh2
DTC>
DIC> @@
DIC> 00 GO TO THE POST PROCESSOR DIC> 00
DIC> post
POST PROCESSOR VERSION
Implemented by Bjorn Jonsson POST-1:
POST-1: 00
POST-1: 00 WE WANT TO PLOT THE POSITION OF THE INTERFACE AS A FUNCTION OF TIME POST-1: 00 I.E. THE FERRITE HALF-THICKNESS
POST-1: @@
POST-1: s-d-a x time
INFO: Time is set as independent variable
POST-1: s-d-a y posi aus low
POST-1:
POST-1: @@
POST-1: @@ APPEND THE EXPERIMENTAL INFORMATION
POST-1: @@
POST-1: app y exh2.exp 1; 1
POST-1: 00
POST-1: @@ SET A TITLE ON THE PLOT POST-1: @@
POST-1: set-title Figure h2
POST-1:
POST-1: @@
POST-1: @@ RENAME THE AXIS LABELS
POST-1: @@
POST-1: ee
POST-1: set-axis-text-status

AXIS (X, Y OR Z) : x

AUTOMATIC AXIS TEXT (Y OR N) /N/: NO

AXIS TEXT : Time [s]
AXIS TEXT : Time [s]
POST-1:
POST-1: set-axis-text-status
AXIS (X, Y OR Z) : y
AUTOMATIC AXIS TEXT (Y OR N) /N/: NO
AXIS TEXT : Ferrite half-thickness
POST-1: @@
POST-1: @@ PLOT THE RESULTS
POST-1: @@
POST-1: ee
POST-1: POST-1:
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
OST-1: SET_EXP_FILE_FORMAT 10
```

Figure h2

Example exh3

Diffusion induced by a temperature gradient (thermomigration)

This calculation shows how a temperature gradient induces diffusion.

$$J_{C} = -\frac{u_{C}}{V_{s}} y_{Va} M_{CVa} \left(\frac{\partial \mu_{C}}{\partial x} + \frac{Q_{C}^{*}}{T} \frac{\partial T}{\partial x} \right)$$

exh3-setup

```
Thermo-Calc / DICTRA is software package for calculation of phase diagrams, simulation of phase transformation kinetics and much more.
 Copyright Foundation for Computational Thermodynamics,
 Stockholm, Sweden
 Software running on Windows 64-bit wordlength
 Compiler: unknown compiler
License library version: 9.7.0.0036
Linked: Fri Oct 18 11:32:56 2024
SYS:SYS:MACRO exh3\setup.DCM
SYS: @@
SYS: @@ Deviation from local equilibrium.
SYS: 00 Diffusion induced by a temperature gradient (thermomigration)
SYS: 00 This calculation shows how a temperature gradient induces
SYS: @@ diffusion.
NO SUCH COMMAND, USE HELP SYS:
SYS: go da
15:39:50,841 [Thread-0] INFO LicenseManager: Initializing user: jenkins.integrationtest@thermocalc.se
15:39:50,854 [Thread-0] INFO LicenseController: Running License Spring in DEV environment.
15:39:51,900 [Thread-0] INFO LicenseManager: There is an activated standalone license for jenkins.integrationtest@thermocalc.se for TC-
 THERMODYNAMIC DATABASE module
 Database folder:
C:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples\databases\da
 Current database: Steels/Fe-Alloys v12.0
VA /- DEFINED
DICTRA_FCC_A1 REJECTED
TDB_TCFE12: sw fedemo
Current database: Iron Demo Database v5.0
TDB_FEDEMO: def-sys fe ni c
   DEFINED
TDB_FEDEMO: rej ph * all
BCC_A2
CUB_A13
                                CBCC A12
                                                              CEMENTITE
                                DIAMOND_FCC_A4
GRAPHITE
 GAS:G
 KSI_CARBIDE
M23C6
REJECTED
                                LAVES_PHASE_C14
                                                               LIQUID:L
M7C3
TDB_FEDEMO: res ph fcc graph
FCC_A1 GRA
                               GRAPHITE RESTORED
TDB_FEDEMO: get
REINITIATING GES ..... get 115:39:52,967 [Thread-0] INFO JavaWrapper: *** Invoking Gibbs Energy System v6 ***
 ELEMENTS ....
 SPECIES .....
 PHASES ......
 FUNCTIONS ...
 Use the command LIST REFERENCES to see the list of references for assessed data
 -OK-
TDB_FEDEMO: app mfedemo
Current database: Fe-Alloys Mobility demo database v4.0
 VA DEFINED
APP: def-sys fe ni c
 FE
   DEFINED
APP: rej ph * all
BCC A2
                               FCC A1
                                                              CEMENTITE
 LIQUID:L REJECTED
APP: res ph fcc
FCC_A1 RESTORED
APP: get
 ELEMENTS
 SPECIES .....
 PHASES .....
 PARAMETERS
 FUNCTIONS ....
 Use the command LIST REFERENCES to see the list of references for assessed data
 -OK-
APP:
NO TIME STEP DEFINED

*** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE
DIC>
DIC> @@ ENTER A GAUSSIAN-SHAPED TEMPERATURE GRADIENT
DIC> set-cond glob T 0 1000+400*exp(-3.35074E4*(x-11e-3)**2); * N
DIC>
DIC> set-ref C grap,,,,,,,,
DIC>
DIC> ent-reg aus,,,,,
DIC>
DIC> ent-grid aus 25e-3 auto
DIC>
DIC> ent-pha act aus matrix fcc#1
DTC>
DIC> ent-comp aus fcc#1 fe w-p
PROFILE FOR /C/: c lin 0.14 0.14
PROFILE FOR /NI/: ni lin 32.5 32.5
DTC>
DIC> s-s-time 5E7,,,,,,,,
DIC> 00 ENTER THE HEAT OF TRANSFER PARAMETER FOR CARBON
```

```
DIC> ent-heat-tra-p
HEAT TRANSFER PARAMETER FOR PHASE: fcc
ELEMENT: C
PARAMETER /0/: -42000
DIC>
DIC>
DIC>
DIC> save exh3 y
DIC>
DIC> set-inter
--OK---
DIC>
```

```
NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exh3\run.DCM DIC>
DIC> go d-m
TIME STEP AT TIME 0.00000E+00

*** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE
DIC> read exh3
DIC>
DIC> sim
 Region: AUS
 linear 75 points
DEGREE OF IMPLICITY SET TO TRAPEZOIDAL RULE
 U-FRACTION IN SYSTEM: C = .00662305741857947 FE = .68534915460493 NI = .31465084539507
 NI = .31465084539507

U-FRACTION IN SYSTEM: 0.25 [m]

TOTAL SIZE OF SYSTEM: 0.25 [m]

TOTAL SIZE OF SYSTEM: 0.25 [m]

TOTAL SIZE OF SYSTEM: 0.25 [m]

TIME = 0.100000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.00

U-FRACTION IN SYSTEM: C = .00662305741857946 FE = .68534915460493
                                                                                                                 NI = .31465084539507
                                                                                                   TOTAL SIZE OF SYSTEM: .025 [m]
 CPU time used in timestep 0.10010000E-03 DT = 0.10000000E-03 SUM OF SQUARES = 0.00 U-FRACTION IN SYSTEM: C = .00662305741857946 FE = .68534915460493
 \label{eq:ni}  \text{NI} = .31465084539507 \\ \text{TOTAL SIZE OF SYSTEM:} \quad .025 \text{ [m]}
 0.0000000
 0.0000000
 0.0000000
 0.0000000
 0.0000000
 0.0000000
 TOTAL SIZE OF SYSTEM: .025 [m]

CPU time used in timestep 1 seconds

TIME = 95928.651 DT = 73818.433 SUM OF SQUARES = 0.000

U-FRACTION IN SYSTEM: C = .00662305741845141 FE = .685349154604931

NI = .314650845395069

TOTAL SIZE OF SYSTEM: .025 [m]
                                                                               0.0000000
 0 0000000
 0 0000000
 0 0000000
 0 0000000
 TOTAL SIZE OF SYSTEM: .025 (...)

CPU time used in timestep

TIME = 4672671.5 DT = 2362189.9 SUM OF SQUARES = 0.000

U-FRACTION IN SYSTEM: C = .0066230574179999 FE = .685349154604931

NI = .314650845395069
                                                                               0.0000000
 NI = TOTAL SIZE OF SYSTEM: .025
 CPU time used in timestep 0 seconds
TIME = 9397051.2 DT = 4724379.7 SUM OF SQUARES = 0.000
U-FRACTION IN SYSTEM: C = .00662305741801717 FE = .68534915460493
                                                                               0.0000000
 NI = TOTAL SIZE OF SYSTEM: .025
                                    .314650845395069
                              .025 [m]
 CPU time used in timestep 0 seconds
TIME = 13622714. DT = 4225662.5 SUM OF SQUARES = 0.000
U-FRACTION IN SYSTEM: C = .00662305741802533 FE = .685349154604931
                                                                               0.0000000
 NI = TOTAL SIZE OF SYSTEM: .025
                                    .314650845395069
                              .025 [m]
 CPU time used in timestep 1 seconds
TIME = 17553927. DT = 3931213.3 SUM OF SQUARES = 0.0000
U-FRACTION IN SYSTEM: C = .00662305741803155 FE = .685349154604931
                                                                               0.0000000
 NI = TOTAL SIZE OF SYSTEM: .025
                                    .314650845395069
                              .025 [m]
 CPU time used in timestep 0 seconds
TIME = 21379744. DT = 3825816.5 SUM OF SQUARES = 0.0000
U-FRACTION IN SYSTEM: C = .00662305741803515 FE = .685349154604931
                                                                               0.0000000
 NI =
TOTAL SIZE OF SYSTEM: .025
CPU time used
                                    .314650845395069
                              .025 [m]
 CPU time used in timestep 0 seconds 
  \mbox{TIME} = 25162824. \quad \mbox{DT} = 3783080.8 \quad \mbox{SUM OF SQUARES} = 0.0000000
```

```
U-FRACTION IN SYSTEM: C = .00662305741803803 FE = .685349154604931
NI = .314650845395069
TOTAL SIZE OF SYSTEM: .025 [m]
CPU time used in timestep 0 seconds
TIME = 28928550. DT = 3765726.0 SUM OF SQUARES = 0.0000
U-FRACTION IN SYSTEM: C = .00662305741803984 FE = .685349154604931
                                                                                                         0.0000000
NI = .314650845395069
TOTAL SIZE OF SYSTEM: .025 [m]
CPU time used in timestep 1 seconds
TIME = 32687844. DT = 3759294.0 SUM OF SQUARES = 0.0000
U-FRACTION IN SYSTEM: C = .00662305741772484 FE = .685349154604931
                                                                                                         0.0000000
NI = .314650845395069
TOTAL SIZE OF SYSTEM: .025 [m]
CPU time used in timestep

TIME = 36445450. DT = 3757605.3 SUM OF SQUARES = 0.000(
U-FRACTION IN SYSTEM: C = .00662305741750546 FE = .685349154604931

NI = .314650845395069

TOTAL SIZE OF SYSTEM: .025 [m]
                                                                                                         0.0000000
TIME = 40203391. DT = 3757941.0 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00662305741693398 FE = .685349154604931 NI = .314650845395069 TOTAL SIZE OF SYSTEM: .025 [m]
CPU time used in timestep 0 seconds
TIME = 43877566. DT = 3674174.8 SUM OF SQUARES = 0.0000
U-FRACTION IN SYSTEM: C = .00662305741647826 FE = .685349154604931
                                                                                                         0.0000000
TOTAL SIZE OF SYSTEM: .025
                                       NI = .314650845395069
.025 [m]
CPU time used in timestep 0 seconds
TIME = 46159380. DT = 2281815.0 SUM OF SQUARES = 0.0000000
U-FRACTION IN SYSTEM: C = .00662305741628053 FE = .685349154604931
TOTAL SIZE OF SYSTEM: .025
                                       NI = .314650845395069
.025 [m]
CPU time used in timestep 1 seconds

TIME = 47751923. DT = 1592542.4 SUM OF SQUARES = 0.00

U-FRACTION IN SYSTEM: C = .0066230574161792 FE = .68534915460493

NI = .314650845395069

TOTAL SIZE OF SYSTEM: .025 [m]
TOTAL SIZE OF SYSTEM: .025
CPU time used in timestep 0 seconds
TIME = 49034799. DT = 1282876.2 SUM OF SQUARES = 0.0000000
U-FRACTION IN SYSTEM: C = .00662305741611517 FE = .685349154604931
NI = .314650845395069
TOTAL SIZE OF SYSTEM: .025 [m]
CPU time used in timestep 0 seconds

TIME = 49764724. DT = 729925.30 SUM OF SQUARES = 0.000

U-FRACTION IN SYSTEM: C = .00662305741609296 FE = .685349154604931
NI = .314650845395069
TOTAL SIZE OF SYSTEM: .025 [m]
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                        0.0000000
                                                     0.10000000E-06
                                                      0.10010000E-03
                                                      0.40010010
 DELETING TIME-RECORD FOR TIME
                                                        713 62003
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                        4992.9396
                                                        10698.699
                                                        22110.218
DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                        95928 651
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                        538839.25
                                                        1129386.7
                                                        2310481.6
DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                        4672671.5
 DELETING TIME-RECORD FOR TIME
                                                        13622714.
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                        17553927.
21379744.
 DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                        25162824
 DELETING TIME-RECORD FOR TIME
                                                        32687844.
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                        36445450
                                                        40203391.
DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                        43877566
 DELETING TIME-RECORD FOR TIME
                                                        47751923.
 DELETING TIME-RECORD FOR TIME
 KEEPING TIME-RECORD FOR TIME
AND FOR TIME
                                                      49764724
WORKSPACE RECLAIMED
TIMESTEP AT 50000000.0 SELECTED
```

DIC> set-inter --OK---

exh3-plot

```
DIC>About

NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exh3\plot.DCM DIC> go d-m

TIME STEP AT TIME 5.00000E+07

*** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE
DIC>
DIC> read exh3
OK
DIC>
POST PROCESSOR VERSION 1.7
Implemented by Bjorn Jonsson
POST-1: s-d-a x dist glob
    INFO: Distance is set as independent variable
POST-1: s-d-a y w-p c POST-1: s-p-c time 367200 5E7
POST-1: s-s-s y n 0.1 0.18

POST-1: s-s-s y y

POST-1: app y exh3.exp 0; 1 3;

POST-1: s-p-o n y y n y n n,,,,,,,
POST-1: POST-1: set-ax-text-st x
AUTOMATIC AXIS TEXT (Y OR N) /N/: n
AXIS TEXT : Distance [m]
POST-1: set-ax-text-st y
AUTOMATIC AXIS TEXT (Y OR N) /N/: n
AXIS TEXT : Mass percent C
 POST-1:
POST-1: SET_EXP_FILE_FORMAT 5

POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y

POST-1: SET_EXP_FILE_FORMAT 10
POST-1:
POST-1: plot
            0.30
                                                                                              · · · · · · · · · · · · · Measured
                        Qp=-44kJ/mole
                                                                                                                        - Calculated
            0.25
        Mass percent C
            0.20
```

`≜

0.015

Distance [m]

0.020

0.025

Δ

POST-1: POST-1: POST-1:
POST-1: set-inter POST-1:

0.05 -0.000

0.005

0.15

Diffusion in Complex Phases

Example exi1

Diffusion in system with B2 ordering

Diffusion in including effects from chemical ordering. In this example folder, there is also a datafile AlFeNi-data. TDB, which contains both a thermodynamic and kinetic description for the ordered and disordered bcc.

exi1-setup

```
Thermo-Calc / DICTRA is software package for calculation of phase diagrams, simulation of phase transformation kinetics and much more.
 Copyright Foundation for Computational Thermodynamics,
 Stockholm, Sweden
 Software running on Windows 64-bit wordlength
 Compiler: unknown compiler
License library version: 9.7.0.0036
Linked: Fri Oct 18 11:32:56 2024
SYS:SYS:MACRO exi1\setup.DCM
SYS: @@
SYS: @@ Diffusion in complex phases.
SYS: 00 Diffusion in a system with B2 ordering
SYS: 00 This example shows diffusion in a system with B2 ordering.
SYS: 00 The datafile AlFeNi-data.TDB contains both a thermodynamic
SYS: @@ and kinetic description for the ordered and disordered BCC.
SYS:
  NO SUCH COMMAND, USE HELP
SYS:
SYS: 00 exi1_setup.DCM
SYS:
SYS:
SYS: go da
15:42:52,848 [Thread-0] INFO LicenseManager: Initializing user: jenkins.integrationtest@thermocalc.se
15:42:52,861 [Thread-0] INFO LicenseController: Running License Spring in DEV environment.
15:42:53,947 [Thread-0] INFO LicenseManager: There is an activated standalone license for jenkins.integrationtest@thermocalc.se for TC-
Application
  THERMODYNAMIC DATABASE module
 C:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples\databases\da
 Current database: Steels/Fe-Alloys v12.0
                                     /- DEFINED
DICTRA_FCC_A1 REJECTED

TDB_TCFE12: sw user AlFeNi-data.TDB
 Current database: User defined Database
This database does not support the DATABASE_INFORMATION command
 VA DEFINED
VA DEFINED
15:42:54,892 [Thread-0] INFO TDBFileParser: USER_1695849785_19, number of lines read: 609
15:42:55,335 [Thread-0] INFO DatabaseUtils: Parsing of USER_1695849785_19 completed in 520 ms
TDB_USER: def-sys fe al ni
 FE
                                     AT.
                                                                         NΤ
    DEFINED
TDB_USER: rej ph *
B2_BCC
REJECTED
                                     BCC_DIS
                                                                        B2_ORD
TDB_USER: res ph bcc_dis b2_ord
BCC_DIS B2_ORD RESTORED
TDB USER: get
15:42:55,510 [Thread-0] INFO JavaWrapper: *** Invoking Gibbs Energy System v6 ***
 ELEMENTS .....
SPECIES .....
PHASES .....
  PARAMETERS ...
  FUNCTIONS
 INFO: Forcing option USE POLY3 for complex phase B2 ORD
-OK-
TDB USER: go -m
15:42:55,953 [Thread-0] INFO StandaloneLicenseController: Checking out license for: Diffusion (DICTRA) NO TIME STEP DEFINED
DIC> set-cond glob T 0 1277; * N
DIC>
DIC> enter-region beta
DIC>
DIC> enter-grid beta
WIDTH OF REGION /1/: 2e-3
TYPE /LINEAR/: double
VALUE OF R IN THE GEOMETRICAL SERIE FOR LOWER PART OF REGION: 0.85
VALUE OF R IN THE GEOMETRICAL SERIE FOR UPPER PART OF REGION: 1.1765
DIC>
DIC> enter-phase
ACTIVE OR INACTIVE PHASE /ACTIVE/: act
REGION NAME : /BETA/: beta
PHASE TYPE /MATRIX/: matrix
PHASE NAME: /NONE/: b2_ord
DIC>
DIC> enter-composition
REGION NAME : /BETA/: beta
PHASE NAME: /B2_ORD/: b2_ord
DEPENDENT COMPONENT ? /NI/: fe
COMPOSITION TYPE /MOLE_FRACTION/: mole-fraction
PROFILE FOR /AL/: ni
TYPE /LINEAR/: function
Function F(X) = 0.28-0.277*erf((x-1e-3)/3e-6);
PROFILE FOR /NI/: al
TYPE /LINEAR/: function
Function F(X) = 0.4295-0.0105*erf((x-1e-3)/3e-6);
15:42:56,359 [Thread-0] INFO Database: Preparing system for use: USER_1695849785_19
15:42:57,422 [Thread-0] INFO Phase: Preparing phase for use: B2_ORD
15:42:57,889 [Thread-0] INFO Phase: Preparing phase for use: BCC_DIS
DIC>
DIC> set-simulation-time
END TIME FOR INTEGRATION /.1/: 345600
AUTOMATIC TIMESTEP CONTROL /YES/:
MAX TIMESTEP DURING INTEGRATION /34560/:
INITIAL TIMESTEP : /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DIC> s-a-s-v
AUTOMATIC STARTING VALUES FOR PHASE COMPOSITIONS /YES/: no
START VALUES FOR PHASES IN REGION BETA PHASE: B2_ORD
MAJOR CONSTITUENTS IN PHASE B2_ORD: NI; AL
```

```
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC>
DIC> save exil yes
DIC>
DIC> set-inter
--OK---
DIC>
```

CPU time used in timestep

```
NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exi1\run.DCM DIC>
DIC>
DIC> @@ exi1_run.DCM
DIC>
DIC> @@ FILE FOR RUNNING EXAMPLE i1
DIC> @@
DIC>
DIC> @@
\overline{\text{DIC>}} @@ enter the dictra monitor and read the store result file \overline{\text{DIC>}} @@
  TIME STEP AT TIME 0.00000E+00
DIC> read exi1
 OK
DTC>
DIC> @@
DIC> @@ START THE SIMULATION
DIC> @@
 DEGREE OF IMPLICITY SET TO TRAPEZOIDAL RULE
 DEGREE OF IMPLICITY SET TO TRAPEZOIDAL ROLE
INFO: FORCED STARFING VALUES TURNED ON
U-FRACTION IN SYSTEM: AL = .429499345639258 FE = .290517917020317
NI = .279982737340425

TOTAL SIZE OF SYSTEM: AL = .429499345639258 FE = .290517917020317
U-FRACTION IN SYSTEM: AL = .429499345639258 FE = .290517917020317
                                                                                                                                            NI = .279982737340425
                                                                                                                             TOTAL SIZE OF SYSTEM: .002 [m]
 NI = .279982737340425
                                                                                                                             TOTAL SIZE OF SYSTEM: .002 [m]
 0.0000000
 0.0000000
 TOTAL SIZE OF SYSTEM: .002 [m]

CPU time used in timestep 2 seconds

TIME = 1538.4655 DT = 1025.3769 SUM OF SQUARES = 0.00

U-FRACTION IN SYSTEM: AL = .429499345639233 FE = .290517917020342

NI = .279982737340425

TOTAL SIZE OF SYSTEM: .002 [m]
                                                                                                    0.0000000
 TOTAL SIZE OF SYSTEM: .002 [m]

CPU time used in timestep 1 seconds

TIME = 3589.2193 DT = 2050.7538 SUM OF SQUARES = 0.00

U-FRACTION IN SYSTEM: AL = .429499345639231 FE = .290517917020345

NI = .279982737340424

TOTAL SIZE OF SYSTEM: .002 [m]
                                                                                                    0.0000000
 0.0000000
 0 0000000
 TOTAL SIZE OF SYSTEM: .UUZ [m]

CPU time used in timestep 1 seconds

TIME = 32299.773 DT = 16406.031 SUM OF SQUARES = 0.01

U-FRACTION IN SYSTEM: AL = .42949934563921 FE = .290517917020363

NI = .279982737340427

TOTAL SIZE OF SYSTEM: .002 [m]
                                                                                                   0 0000000
 0 0000000
 TOTAL SIZE OF SYSTEM: .002 [m]

CPU time used in timestep

TIME = 99671.835 DT = 34560.000 SUM OF SQUARES = 0.00

U-FRACTION IN SYSTEM: AL = .429499345639089 FE = .290517917020497

NI = .279982737340415

TOTAL SIZE OF SYSTEM: .002 [m]
                                                                                                   0 0000000
 0.0000000
 CPU time used in timestep 1 seconds
TIME = 168791.83 DT = 34560.000 SUM OF SQUARES = 0.000
U-FRACTION IN SYSTEM: AL = .429499345639167 FE = .290517917020446
NI = .279982737340387
TOTAL SIZE OF SYSTEM: .002 [m]
                                                                                                   0.0000000
 CPU time used in timestep 1 seconds
TIME = 203351.83 DT = 34560.000 SUM OF SQUARES = 0.000
U-FRACTION IN SYSTEM: AL = .429499345639157 FE = .290517917020456
NI = .279982737340387

TOTAL SIZE OF SYSTEM: .002 [m]
                                                                                                   0.0000000
 CPU time used in timestep 1 seconds
TIME = 237911.83 DT = 34560.000 SUM OF SQUARES = 0.001
U-FRACTION IN SYSTEM: AL = .429499345639151 FE = .290517917020441
NI = .279982737340408
                                                                                                   0.0000000
  TOTAL SIZE OF SYSTEM:
                                     .002 [m]
 CPU time used in timestep 1 seconds
TIME = 272471.83 DT = 34560.000 SUM OF SQUARES = 0.000
U-FRACTION IN SYSTEM: AL = .429499345639152 FE = .290517917020425
NI = .279982737340423

TOTAL SIZE OF SYSTEM: .002 [m]
                                                                                                   0.0000000
```

1 seconds

```
TIME = 307031.83 DT = 34560.000 SUM OF SQUARES = 0.00 U-FRACTION IN SYSTEM: AL = .42949934563916 FE = .290517917020412 NI = .279982737340428 TOTAL SIZE OF SYSTEM: .002 [m]
                                                                                                                                                                                                                          0.0000000
TOTAL SIZE OF SYSTEM: .002 [m] 1 seconds

TIME = 341591.83 DT = 34560.000 SUM OF SQUARES = 0.000

U-FRACTION IN SYSTEM: AL = .429499345639173 FE = .290517917020402

NI = .279982737340426

TOTAL SIZE OF SYSTEM: .002 [m]

CPU time used in timestep

TIME = 345600.00 DT = 4008.1652 SUM OF SQUARES = 0.000

NI = .279982737340426

TOTAL SIZE OF SYSTEM: .002 [m]

TOTAL SIZE OF SYSTEM: .002 [m]

WIST SAVE WORKSPACE ON FILE

WORKSPACE SAVED ON FILE

WORKSPACE SAVED ON FILE

RECLAITMING WORKSPACE
                                                                                                                                                                                                                          0.0000000
                                                                                                                                                                                                                        0.0000000
WORKSPACE SAVED ON FILE
RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
                                                                                                                   0.0000000
                                                                                                             0.10000000E-06
0.10010000E-03
                                                                                                                0.40010010
                                                                                                                   513.08856
1538.4655
                                                                                                                   3589.2193
7690.7270
  DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                                                                   15893.742
                                                                                                                   32299.773
65111.835
  DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                                                                   99671.835
134231.83
 DELETING TIME-RECORD FOR TIME
                                                                                                                   168791.83
203351.83
237911.83
                                                                                                                   272471.83
 KEEPING TIME-RECORD FOR TIME AND FOR TIME
                                                                                                          341591.83
                                                                                                               345600.00
 WORKSPACE RECLAIMED
 TIMESTEP AT
                                                   345600.000 SELECTED
```

DIC> pic> set-inter --OK---

```
DIC>About
NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exi1\plot.DCM DIC>
DIC> @@ exi1_plot.DCM
DIC>
DIC> @@
DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE i1
DIC> @@
DIC>
DIC> @@
DIC> 00 GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 3.45600E+05
DIC> read exi1
OK
DIC>
DIC> 00
DIC> 00 ENTER THE POST PROCESSOR
DIC> 00
DIC> post
 POST PROCESSOR VERSION 1.7
Implemented by Bjorn Jonsson
POST-1: POST-1: s-d-a x dist glob
  INFO: Distance is set as independent variable
POST-1:
POST-1: s-d-a y m-f al
POST-1:
POST-1: s-p-c time last
POST-1:
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
POST-1: SET_EXP_FILE_FORMAT 10
POST-1:
POST-1: plot
       0.49
       0.48
       0.47
       0.46
     Mole fraction AL
       0.45
       0.44
       0.43
       0.42
       0.41
         0.00000 0.00020 0.00040 0.00060 0.00080 0.00100 0.00120 0.00140 0.00160 0.00180 0.00200
 Distance
POST-1: @?<Hit_return_to_continue>
POST-1:
POST-1: ent tab prof
Variable(s) x(al) x(ni)
POST-1: POST-1: ent fun rdist
FUNCTION: 1e6*(gd-10e-4)
& POST-1: s-d-a y prof COLUMN NUMBER /*/: 1 2
POST-1: s-d-a x rdist
POST-1:
POST-1: SET_EXP_FILE FORMAT 5
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
POST-1: SET_EXP_FILE_FORMAT 10
POST-1:
POST-1: plot
```



```
POST-1:
POST-1:
POST-1:@?<Hit_return_to_continue>
POST-1:@?<Hit_return_to_continue>
POST-1: app y exi1.exp
PROLOGUE NUMBER: /O: 1
DATASET NUMBER(s): /-1/: 1
POST-1:
POST-1: s-s-s x n -300 300
POST-1: s-s-s x n -300 300
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: SET_EXP_FILE_FORMAT 10
POST-1: SET_EXP_FILE_FORMAT 10
POST-1: plot
```


POST-1: POST-1: POST-1: set-inter --OK---POST-1:

Example exi2

Diffusion of carbon in cementite

This example demonstrates the use of the model for calculation of diffusion through a stoichiometric phase. The flux of a component in the stoichiometric phase is assumed to be proportional to the difference in chemical potential at each side of the stoichiometric phase multiplied with the mobility for the component in the phase. The mobility is assessed from experimental information and is basically the tracer diffusivity for the component. This calculation is compared with experimental data where a sample of pure iron has been exposed to a gas atmosphere with a certain carbon activity. The weight gain is then measured as a function of time. The experimental data is obtained from Ozturk B., Fearing V. L., Ruth A. Jr. and Simkovich G., Met. Trans A, vol 13A (1982), pp. 1871-1873.

 $J\sim\Delta\mu$

exi2-setup

SYS: About

APP: @@

```
Thermo-Calc / DICTRA is software package for calculation of phase diagrams, simulation of phase transformation kinetics and much more.
 Copyright Foundation for Computational Thermodynamics,
 Stockholm, Sweden
 Software running on Windows 64-bit wordlength
 Compiler: unknown compiler
License library version: 9.7.0.0036
Linked: Fri Oct 18 11:32:56 2024
SYS:SYS:MACRO exi2\setup.DCM
SYS: @@
SYS: @@ Diffusion in complex phases.
SYS: @@ Diffusion of carbon in cementite
      \ensuremath{\texttt{@Q}} This example demonstrates the use of the model for calculation of
SYS: @@ diffusion through a stoichiometric phase. The flux of a component in
      00 the stoichiometric phase is assumed to be proportional to the
SYS: 00 difference in chemical potential at each side of the stoichiometric SYS: 00 phase multiplied with the mobility for the component in the phase. The
{f SYS}: @@ mobility is assessed from experimental information and is basically {f SYS}: @@ the tracer diffusivity for the component.
SYS: @@
SYS: @@ This calculation is compared with experimental data where a sample of
{\tt SYS}: @@ pure iron has been exposed to a gas atmosphere with a certain carbon {\tt SYS}: @@ activity. The weight gain is then measured as a function of time.
SYS: 00 The experimental data is obtained from Ozturk B., Fearing V. L., SYS: 00 Ruth A. Jr. and Simkovich G., Met. Trans A, vol 13A (1982), pp. 1871-1873.
 NO SUCH COMMAND, USE HELP
SYS: @@
SYS: 00 RETRIEVE DATA FROM THE DATABASES SYS: 00
SYS: go da
15:46:10,250 [Thread-0] INFO LicenseManager: Initializing user: jenkins.integrationtest@thermocalc.se
15:46:10,262 [Thread-0] INFO LicenseController: Running License Spring in DEV environment.
15:46:11,356 [Thread-0] INFO LicenseManager: There is an activated standalone license for jenkins.integrationtest@thermocalc.se for TC-
Application
 THERMODYNAMIC DATABASE module
 Database folder:
 C:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples\databases\da
 Current database: Steels/Fe-Alloys v12.0
 DICTRA_FCC_A1 REJECTED

TOB TCFE12:
TDB_TCFE12: 00
TDB_TCFE12: 00 USE A THERMODYNAMIC DATABASE TO RETRIEVE DATA TDB_TCFE12: 00
TDB_TCFE12: switch FEDEMO
Current database: Iron Demo Database v5.0
TDB_FEDEMO: def-sys fe c
rE C DEFINED

TDB_FEDEMO: rej ph * all

BCC A2
 BCC_A2
CUB_A13
                                                               CEMENTITE
                                DIAMOND_FCC_A4
GRAPHITE
                                                               FCC_A1
HCP A3
 GAS:G
 KSI_CARBIDE
M23C6
                                 LAVES_PHASE_C14
                                                               м7С3
                               M5C2
   REJECTED
TDB_FEDEMO: res ph bcc fcc cementite grap
 BCC
      A 2
                                FCC_A1
                                                               CEMENTITE
 GRAPHITE RESTORED
TDB_FEDEMO: get
15:46:12,444 [Th
 15:46:12,444 [Thread-0] INFO JavaWrapper: *** Invoking Gibbs Energy System v6 *** REINITIATING GES .....
 ELEMENTS .....
SPECIES .....
 FUNCTIONS ....
 Use the command LIST REFERENCES to see the list of references for assessed data
TDB FEDEMO:
TDB_FEDEMO: @@
TDB FEDEMO: @@ SWITCH TO A MOBILITY DATABASE TO RETRIEVE MOBILITY DATA
TDB_FEDEMO: @@
TDB_FEDEMO: app MFEDEMO
 Current database: Fe-Alloys Mobility demo database v4.0
 VA DEFINED
APP: def-sys fe c
                               C DEFINED
APP: rej ph * all
                              FCC_A1
                                                               CEMENTITE
 LIQUID:L REJECTED
APP: res ph fcc bcc cementite FCC_A1 BCC_A
                                BCC_A2
                                                             CEMENTITE
   RESTORED
APP: get
 ELEMENTS ....
 SPECIES .....
 PHASES .....
 FUNCTIONS ....
 Use the command LIST_REFERENCES to see the list of references for assessed data
 -OK-
```

```
APP: @@ ENTER THE DICTRA MONITOR
APP: go d-m
15:46:12,977 [Thread-0] INFO StandaloneLicenseController: Checking out license for: Diffusion (DICTRA)
 NO TIME STEP DEFINED
*** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE
DIC> set-ref c grap,,,,,,,,,
DIC>
DIC> @@
DIC> @@ ENTER THE GLOBAL CONDITION T
DIC> set-cond glob t 0 723; * n
DIC> @@
DIC> @@ ENTER THE REGIONS carb AND fer DIC> @@
DIC> enter-region
REGION NAME : fer
DIC>
DIC> enter-region
ATTACHED TO THE RIGHT OF FER /YES/:
DIC> 00 ENTER LINEAR GRIDS INTO THE REGIONS DIC> 00
DIC>
DIC> @@ ENTER A SIZE FOR THE FERRITE
DIC> @@
DIC> enter-grid
REGION NAME: /FER/: fer
WIDTH OF REGION /1/: 3.3E-6
TYPE /LINEAR/: AUTO
DIC>
DIC> @@
DIC> 00 ENTER A SIZE (VERY SMALL) FOR THE CEMENTITE LAYER DIC> 00
DIC> @@
DIC> @@
DIC> enter-grid
REGION NAME : /CARB/: carb
WIDTH OF REGION /1/: 1E-12
TYPE /LINEAR/: AUTO
DIC>
DIC>
DIC> @@
DIC> @@ ENTER PHASES INTO THE REGIONS
DIC> @@
DIC> enter-phase act carb matrix c
                                                      cementite
COMPOSITION RECORD FOR STOICHIOMETRIC PHASE CEMENTITE IN REGION CARB CREATED DIC> enter-phase act fer $\operatorname{matrix}$ bcc#1
DIC>
DIC> @@
DIC> @@ ENTER THE INITIAL COMPOSITIONS IN THE PHASES
DIC> 00
DIC> enter-composition
REGION NAME : /FER/: carb
PHASE NAME: /CEMENTITE/: cementite
DIC>
DIC> enter-composition
PREGION NAME: /FER/: fer
PHASE NAME: /BCC_A2/: bcc#1
COMPOSITION TYPE /MOLE_FRACTION/: weig-fraction
PROFILE FOR /C/: C lin 1E-5 1E-5
DIC>
DIC> set-cond bound upp
CONDITION TYPE /CLOSED_SYSTEM/: mix
Dependent substitutional element:FE
Dependent interstitial element:VA
LOW TIME LIMIT /0/: 0
ACR(C)(TIME) = 9;
HIGH TIME LIMIT /*/:
ANY MORE RANGES /N/: N DIC>
DIC>
DIC>
DIC> @@ SIMULATE FOR 150 MINUTES
DIC> @@
DIC> set-simulation-time
DICS SET-SIMULATION-time
END TIME FOR INTEGRATION /.1/: 9000
AUTOMATIC TIMESTEP CONTROL /YES/:
MAX TIMESTEP DURING INTEGRATION /900/:
INITIAL TIMESTEP : /1E-07/:
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DIC> 00 SAVE THE SET UP TO A NEW STORE FILE AND EXIT
DIC> save exi2 Y
DIC>
DIC> set-inter
--OK---
```

```
DIC>About
 NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exi2\run.DCM DIC>
DIC>
DIC> @@ exi2_run.DCM
DIC>
DIC> @@ FILE FOR RUNNING EXAMPLE i2
DIC> @@
DIC>
DIC> @@
\overline{\text{DIC>}} @@ enter the dictra monitor and read the store result file \overline{\text{DIC>}} @@
DIC> go d-m
 TIME STEP AT TIME 0.00000E+00
*** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE DIC> read exi2
 OK
DIC> 00
DIC> 00 START THE SIMULATION
DIC> @@
DIC> sim
  Region: FER
                                              dense at 0.330000E-05 91 points
  geometric 0
Region: CARB
                        0.845149
 geometric 1.04576 dense at 0.00000 44 points geometric 0.956243 dense at 0.100000E-11 45 points DEGREE OF IMPLICITY SET TO TRAPEZOIDAL RULE
 Trying old scheme 3 U-FRACTION IN SYSTEM: C = 4.65980057843839E-05 FE = 1 TOTAL SIZE OF SYSTEM: 3.300001E-06 [m] U-FRACTION IN SYSTEM: C = 4.65980057843839E-05 FE = 1 TOTAL SIZE OF SYSTEM: 3.300001E-06 [m]
 TIME = 0.10000000E-06 DT = 0.10000000E-
CPU time used in timestep 0 seconds
9.513206249531729E-007 9.516009355993388E-007 2.27939188302614
05 SUM OF SQUARES = 0.22793919E-21
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.13846392E-06 AND -0.13846392E-06
POSITION OF INTERFACE FER / CARB IS 0.32999998E-05
U-FRACTION IN SYSTEM: C = 4.66104732978308E-05 FE = 1
TOTAL SIZE OF SYSTEM: 3.300001E-06 [m]
14 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: CARB
                                                                                                                       2.279391883026148E-022
                                                                                                                                                                               TIME = 0.12952912E-05 DT = 0.11952912E-
                                                                                    0 seconds
   CPU time used in timestep
CPU time used in timestep 0 seconds 6.683660105914452E-007 6.691057105208005E-007 1.25948720371107 05 SUM OF SQUARES = 0.12594872E-22 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.11116611E-06 AND POSITION OF INTERFACE FER / CARB IS 0.32999995E-05 U-FRACTION IN SYSTEM: C = 4.6632635922793E-05 FE = 1 TOTAL SIZE OF SYSTEM: 3.300001E-06 [m] 22 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: CARB
                                                                                                                        1.259487203711079E-023
                                                                                                                                                                              TIME = 0.36858737E-05 DT = 0.23905825E-
    CPU time used in timestep
                                                                                                     seconds
4.797245049843012E-007 4.802276308804607E-007 3.3645406154836:
05 SUM OF SQUARES = 0.33645406E-23
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.88162211E-07 AND -0.88162211E-07
                                                                                                                        3.364540615483628E-024
                                                                                                                                                                              TIME = 0.84670387E-05 DT = 0.47811650E-
 CELL # 1 VELOCITI AT INTERFACE # 2 IS -0.08102211E-07
POSITION OF INTERFACE FER / CARB IS 0.32999991E-05
U-FRACTION IN SYSTEM: C = 4.66689763610185E-05 FE = 1
TOTAL SIZE OF SYSTEM: 3.300001E-06 [m]
14 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: CARB
                                                                                          0 seconds
   CPU time used in timestep
CPU time used in timestep 0 seconds
4.001121279918420E-007 4.004765196988336E-007 3.34901545727210
05 SUM OF SQUARES = 0.33490155E-24

CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.67420959E-07 AND POSITION OF INTERFACE FER / CARB IS 0.3299985E-05

U-FRACTION IN SYSTEM: C = 4.67255053040509E-05 FE = 1

TOTAL SIZE OF SYSTEM: 3.300001E-06 [m]
52 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: CARB
                                                                                                                      3.349015457272102E-025
                                                                                                                                                                                TIME = 0.18029369E-04 DT = 0.95623300E-
   CPU time used in timestep
CPU time used in timestep 0 seconds 2.908494098464700E-007 2.910869927528465E-007 1.21995959072840 04 SUM OF SQUARES = 0.12199596E-24 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.49892013E-07 AND POSITION OF INTERFACE FER / CARB IS 0.32999975E-05 U-FRACTION IN SYSTEM: C = 4.68098833784781E-05 FE = 1 TOTAL SIZE OF SYSTEM: 3.300001E-06 [m] 20 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: CARB
                                                                                                                        1.219959590728402E-025
                                                                                                                                                                              TIME = 0.37154029E-04 DT = 0.19124660E-
   CPU time used in timestep
                                                                                                     seconds
 4.879938337392062E-025
                                                                                                                                                                                TIME = 0.75403349E-04 DT = 0.38249320E-
   CPU time used in timestep
output ignored...
 ... output resumed
 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.46380048E-11 AND -0.46380048E-11 POSITION OF INTERFACE FER / CARB IS 0.32718906E-05 U-FRACTION IN SYSTEM: C = .00286490957242564 FE = 1 TOTAL SIZE OF SYSTEM: 3.300001E-06 [m] 55 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: CARB
```

```
CPU time used in timestep
  CPU time used in timestep 0 seconds 3.945594935716330E-008 3.951615737877846E-008 5.252285600844118E-

28 TIME = 3983.4342 DT = 900.0000 SUM OF SQUARES = 0.52522856E-27

CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.39492931E-11 AND -0.39492931E-11

POSITION OF INTERFACE FER / CARB IS 0.32683362E-05

U-FRACTION IN SYSTEM: C = .00322390842746482 FE = 1

TOTAL SIZE OF SYSTEM: 3.300001E-06 [m]

10 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: CARB
028
    CPU time used in timestep
 CPU time used in timestep 0 seconds
1.474549464752938-008 1.477684056550007E-008 5.245966115002233E-
029 TIME = 4883.4342 DT = 900.0000 SUM OF SQUARES = 0.52459661E-28
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.35059861E-11 AND -0.35059861E-11
POSITION OF INTERFACE FER / CARB IS 0.32651808E-05
U-FRACTION IN SYSTEM: C = .00354260976298867 FE = 1
TOTAL SIZE OF SYSTEM: 3.300001E-06 [m]
9 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: CARB
 CELL # 1 VELOCITY AT INTERFACE # 2 15

POSITION OF INTERFACE FER / CARB IS 0.32623114E-05

U-FRACTION IN SYSTEM: C = .00383243054008672 FE = 1

TOTAL SIZE OF SYSTEM: 3.300001E-06 [m]
    CPU time used in timestep
CPU time used in timestep 0 seconds
3.558347239229920E-009 3.570782653321002E-009 4.636380116535863E-
030 TIME = 6683.4342 DT = 900.00000 SUM OF SQUARES = 0.46363801E-29

CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.29455404E-11 AND -0.29455404E-11

POSITION OF INTERFACE FER / CARB IS 0.32596604E-05

U-FRACTION IN SYSTEM: C = .00410018621140539 FE = 1

TOTAL SIZE OF SYSTEM: 3.300001E-06 [m]

6 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: CARB
    CPU time used in timestep
                                                                                                                         seconds
CPU time used in timestep 0 Seconds 2.014370511785182E-007 2.0230162332290508E-007 2.641945257800785E-029 TIME = 7583.4342 DT = 900.0000 SUM OF SQUARES = 0.26419453E-28 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.27519740E-11 AND -0.27519740E-11
  CELL # 1 VELOCITI AT INTERFACE # 2 15 -0.2/59/40E-
POSITION OF INTERFACE FER / CARB IS 0.32571836E-05
U-FRACTION IN SYSTEM: C = .0043503462990152 FE = 1
TOTAL SIZE OF SYSTEM: 3.300001E-06 [m]
7 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: CARB
                                                                                           0.32571836E-05
 CPU time used in timestep 0 seconds
1.205032398503965E-007 1.211281347146928E-007 1.073802541419657E-
029 TIME = 8483.4342 DT = 900.00000 SUM OF SQUARES = 0.10738025E-28
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.25927857E-11 AND -0.25927857E-11
POSITION OF INTERFACE FER / CARB IS 0.32548501E-05
U-FRACTION IN SYSTEM: C = .00458603584893226 FE = 1
TOTAL SIZE OF SYSTEM: 3.300001E-06 [m]
7 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: CARB
 CPU time used in timestep 0 seconds 7.496529143776856E-008 7.542977381074834E-008 1.516677354368793E-029 TIME = 9000.0000 DT = 516.56580 SUM OF SQUARES = 0.15166774E-28 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.24587843E-11 AND -0.24587843E-11 POSITION OF INTERFACE FER / CARB IS 0.32535800E-05 U-FRACTION IN SYSTEM: C = .00471432126027761 FE = 1 TOTAL SIZE OF SYSTEM: 3.300001E-06 [m] MUST SAVE WORKSPACE ON FILE WORKSPACE SAVED ON FILE RECLAIMING WORKSPACE DELETING TIME-RECORD FOR TIME 0.0000000
    CPU time used in timestep
  DELETING TIME-RECORD FOR TIME
                                                                                 0 0000000
                                                                              0.12952912E-05
                                                                              0.36858737E-05
                                                                              0.84670387E-05
   DELETING TIME-RECORD FOR TIME
                                                                              0 18029369E-04
    DELETING TIME-RECORD FOR TIME
  DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                              0.75403349E-04
                                                                              0.15190199E-03
0.30489927E-03
  DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                                              0 61089383E-03
  DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                              0.24468612E-02
                                                                              0.48948177E-02
0.97907306E-02
  DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                                              0 19582557E-01
   DELETING TIME-RECORD FOR TIME
                                                                              0.78333512E-01
   DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                              0.31333733
  DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                                              0.62667576
   DELETING TIME-RECORD FOR TIME
                                                                                 2.5067063
   DELETING TIME-RECORD FOR TIME
   DELETING TIME-RECORD FOR TIME
                                                                                 10.026829
  DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                                 20.053658
                                                                                 40.107318
   DELETING TIME-RECORD FOR TIME
                                                                                 80.214637
   DELETING TIME-RECORD FOR TIME
                                                                                 160.4292
   DELETING TIME-RECORD FOR TIME
                                                                                 320.85855
   DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                                 1283.4342
   DELETING TIME-RECORD FOR TIME
                                                                                 2183.4342
   DELETING TIME-RECORD FOR TIME
                                                                                 3083.4342
   DELETING TIME-RECORD FOR TIME
                                                                                 3983.4342
  DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                                 5783.4342
   DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                                                 6683.4342
                                                                                 7583.4342
     KEEPING TIME-RECORD FOR TIME
                                                                              8483.4342
  AND FOR TIME
                                                                             9000.0000
   WORKSPACE RECLAIMED
  TIMESTEP AT 9000.00000 SELECTED
```

```
DIC>About
NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exi2\plot.DCM DIC>
DIC> @@ exi2_plot.DCM
DIC>
DIC> @@
DIC> 00 FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE i2
DIC> @@
DIC>
DIC> @@
DIC> 00 GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> go d-m
TIME
   IME STEP AT TIME 9.00000E+03
* ENTERING GRAPHITE AS A DIFFUSION NONE PHASE
DIC>
DIC>
DIC> read exi2 Y
 OK
DTC>
DIC>
DIC> @@
DIC> @@ PLOT THE SIZE OF THE CEMENTITE LAYER AS A FUNCTION OF TIME
DIC> @@
DIC> post
  POST PROCESSOR VERSION 1.7
Implemented by Bjorn Jonsson
POST-1: ent-symb func csize
FUNCTION: 1e6*(poi(car,u)-poi(car,l));
POST-1:
POST-1: ent-symb func minutes
FUNCTION: time/60;
POST-1:
POST-1: s-d-a x minutes
POST-1: s-d-a y csize
POST-1:
POST-1: s-p-c inter first
POST-1:
POST-1: s-a-t-s x n Time [min]
POST-1: s-a-t-s y n Distance [�m]
POST-1:
POST-1:
POST-1: SET EXP FILE FORMAT 5
POST-1: MAKE c:\[\]jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
           OST-1: SET_EXP_FILE_FORMAT 10
POST-1:
POST-1: plot
       0.050
       0.045
       0.040
       0.035
    0.030
    Distance 0.025
       0.015
       0.010
       0.005
       0.000
                     20
                               40
                                        60
                                                  80
                                                            100
                                                                     120
                                                                               140
                                                                                         160
 Time [min]
POST-1:
POST-1:@?<_hit_return_to_continue_>
POST-1:
POST-1: @@
POST-1: 00 ASSUME A CERTAIN TIME FOR NUCLEATION OF THE CEMENTITE LAYER
POST-1: @@
POST-1: ent-symb func cortim
FUNCTION: (time+1400)/60;
POST-1:
POST-1: @@
POST-1: @@ PLOT THE WEIGHT GAIN AS A FUNCTION OF TIME
POST-1: @@
POST-1: ent-symb func cwei
FUNCTION: 1e12*((poi(car,u)-poi(car,1)-1E-12)*12.01/2.33E-5*1e-4)**2;
POST-1:
POST-1:
POST-1: s-d-a x cortim
POST-1: s-d-a y cwei
POST-1: 00
POST-1: @@ COMPARE WITH EXPERIMENTAL DATA
POST-1: @@
POST-1: app y exi2.exp 0; 1
POST-1:
POST-1: s-a-t-s x n Time [min]
```

```
POST-1: s-a-t-s y n \latex \Delta m^2/A^2\, [g^2/cm^4\times 10^{12}]

POST-1:
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: MARE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y

OST-1: SET_EXP_FILE_FORMAT 10

POST-1:
POST-1: plot
```


POST-1:
POST-1:
POST-1: set-inter
--OK--POST-1:

Example exi3a

Diffusion in iron oxide (FeO)

This example shows the oxidation of an iron sample and the consequent growth of an oxide layer using the grain boundary diffusion contribution model.


```
Thermo-Calc / DICTRA is software package for calculation of phase diagrams, simulation of phase transformation kinetics and much more.
 Copyright Foundation for Computational Thermodynamics,
 Stockholm, Sweden
 Software running on Windows 64-bit wordlength
 Compiler: unknown compiler
License library version: 9.7.0.0036
Linked: Fri Oct 18 11:32:56 2024
SYS:SYS:MACRO exi3a\setup.DCM
SYS: @@
SYS: @@ Diffusion in complex phases.
{\bf SYS}\colon 00 Diffusion in iron oxide (FeO) {\bf SYS}\colon 00 This example shows the oxidation of an iron sample and the
SYS: 00 consequent growth of an oxide layer.
 NO SUCH COMMAND, USE HELP
SYS: @@ exi3 setup.DCM
SYS: @@
{\bf SYS}\colon 00 start by going to the database module {\bf SYS}\colon 00
SYS: go da
15:49:07,890 [Thread-0] INFO LicenseManager: Initializing user: jenkins.integrationtest@thermocalc.se
15:49:07,903 [Thread-0] INFO LicenseController: Running License Spring in DEV environment.
15:49:09,012 [Thread-0] INFO LicenseManager: There is an activated standalone license for jenkins.integrationtest@thermocalc.se for TC-
Application
 THERMODYNAMIC DATABASE module
 Database folder:
 C:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples\databases\da
 Current database: Steels/Fe-Alloys v12.0
 VA
                               /- DEFINED
 DICTRA_FCC_A1 REJECTED
TDB_TCFE12: 00
TDB_TCFE12: 00 SELECT A USER DATABASE FOR READING THE THERMODYNAMIC DATA TDB_TCFE12: 00
TDB_TCFE12: sw user FeO.TDB
Current database: User defined Database
This database does not support the DATABASE_INFORMATION command
VA /- DEFINED
15:49:09,982 [Thread-0] INFO TDBFileParser: USER_190315336_19, number of lines read: 217
15:49:10,265 [Thread-0] INFO DatabaseUtils: Parsing of USER_190315336_19 completed in 374 ms
TDB_USER: def-sys fe o
                               O DEFINED
TDB_USER: rej sp *
                                VA
                                FE+2
                                                               FE+3
 FE+4
                                FE203
                                                               FEO
 FE03/2
                                                               02
                               0-2
   REJECTED
TDB_USER: res sp fe fe+2 fe+3 o o2 o-2 va
 FE
                                FE+2
                                                               FE+3
      RESTORED
 VA
TDB_USER: rej ph * all
GAS:G
                               BCC A2
                                                              SPINEL:I
   REJECTED
TDB_USER: res ph bcc spinel gas
 BCC A2
                               SPINEL:I
                                                              GAS:G
   RESTORED
TDB_USER: get
15:49:10,385 [Thread-0] INFO JavaWrapper: *** Invoking Gibbs Energy System v6 ***
 ELEMENTS ....
 SPECIES .....
 FUNCTIONS ....
 Use the command LIST REFERENCES to see the list of references for assessed data
 -OK-
 *** WARNING: One or more elements have been rejected only as species but not as elements. This is not allowed with GES6, temporarily reverting
TDB_USER:
TDB_USER: 00

TDB_USER: 00 SWITCH TO A USER-DEFINED MOBILITY DATABASE TO RETRIEVE MOBILITY DATA
TDB_USER: @@
TDB_USER: app user FeOmob.TDB
Current database: User defined Database test database
                                                              0
   DEFINED
DEFINED
15:49:10,697 [Thread-0] INFO TDBFileParser: USER_1269960560_19, number of lines read: 129
15:49:10,757 [Thread-0] INFO DatabaseUtils: Parsing of USER_1269960560_19 completed in 63 ms
TDB_APP: def-sys fe o
FE DEFINED
TDB_APP: def-sys fe o
FE DEFINED

TDB_APP: rej sp *
                                VA
                                FE+2
                                                               FE+3
 FE203
                                FEO
                                                               FE03/2
                                O2 REJECTED
TDB_APP: res sp fe fe+2 fe+3 o o2 o-2 va
 FΕ
                                FE+2
 0
                                02
                                                              0-2
 VA RESTORED
TDB_APP: rej ph * all
 SPINEL: I
                               GAS:G
                                                               BCC_A2
   REJECTED
```

```
TDB_APP: res ph bcc spinel gas
 BCC_A2
RESTORED
                                                                   GAS:G
TDB_APP: get
 ELEMENTS .....
 PHASES .
 PHASES .....

PARAMETERS ...

*** ERROR 2018 IN DESHPH: DIFFUSION DATA NOT POSSIBLE FOR GAS PHASE

*** ERROR 2018 IN DESHPH: DIFFUSION DATA NOT POSSIBLE FOR GAS PHASE
  -OK-
TDB_APP:
TDB_APP: @@
TDB_APP: @@ ENTER THE DICTRA MONITOR TDB_APP: @@
TDB_APP: go d-m
15:49:10,795 [Thread-0] INFO StandaloneLicenseController: Checking out license for: Diffusion (DICTRA)
NO TIME STEP DEFINED DIC>
DTC>
DIC> @@
DIC> @@ ENTER THE GLOBAL CONDITION T
\tt DIC> set-cond glob T 0 823; * N
DIC>
DIC>
DIC> @@
DIC> 00 SET THE REFERENCE STATE FOR O TO 02 (GAS) DIC> 00
DIC> set-ref o gas,,,,,,
DIC>
DIC> 00
DIC> 00 ENTER THE REGIONS fer AND sp
DIC> @@
DIC> ent-reg fer
DIC> ent-reg sp,,,,,,
DIC>
DIC> @@
DIC> @@ ENTER PHASES INTO THE REGIONS
DIC> @@
DIC> ent-phase act fer matrix bcc#1
DIC> ent-phase act sp matrix spinel
DIC>
DIC>
DIC> @@
\tt DIC> @@ ENTER GRIDS INTO THE REGIONS \tt DIC> @@
DIC>
DIC> @@
DIC> @@ ENTER A SIZE FOR THE FERRITE
DIC> @@
DIC> @@
DIC> ent-grid fer 4.99999e-3 AUTO
DIC>
DIC> @@
DIC> 00 ENTER A THIN INITIAL SIZE FOR THE OXIDE
DIC> @@
DIC> @@
DIC> ent-grid sp 1.00e-10 AUTO
DIC>
DIC>
DIC> @@
DIC> @@ ENTER THE INITIAL COMPOSITIONS IN BCC
DIC> @@
DIC> ent-comp fer bcc#1 m-f
PROFILE FOR /O/: o lin 1e-9 1e-9
DIC>
DIC> @@
DIC> @@ ENTER THE INITIAL COMPOSITIONS IN THE OXIDE
DIC> @@
DIC> ent-comp sp spinel m-f
this is a phase with charged species
with more than 2 sublattices
PROFILE FOR /FE/: FE lin 4.28771E-01 4.28549E-01
DIC>
DIC>
DTC> 00
DIC> @@ ENTER A BOUNDARY CONDITION "GAS" ON THE UPPER (RIGHT-MOST) INTERFACE
DIC> @@ OF THE OXIDE. THIS ALLOWS THE SYSTEM TO EXPAND AND THE OXIDE LAYER DIC> @@ TO GROW EXTERNALY. FOR THIS EXAMPLE AN OXYGEN ACTIVITY IS SPECIFIED
DIC> 00 THAT IS LOW ENOUGH NOT TO FORM CORUNDUM (F203). WE ALSO SPECIFY DIC> 00 THAT THERE IS NO FLUX OF FE ACROSS THIS INTERFACE, I.E. NO FE DIC> 00 IS ALLOWED TO ENTER OR LEAVE THE SYSTEM.
DIC> @@
DIC> set—cond boundary upper gas

TYPE OF CONDITION FOR COMPONENT FE /ZERO_FLUX/: zero-flux

TYPE OF CONDITION FOR COMPONENT O /ZERO_FLUX/: act

LOW TIME LIMIT /0/: 0 4.5e-4; * N
DIC>
DIC>
DIC> @@
DIC> @@ ENTER START VALUES FOR THE INITIAL INTERFACE VELOCITIES
DIC> @@
DIC> s-a-s-v -1e-5 1e-5 yes
STARTING VALUES WILL BE TAKEN FROM PROFILES
DIC>
DIC> @@
DIC> @@ SIMULATE FOR 24 HOURS
DIC> @@
DIC> s-s-time 86400,,,,
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DIC>
DIC> @@ SPECIFY THAT POTENTIALS AND NOT ACTIVITIES ARE VARIED AT THE PHASE
```

```
DIC> 00 INTERFACE. ALSO USE A FULLY IMPLICIT SCHEME FOR TIME INTEGRATION.
DIC> 00 DIC> s-s-c 0 1 1 YES POT YES YES 1 2,,,,,,,,,,,
RELEASING OLD STARTING VALUES
DIC>
DIC>
DIC> 00 DIC> 00 DIC> 00 DIC> 00 SAVE THE SET UP TO A NEW STORE FILE AND EXIT
DIC> 00 DIC> save exi3.DIC Y
DIC> set-inter
--OK---
DIC>
```

```
DIC>About
  NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exi3a\run.DCM DIC>
DIC>
DIC> @@ exi3_run.DCM
DIC>
DIC> @@ FILE FOR RUNNING EXAMPLE i3
DIC> @@
DIC>
DIC> @@
\overline{\text{DIC>}} @@ enter the dictra monitor and read the store result file \overline{\text{DIC>}} @@
   TIME STEP AT TIME 0.00000E+00
DIC> read exi3
  OK
DTC>
DIC> @@
DIC> @@ START THE SIMULATION
DIC> @@
DIC> sim y
  geometric 0.772465 dense at 0.499999E-02 97 points Region: SP
  Region: SP geometric 1.04572 dense at 0.00000 44 points geometric 0.956275 dense at 0.100000E-09 45 points
  Trying old scheme 3 U-FRACTION IN SYSTEM: FE = 0.99999999500542 O = 2.10000395011622E-08
 4 652132339660341E-002
                                                                                                                                                                                                                                    2.191687616260677E-
   TOTAL SIZE OF SYSTEM: .0049999901274 [m]
7 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: FER
9 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: SP
    CPU time used in timestep
 2 228437187158867E-007
                                                                                                                                                                                                                                                                    3 957755360015191E-
  POSITION OF INTERFACE SP / gas interface IS 0.49999901E-02
U-FRACTION IN SYSTEM: FE = 0.99999998712736 O = 4.26040716676657E-08
TOTAL SIZE OF SYSTEM: .00499999013847 [m]
22 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: SP
    CPU time used in timestep
 CPU time used in timestep 0 seconds 1.442476760835493E-008 1.4421402193642448E-008 1.443937915124679E-008 0.33 TIME = 0.70000000E-06 DT = 0.40000000E-06 SUM OF SQUARES = 0.29152730E-32 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.14931148E-03 AND 0.0000000 POSITION OF INTERFACE FER / SP IS 0.49999899E-02 CELL # 1 VELOCITY AT INTERFACE # 3 IS 0.21680740E-03 AND 0.0000000 POSITION OF INTERFACE SP / gas interface IS 0.49999902E-02 U-FRACTION IN SYSTEM: FE = 0.9999998165912 O = 5.99515431755429E-08 TOTAL SIZE OF SYSTEM: .00499999016547 [m] 4 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: SP
                                                                                                                                                                                                      3.334698651738925E-011
                                                                                                                                                                                                                                                                        2.917576978740918E-
033
CPU time used in timestep 1 seconds
5.641131931926223E-007 5.642680406502237E-007 5.642660057087331E-007
033 TIME = 0.15000000E-05 DT = 0.80000000E-06 SUM OF SQUARES = 0.21132567E-32
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.93420491E-04 AND 0.0000000
POSITION OF INTERFACE FER / SP IS 0.49999888E-02
CELL # 1 VELOCITY AT INTERFACE # 3 IS 0.13342396E-03 AND 0.0000000
POSITION OF INTERFACE SP / gas interface IS 0.49999902E-02
U-FRACTION IN SYSTEM: FE = 0.99999997505757 0 = 8.13036901276143E-08
TOTAL SIZE OF SYSTEM: .0049999019747 [m]
31 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: SP
    CPU time used in timestep
                                                                                                                seconds
                                                                                                                                                                                                      2 463317753593780E-010
                                                                                                                                                                                                                                                                        2 233168902861657E-
             GRIDPOINT(S) REMOVED FROM CELL #1
                                                                                            REGION: SP
CPU time used in timestep 0 seconds
8.108291677577342E-006 8.112094941000955E-006 8.111728708044934E-006
032 TIME = 0.31000000E-05 DT = 0.16000000E-05 SUM OF SQUARES = 0.65914952E-31
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.70785621E-04 AND 0.0000000
POSITION OF INTERFACE FER / SP IS 0.49999897E-02
CELL # 1 VELOCITY AT INTERFACE # 3 IS 0.10186785E-03 AND 0.0000000
POSITION OF INTERFACE SP / gas interface IS 0.49999902E-02
U-FRACTION IN SYSTEM: FE = 0.99999996488305 0 = 1.13906559479276E-07
TOTAL SIZE OF SYSTEM: .0049999902472 [m]
34 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: SP
    CPU time used in timestep
                                                                                                                                                                                                    1.124896677017162E-008
                                                                                                                                                                                                                                                                        8.352592659202846E-
    CPU time used in timestep
                                                                                                                seconds
                                     75E-006 8.120228995065965E-006 8.12008910
0.63000000E-05 DT = 0.32000000E-05 SUM OF SQUARES =
                                                                                                                                    8.120089100807907E-006
   8.117404326365275E-006
                                                                                                                                                                                                       7.212736035075093E-009
                                                                                                                                                                                                                                                                        1.747931887808322E-
output ignored...
... output resumed
  POSITION OF INTERFACE FER / SP IS 0.49497261E-02
CELL # 1 VELOCITY AT INTERFACE # 3 IS 0.85406491E-09 AND 0.0000
POSITION OF INTERFACE SP / gas interface IS 0.50216008E-02
U-FRACTION IN SYSTEM: FE = .995601410481655 O = .0143132757010586
TOTAL SIZE OF SYSTEM: .00502160079 [m]
20 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: SP
                                                                                                                                        0.0000000
    CPU time used in timestep
 CFU LIME USEG IN tIMESTED 0 seconds 2.791714535239042E-007 2.796216853410687E-007 2.795815212609476E-007 033 TIME = 56943.895 DT = 8640.0000 SUM OF SQUARES = 0.27083390E-32 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.54740664E-09 AND 0.0000000 POSITION OF INTERFACE FER / SP IS 0.49449965E-02 CELL # 1 VELOCITY AT INTERFACE # 3 IS 0.78317055E-09 AND 0.0000000 POSITION OF INTERFACE SP / gas interface IS 0.50236378E-02
                                                                                                                seconds
                                                                                                                                                                                                     3.797570045281066E-010
                                                                                                                                                                                                                                                                        2.735422374137496E-
```

```
U-FRACTION IN SYSTEM: FE = .995194700022924 O = .0156544226659285
 TOTAL SIZE OF SYSTEM: .00502363779015 [m] 8 GRIDPOINT(S) REMOVED FROM CELL #1 RE
                                                                                                REGION: SP
 CPU time used in timestep 1 seconds

1.595441147549657E-007 1.598553198831170E-007 1.598289742704802E-007

035 TIME = 65583.895 DT = 8640.0000 SUM OF SQUARES = 0.75231638E-34

CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.50747982E-09 AND 0.0000000

POSITION OF INTERFACE FER / SP IS 0.49406119E-02

CELL # 1 VELOCITY AT INTERFACE # 3 IS 0.72674788E-09 AND 0.0000000

POSITION OF INTERFACE # 3 IS 0.72674788E-09 AND 0.0000000
                                                                                                                                                                                                                        2.017857732644064E-010
                                                                                                                                                                                                                                                                                                   8.726870060504662E-
 POSITION OF INTERFACE SP / gas interface IS 0.50255323B-02
U-FRACTION IN SYSTEM: FE = .99481722394009 0 = .0168979613905518
TOTAL SIZE OF SYSTEM: .00502553226622 [m]
9 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: SP
    CPU time used in timestep
 CPU time used in timestep 0 seconds 9.584753454220980E-008 9.571036752768618E-008 9.569248341548456E-008 9.569248341548456E-008 9.569248341548456E-008 0.34 TIME = 74223.895 DT = 8640.0000 SUM OF SQUARES = 0.72297605E-33 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.47495217E-09 AND 0.0000000 POSITION OF INTERFACE FER / SP IS 0.49365083E-02 CELL # 1 VELOCITY AT INTERFACE # 3 IS 0.68061685E-09 AND 0.0000000 POSITION OF INTERFACE SP / gas interface IS 0.50273092E-02 U-FRACTION IN SYSTEM: FE = .994463750183448 0 = .0180617056273036 TOTAL SIZE OF SYSTEM: .00502730920905 [m] 10 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: SP
                                                                                                                           seconds
                                                                                                                                                                                                                          1.144366119908907E-010
                                                                                                                                                                                                                                                                                              7.500594353726852E-
 CPU time used in timestep 1 seconds
5.962842883630616E-008 5.979318568000544E-008 5.978021734461116E-008
033 TIME = 82863.895 DT = 8640.0000 SUM OF SQUARES = 0.16618669E-32
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.44777785E-09 AND 0.0000000
POSITION OF INTERFACE FER / SP IS 0.49326395E-02
CELL # 1 VELOCITY AT INTERFACE # 3 IS 0.64202307E-09 AND 0.0000000
POSITION OF INTERFACE SP / gas interface IS 0.50289875E-02
U-FRACTION IN SYSTEM: FE = .994130362421338 O = .0191586990305838
TOTAL SIZE OF SYSTEM: .00502898748776 [m]
8 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: SP
                                                                                                                                                                                                                         6.878306038221867E-011
                                                                                                                                                                                                                                                                                                  1.668637740879254E-
033
CPU time used in timestep 0 seconds
9.164574858514905E-009 9.110538099145216E-009 9.226811522920826E-009
035 TIME = 86400.000 DT = 3536.1047 SUM OF SQUARES = 0.36863503E-34
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.44500126E-09 AND 0.0000000
                                                                                                                                                                                                                         1 012262672520405E-011
                                                                                                                                                                                                                                                                                               3 987276837989199E-
 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.44500126E-09 AND 0.0000000 POSITION OF INTERFACE FER / SP IS 0.49310659E-02 CELL # 1 VELOCITY AT INTERFACE # 3 IS 0.61834090E-09 AND 0.0000000 POSITION OF INTERFACE SP / gas interface IS 0.50296004E-02 U-FRACTION IN SYSTEM: FE = .994008768142203 0 = .0195910941308667 TOTAL SIZE OF SYSTEM: .00502960043487 [m]
  MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
  RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
  DELETING TIME-RECORD FOR TIME
                                                                               0.10000000E-06
  DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                               0.3000000E-06
                                                                               0.7000000E-06
  DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                               0.15000000E-05
                                                                               0.31000000E-05
  DELETING TIME-RECORD FOR TIME
                                                                               0 63000000E-05
 DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                               0.1270000E-04
                                                                               0.25500000E-04
                                                                               0.51100000E-04
                                                                               0.10230000E-03
  DELETING TIME-RECORD FOR TIME
                                                                               0 20470000E-03
   DELETING TIME-RECORD FOR TIME
                                                                               0.40950000E-03
  DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                                               0.81910000E-03
                                                                               0.16383000E-02
0.32767000E-02
  DELETING TIME-RECORD FOR TIME
  DELETING TIME-RECORD FOR TIME
                                                                               0 65535000E-02
   DELETING TIME-RECORD FOR TIME
  DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                                               0.26214300E-01
                                                                               0 52428700E-01
                                                                               0.10485750
  DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                                               0 20971510
                                                                                0.41943030
  DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                               0.83886070
  DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                                                  6.7108863
  DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                                  26.843545
                                                                                  53.687091
  DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                                                  214.74836
429.49673
  DELETING TIME-RECORD FOR TIME
                                                                                  858.99346
```

KEEPING TIME-RECORD FOR TIME 82863.895
AND FOR TIME 86400.000

3435.9738

6871.9477 13743.895

22383.895

31023.895

39663.895

48303.895 56943.895

65583.895 74223.895

WORKSPACE RECLAIMED

DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME

DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME

DELETING TIME-RECORD FOR TIME

DELETING TIME-RECORD FOR TIME

DELETING TIME-RECORD FOR TIME

DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME

DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME

TIMESTEP AT 86400.0000 SELECTED

DIC>
DIC> set-inter
--OK--DIC>

```
DIC>About
 NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exi3a\plot.DCM DIC>
DIC> @@ exi3_plot.DCM
DIC>
DTC> @@
DIC> 00 FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE i3
DIC> @@
DIC>
DIC> @@
DIC> 00 GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 8.64000E+04
DIC> read exi3
 OK
DIC>
DIC> 00

DIC> 00 ENTER THE POST PROCESSOR
DIC> @@
DIC> post
 POST PROCESSOR VERSION 1.7
Implemented by Bjorn Jonsson
POST-1: @@
POST-1: @@ PLOT THE THICKNESS OF THE OXIDE LAYER GROWING AT THE SURFACE.
POST-1: @@ FOR THIS WE NEED TO ENTER A FUNCTION ACCORDING TO THE FOLLOWING.
POST-1: ent func oxideth
FUNCTION: poi(sp,upper)-poi(sp,lower)
POST-1: @@
POST-1: @@ PUT THIS FUNCTION ON THE Y-AXIS POST-1: @@
POST-1: s-d-a y oxideth
POST-1: @@
POST-1: @@ AND PLOT THE OXIDE THICKNESS VERSUS TIME
POST-1: @@
  INFO: Time is set as independent variable
POST-1:
POST-1: @@
POST-1: @@ SINCE WE ARE PLOTTING A FUNCTION, SPECIFY A PLOT CONDITION
POST-1: @@
POST-1: s-p-c interface sp upper
POST-1:
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: MAKE c:/jenkins/workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y

OST-1: SET_EXP_FILE_FORMAT 10
POST-1:
POST-1: plot
 ×10<sup>-5</sup>
        9
        8
        7
        6
    OXIDETH
        5
        4
        3
        2
        0
                 10000
                         20000
                                           40000
                                                     50000
                                                              60000
                                 30000
                                                                       70000
                                                                                80000
                                                                                         90000
                                                Time
 POST-1: @?<Hit_return_to_continue>
POST-1:
POST-1: @@
{\tt POST-1}\colon @@ NOW PLOT THE MOBILITY IN A SPINEL FOR Fe+2 ON THE SECOND SUBLATTICE {\tt POST-1}\colon @@
POST-1: s-d-a y logm(sp,fe+2#2)
POST-1:
POST-1: @@
POST-1: @@ LIMIT THE PLOT TO THE SPINEL PHASE
POST-1: s-d-a x dis local sp
  INFO: Distance is set as independent variable
POST-1:
POST-1: s-p-c time 86400
POST-1:
POST-1:
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
POST-1: SET EXP FILE FORMAT 10
POST-1:
POST-1: plot
```

```
-18
                                -19
                                 -20
                                -21
                  LOGM(SP,FE+2#2)
                                  -22
                                  -23
                                  -24
                                -25
                                -26
                                -27
                                 -28
                                                                                                                                                                                                                           5
                                                                                                                                                                                                                                                                                                                                  8
                                                                                                                                                                                                                                                                                                                                                                                                       10
                                                                                                                                                                                                                                                             6
                                                                                                                                                                                                            Distance
                                                                                                                                                                                                                                                                                                                                                                                     ×10<sup>-5</sup>
  POST-1:
POST-1:
POST-1:@?<Hit_return_to_continue>
POST-1:@?<Hit_return_to_continue>
POST-1: @@
POST-1: @@
POST-1: @@ COMPARE MOBILITIES IN A SPINEL FOR Fe+2 AND Fe+3 SPECIES PRESENT ON THE
POST-1: @@ SECOND SUBLATTICE. FOR THIS WE NEED TO ENTER A TABLE.
POST-1: @@
POST-1: @@
POST-1: ent table mobfe
Variable(s) logm(sp,fe+2#2) logm(sp,fe+3#2)
POST-1:
 POST-1: POST-1: s-d-a y mobfe COLUMN NUMBER /*/: POST-1:
 POST-1:
POST-1:
POST-1:
SET_EXP_FILE_FORMAT 5

POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
POST-1: SET_EXP_FILE_FORMAT 10
POST-1:
DOST-1:
DOS
   POST-1: plot
                                -18.0
                                -20.0
                  MOBFE
                                -22.0
                                -24.0
                                -26.0
                                -28.0 -
                                                                                                                                                                                                                                                                                                                                                                                                     10
                                                                                                                                                                                                               Distance
                                                                                                                                                                                                                                                                                                                                                                                     ×10<sup>-5</sup>
   POST-1:
 POST-1:
POST-1:
POST-1:@?<Hit_return_to_continue>
POST-1: @@
POST-1: @@
POST-1: @@ NOW PLOT THE INTERDIFFUSION COEFFICIENT OF Fe IN A SPINEL
  POST-1: @@
POST-1: s-d-a y logdc(sp,fe,fe,o)
   POST-1:
 POST-1:
POST-1: SET_EXP_FILE_FORMAT 5
POST-1: MAKE c:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples/unite/distribution\macroResult.exp Y
POST-1: SET_EXP_FILE_FORMAT 10
```

POST-1: POST-1: plot

POST-1: POST-1: POST-1: set-inter --OK---POST-1:

Example i3b

Diffusion in iron oxide (FeO) with grain boundary contribution

Oxidation of iron sample and consequent growth of an oxide layer using the grain boundary diffusion contribution model.

exi3b-setup

SYS: About

```
Thermo-Calc / DICTRA is software package for calculation of phase diagrams, simulation of phase transformation kinetics and much more.
 Copyright Foundation for Computational Thermodynamics,
 Stockholm, Sweden
 Software running on Windows 64-bit wordlength
 Compiler: unknown compiler
License library version: 9.7.0.0036
Linked: Fri Oct 18 11:32:56 2024
SYS:SYS:MACRO exi3b\setup.DCM
SYS: @@
SYS: @@ Diffusion in complex phases.
SYS: 00 Diffusion in iron oxide (FeO) with a grain boundary contribution SYS: 00 This example shows the oxidation of an iron sample and consequent
SYS: @@ growth of an oxide layer using the grain boundary diffusion
SYS: @@ contribution model.
SYS:
 NO SUCH COMMAND, USE HELP
SYS:
SYS: @@ exi3_setup.DCM
SYS:
SYS: @@
SYS: 00 START BY GOING TO THE DATABASE MODULE
SYS: @@
SYS: go da
15:52:29,046 [Thread-0] INFO LicenseManager: Initializing user: jenkins.integrationtest@thermocalc.se
15:52:29,057 [Thread-0] INFO LicenseController: Running License Spring in DEV environment.
15:52:30,193 [Thread-0] INFO LicenseManager: There is an activated standalone license for jenkins.integrationtest@thermocalc.se for TC-
Application
THERMODYNAMIC DATABASE module
Database folder:
C:\jenkins\workspace\dev_pipeline\generate_dictra_console_examples\databases\da
Current database: Steels/Fe-Allovs v12.0
                                /- DEFINED
 VA
DICTRA FCC A1 REJECTED
TDB_TCFE12:
TDB_TCFE12: @@
TDB_TCFE12: @@ SELECT A USER DATABASE TO READ THE THERMODYNAMIC DATA
TDB_TCFE12: @@
TDB TCFE12: sw user Fe0.TDB
Current database: User defined Database
This database does not support the DATABASE_INFORMATION command
VA /- DEFINED
15:52:31,156 [Thread-0] INFO TDBFileParser: USER_1997769799_19, number of lines read: 217
15:52:31,431 [Thread-0] INFO DatabaseUtils: Parsing of USER_1997769799_19 completed in 355 ms
TDB_USER: def-sys fe o
                                 O DEFINED
 FF
TDB_USER: rej sp *
                                  VA
                                                                  FE
                                  FE+2
                                                                   FE+3
 FE+4
                                  FE203
                                                                  FEO
 FE03/2
                                  0-2
    REJECTED
TDB_USER: res sp fe fe+2 fe+3 o o2 o-2 va
                                  FE+2
 FE
 0
                                 02
                                                                  0-2
 VA
      RESTORED
TDB_USER: rej ph * all
 GAS:G
                                 BCC_A2
                                                                  SPINEL:I
   REJECTED
TDB_USER: res ph bcc spinel gas
BCC_A2 SPINEL
                                 SPINEL:I
                                                                  GAS:G
   RESTORED
TDB_USER:
TDB USER: get
15:52:31,551 [Thread-0] INFO JavaWrapper: *** Invoking Gibbs Energy System v6 ***
 ELEMENTS ....
 SPECIES .....
 PHASES .....
 PARAMETERS ..
 FUNCTIONS ....
 Use the command LIST_REFERENCES to see the list of references for assessed data
 *** WARNING: One or more elements have been rejected only as species but not as elements. This is not allowed with GES6, temporarily reverting
TDB_USER:
TDB_USER: @@
TDB_USER: 00 SWITCH TO A USER-DEFINED MOBILITY DATABASE TO RETRIEVE MOBILITY DATA TDB_USER: 00
TDB_USER: app user FeOmob.TDB
Current database: User defined Database
            test database
 VA
   DEFINED
15:52:31,922 [Thread-0] INFO TDBFileParser: USER 1399043279 19, number of lines read: 128 15:52:31,988 [Thread-0] INFO DatabaseUtils: Parsing of USER 1399043279 19 completed in 68 ms TDB_APP: def-sys fe o
 FE
     DEFINED
TDB_APP: rej sp *
                                  VA
                                                                  FE
                                  FE+2
 FE203
                                                                  FEO3/2
                                  FEO
 0-2
                                  O2 REJECTED
TDB_APP: res sp fe fe+2 fe+3 o o2 o-2 va
 FE
                                  FE+2
                                                                  FE+3
                                  02
                                                                  0-2
 VA RESTORED
TDB_APP: rej ph * all
SPINEL:I
                                                                  BCC A2
                                 GAS:G
```

```
REJECTED
TDB_APP: res ph bcc spinel gas
BCC_A2 SPINE:
RESTORED
                                                                     GAS:G
                                    SPINEL:I
TDB_APP: get
  ELEMENTS .....
  SPECIES .....
 PARAMETERS ...

*** ERROR 2018 IN DESHPH: DIFFUSION DATA NOT POSSIBLE FOR GAS PHASE

*** ERROR 2018 IN DESHPH: DIFFUSION DATA NOT POSSIBLE FOR GAS PHASE
 FUNCTIONS ....
-OK-
TDB_APP:
TDB_APP:
TDB_APP: 00
TDB_APP: 00 ENTER THE DICTRA MONITOR
TDB_APP: @@
TDB_APP: go d-m
15:52:32,026 [Thread-0] INFO StandaloneLicenseController: Checking out license for: Diffusion (DICTRA) NO TIME STEP DEFINED
DIC>
DIC>
DIC> 00
DIC> 00 ENTER THE GLOBAL CONDITION T
DIC> @@
DIC> set-cond glob T 0 823; * N
DIC>
DIC>
DIC> @@
DIC> 00 SET THE REFERENCE STATE FOR O TO O2 (GAS)
DIC> @@
DIC> set-ref o gas.....
DIC>
DIC>
DIC> @@
DIC> @@ ENTER THE REGIONS fer AND sp
DIC> ent-reg fer
DIC> ent-reg sp,,,,,,
DTC>
DIC>
DIC> 00
DIC> 00 ENTER PHASES INTO THE REGIONS
DIC> @@
DIC> ent-phase act fer matrix bcc#1
DIC> ent-phase act sp matrix spinel
DIC>
DIC>
DIC> @@
DIC> @@ ENTER GRIDS INTO THE REGIONS
DIC> @@
DIC>
DIC> 00
DIC> 00 ENTER A SIZE FOR THE FERRITE
DIC> @@
DIC> @@
DIC> ent-grid fer 4.99999e-3 AUTO
DIC>
DIC> @@
DIC> @@ ENTER A THIN INITIAL SIZE FOR THE OXIDE
DIC> @@
DIC> @@
DIC> ent-grid sp 1.00e-10 AUTO
DIC>
DIC>
DTC> 00
DIC> @@ ENTER THE INITIAL COMPOSITIONS IN BCC
DIC> 00
DIC> ent-comp fer bcc#1 m-f
PROFILE FOR /O/: o lin 1e-9 1e-9
DIC>
DIC>
DIC> @@
DIC> @@ ENTER THE INITIAL COMPOSITIONS IN THE OXIDE
DIC> 00
DIC> ent-comp sp spinel m-f
this is a phase with charged species with more than 2 sublattices

PROFILE FOR /FE/: FE lin 4.28771E-01 4.28549E-01
DIC>
DIC>
DIC> @@
DIC> 00 ENTER A BOUNDARY CONDITION "GAS" ON THE UPPER (RIGHT-MOST) INTERFACE
DIC> @@ ENTER A BOUNDARY CONDITION "GAS" ON THE UPPER (RIGHT-MOST) INTERFACE
DIC> @@ OF THE OXIDE. THIS ALLOWS THE SYSTEM TO EXPAND AND THE OXIDE LAYER
DIC> @@ TO GROW EXTERNALY. FOR THIS EXAMPLE AN OXYGEN ACTIVITY IS SPECIFIED
DIC> @@ THAT IS LOW ENOUGH NOT TO FORM CORUNDUM (FE2O3). ALSO SPECIFY THAT
DIC> @@ THERE IS NO FLUX OF FE ACROSS THIS INTERFACE, I.E. NO FE IS
DIC> @@ ALLOWED TO ENTER OR LEAVE THE SYSTEM.
DIC> @@
DIC> set-cond boundary upper gas
TYPE OF CONDITION FOR COMPONENT FE /ZERO_FLUX/: zero-flux
TYPE OF CONDITION FOR COMPONENT O /ZERO_FLUX/: act
LOW TIME LIMIT /0/: 0 4.5e-4; * N
DIC>
DIC>
DIC> @@
DIC> 00 ENTER START VALUES FOR THE INITIAL INTERFACE VELOCITIES DIC> 00 DIC> s-a-s-v -1e-5 1e-5 yes
STARTING VALUES WILL BE TAKEN FROM PROFILES DIC>
DIC>
DIC> @@
DIC> @@ SIMULATE FOR 24 HOURS
DIC> @@
DIC> s-s-time 86400,,,,
SMALLEST ACCEPTABLE TIMESTEP : /1E-07/:
DIC> @@
```

```
NO SUCH COMMAND, USE HELP
 DIC>DIC>MACRO exi3b\run.DCM DIC>
DIC>
 DIC> @@ exi3 run.DCM
 DIC>
DIC> @@ FILE FOR RUNNING EXAMPLE i3
 DIC> @@
DIC>
 DIC> @@
DIC> @@ ENTER THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
    TIME STEP AT TIME 0.00000E+00
DIC> read exi3b
   OK
DTCS
DIC> @@
 DIC> @@ START THE SIMULATION
DIC> @@
 DIC> sim y
   geometric 0.772465 dense at 0.499999E-02 97 points Region: SP
   Region: SP geometric 1.04572 dense at 0.00000 44 points geometric 0.956275 dense at 0.100000E-09 45 points
   Trying old scheme 3 U-FRACTION IN SYSTEM: FE = 0.99999999500542 O = 2.10000395011622E-08
 2 122437603184462E=004
                                                                                                                                                                                                                                                                                                                                                                                8 103761824275473E-
     TOTAL SIZE OF SYSTEM: .00499999011316 [m]
7 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: FER
4 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: SP
      CPU time used in timestep
  | Seconds | Seco
                                                                                                                                                                                                                                                                                        3 430958284997536E-007
                                                                                                                                                                                                                                                                                                                                                                               1 112500078759461E-
   CELL # 1 VELOCITY AT INTERFACE # 3 IS 0.5636969E-03 AND 0.000000 POSITION OF INTERFACE SP / gas interface IS 0.4999902E-02 U-FRACTION IN SYSTEM: FE = 0.9999998474497 O = 4.93631370297068E-08 TOTAL SIZE OF SYSTEM: .00499999015199 [m] 43 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: SP
      CPU time used in timestep
  CPU time used in timestep 1 seconds 7.723626235177165E-006 7.723696951549050E-006 7.723912509644285E-006 033 TIME = 0.70000000E-06 DT = 0.40000000E-06 SUM OF SQUARES = 0.96488808E-32 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.17792518E-03 AND 0.0000000 POSITION OF INTERFACE FER / SP IS 0.49999898E-02 CELL # 1 VELOCITY AT INTERFACE # 3 IS 0.24397273E-03 AND 0.0000000 POSITION OF INTERFACE SP / gas interface IS 0.49999902E-02 U-FRACTION IN SYSTEM: FE = 0.9999997895004 0 = 6.88838385478754E-08 TOTAL SIZE OF SYSTEM: .00499999017841 [m] 10 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: SP
                                                                                                                                                                                                                                                                                        6.052262356449636E-009
                                                                                                                                                                                                                                                                                                                                                                                     9.934949114731744E-
 033
                   time used in timestep
                                                                                                                                                              seconds
CPU time used in timestep 1 seconds
1.354675784993464E-007 1.355736620725613E-007 1.355344692272980E-007
032 TIME = 0.15000000E-05 DT = 0.80000000E-06 SUM OF SQUARES = 0.56997417E-31
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.14395572E-03 AND 0.0000000
POSITION OF INTERFACE FER / SP IS 0.49999897E-02
CELL # 1 VELOCITY AT INTERFACE # 3 IS 0.20835239E-03 AND 0.0000000
POSITION OF INTERFACE SP / gas interface IS 0.49999902E-02
U-FRACTION IN SYSTEM: FE = 0.99999996844848 0 = 1.02224557591543E-07
TOTAL SIZE OF SYSTEM: .0049999022993 [m]
15 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: SP
                                                                                                                                                                                                                                                                                        6 721754149868455E-010
                                                                                                                                                                                                                                                                                                                                                                                     5 699746412221914E-
                   GRIDPOINT(S) REMOVED FROM CELL #1
                                                                                                                                  REGION: SP
CPU time used in timestep 2 seconds
4.455333975350134E-007 4.456661481604863E-007 4.456638384074687E-007
032 TIME = 0.31000000E-05 DT = 0.16000000E-05 SUM OF SQUARES = 0.21328275E-31
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.94034526E-04 AND 0.0000000
POSITION OF INTERFACE FER / SP IS 0.49999896E-02
CELL # 1 VELOCITY AT INTERFACE # 3 IS 0.13397313E-03 AND 0.0000000
POSITION OF INTERFACE SP / gas interface IS 0.49999903E-02
U-FRACTION IN SYSTEM: FE = 0.9999995520645 0 = 1.45101135885996E-07
TOTAL SIZE OF SYSTEM: .00499999029383 [m]
29 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: SP
      CPU time used in timestep
                                                                                                                                                                                                                                                                                       2.596913177917200E-010
                                                                                                                                                                                                                                                                                                                                                                                2.136919425416328E-
     CPU time used in timestep
                                                                                                                                                              seconds
                                                      0E-005 1.105325230102506E-005 1.10528199
0.63000000E-05 DT = 0.32000000E-05 SUM OF SQUARES =
                                                                                                                                                                                            1.105281997492597E-005
    1.104878748072100E-005
                                                                                                                                                                                                                                                                                        1.738963857726395E-008
                                                                                                                                                                                                                                                                                                                                                                                    1.193963718062407E-
 output ignored...
 ... output resumed
   0.0000000
      CPU time used in timestep
  CPU time used in timestep 2 seconds 5.273133320950391E-007 5.281062365100956E-007 5.280443729228357E-007 034 TIME = 56943.895 DT = 8640.0000 SUM OF SQUARES = 0.27083390E-34 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.70247284E-09 AND 0.0000000 POSITION OF INTERFACE FER / SP IS 0.49272776E-02 CELL # 1 VELOCITY AT INTERFACE # 3 IS 0.10045406E-08 AND 0.0000000
                                                                                                                                                                                                                                                                                        7.076362320696338E-010
                                                                                                                                                                                                                                                                                                                                                                                     3.912045199536573E-
```

0.50312191E-02

POSITION OF INTERFACE SP / gas interface IS

```
U-FRACTION IN SYSTEM: FE = .993661317005364 O = .0206594871616782
 TOTAL SIZE OF SYSTEM: .00503121911346 [m] 9 GRIDPOINT(S) REMOVED FROM CELL #1 RE
                                                                                 REGION: SP
 CPU time used in timestep 1 seconds
2.946692819116459E-007 2.952132903578597E-007 2.951644928839408E-007
032 TIME = 65583.895 DT = 8640.0000 SUM OF SQUARES = 0.13108361E-31
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.64894662E-09 AND 0.0000000
POSITION OF INTERFACE FER / SP IS 0.49216707E-02
CELL # 1 VELOCITY AT INTERFACE # 3 IS 0.92920436E-09 AND 0.0000000

POSITION OF INTERFACE FR / SP IS 0.92920436E-09 AND 0.0000000
                                                                                                                                                                                      3.823713469258932E-010
                                                                                                                                                                                                                                                    1.313544407382857E-
 POSITION OF INTERFACE SP / gas interface IS 0.50336405E-02
U-FRACTION IN SYSTEM: FE = .993180429046611 O = .0222444829908245
TOTAL SIZE OF SYSTEM: .00503364054032 [m]
8 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: SP
 CPU time used in timestep 1 seconds
1.649046703289139E-007 1.649792727269746E-007 1.649482143521673E-007
033 TIME = 74223.895 DT = 8640.0000 SUM OF SQUARES = 0.20342635E-32
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.60654812E-09 AND 0.0000000
POSITION OF INTERFACE FER / SP IS 0.49164301E-02
CELL # 1 VELOCITY AT INTERFACE # 3 IS 0.86919602E-09 AND 0.0000000
POSITION OF INTERFACE SP / gas interface IS 0.50359098E-02
U-FRACTION IN SYSTEM: FE = .992730593064681 0 = .0237257195654118
TOTAL SIZE OF SYSTEM: .00503590981822 [m]
11 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: SP
   CPU time used in timestep
                                                                                                        seconds
                                                                                                                                                                                       1.988142581530953E-010
                                                                                                                                                                                                                                                2.037272769297123E-
 CPU time used in timestep 1 seconds
1.056449587111593E-007 1.059236432946871E-007 1.059043396681829E-007
035 TIME = 82863.895 DT = 8640.0000 SUM OF SQUARES = 0.36863503E-34
CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.57100504E-09 AND 0.0000000
POSITION OF INTERFACE FER / SP IS 0.49114966E-02
CELL # 1 VELOCITY AT INTERFACE # 3 IS 0.81838275E-09 AND 0.0000000
POSITION OF INTERFACE SP / gas interface IS 0.50380472E-02
U-FRACTION IN SYSTEM: FE = .992307543196515 O = .0251191396439801
TOTAL SIZE OF SYSTEM: .00503804716161 [m]
7 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: SP
                                                                                                                                                                                       1.220611552948889E-010
                                                                                                                                                                                                                                                    6.394689268473244E-
1 085094308293444E=011
                                                                                                                                                                                                                                                    5 189478420462169E-
 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.56483653E-09 AND 0.0000000 POSITION OF INTERFACE FER / SP IS 0.49094993E-02 CELL # 1 VELOCITY AT INTERFACE # 3 IS 0.78548531E-09 AND 0.0000000 POSITION OF INTERFACE SP / gas interface IS 0.50388274E-02 U-FRACTION IN SYSTEM: FE = .992153350206985 O = .025666481081554 TOTAL SIZE OF SYSTEM: .00503882739878 [m]
  MUST SAVE WORKSPACE ON FILE
WORKSPACE SAVED ON FILE
  RECLAIMING WORKSPACE
DELETING TIME-RECORD FOR TIME
  DELETING TIME-RECORD FOR TIME
                                                                  0.10000000E-06
  DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                   0.3000000E-06
                                                                   0.7000000E-06
  DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                   0.15000000E-05
                                                                   0.31000000E-05
  DELETING TIME-RECORD FOR TIME
                                                                   0 63000000E-05
  DELETING TIME-RECORD FOR TIME
                                                                   0.1270000E-04
  DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                                   0.25500000E-04
                                                                   0.51100000E-04
  DELETING TIME-RECORD FOR TIME
                                                                   0.10230000E-03
  DELETING TIME-RECORD FOR TIME
                                                                   0 20470000E-03
  DELETING TIME-RECORD FOR TIME
                                                                   0.40950000E-03
  DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                                   0.81910000E-03
                                                                   0.16383000E-02
0.32767000E-02
  DELETING TIME-RECORD FOR TIME
  DELETING TIME-RECORD FOR TIME
                                                                   0 65535000E-02
  DELETING TIME-RECORD FOR TIME
  DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                                   0.26214300E-01
                                                                   0 52428700E-01
                                                                   0.10485750
  DELETING TIME-RECORD FOR TIME
                                                                   0 20971510
   DELETING TIME-RECORD FOR TIME
                                                                   0.41943030
  DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                   0.83886070
  DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                                     6.7108863
  DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                     26.843545
                                                                     53.687091
  DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                                     214.74836
429.49673
  DELETING TIME-RECORD FOR TIME
                                                                     858.99346
  DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                     3435.9738
  DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                                     6871.9477
                                                                     13743.895
  DELETING TIME-RECORD FOR TIME
                                                                     22383.895
  DELETING TIME-RECORD FOR TIME
                                                                     31023.895
  DELETING TIME-RECORD FOR TIME
                                                                     39663.895
  DELETING TIME-RECORD FOR TIME
DELETING TIME-RECORD FOR TIME
                                                                     48303.895
                                                                     56943.895
  DELETING TIME-RECORD FOR TIME DELETING TIME-RECORD FOR TIME
                                                                     65583.895
                                                                     74223.895
                                                                   82863.895
  KEEPING TIME-RECORD FOR TIME
```

DIC>
DIC> set-inter
--OK--DIC>

AND FOR TIME

WORKSPACE RECLAIMED

TIMESTEP AT 86400.0000 SELECTED

86400.000

exi3b-plot

```
DIC>About
NO SUCH COMMAND, USE HELP
DIC>DIC>MACRO exi3b\plot.DCM DIC>
DIC> @@ exi3_plot.DCM
DIC>
DIC> @@
DIC> 00 FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE i3
DIC> @@
DIC>
DIC> @@
DIC> 00 GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE
DIC> @@
DIC> go d-m
TIME STEP AT TIME 8.64000E+04

DIC> read exi3b
OK
DIC>
DIC> 00
DIC> 00 ENTER THE POST PROCESSOR
DIC> 00
DIC> post
 POST PROCESSOR VERSION 1.7
Implemented by Bjorn Jonsson
POST-1: @@
POST-1: 00 PLOT THE THICKNESS OF THE OXIDE LAYER GROWING AT THE SURFACE.

POST-1: 00 FOR THIS WE NEED TO ENTER A FUNCTION ACCORDING TO THE FOLLOWING.

POST-1: ent func oxideth
FUNCTION: poi(sp,upper)-poi(sp,lower)
POST-1: @@
POST-1: @@ PUT THIS FUNCTION ON THE Y-AXIS
POST-1: @@
POST-1: s-d-a y oxideth
POST-1: @@
POST-1: @@ AND PLOT THE OXIDE THICKNESS VERSUS TIME
POST-1: @@
  INFO: Time is set as independent variable
POST-1:
POST-1: @@
POST-1: @@ SINCE WE ARE PLOTTING A FUNCTION, SPECIFY A PLOT CONDITION
POST-1: @@
POST-1: s-p-c interface sp upper
POST-1:
POST-1: app y exi3a.exp 0; 1;
POST-1:
POST-1:
POST-1: SET_EXP_FILE_FORMAT 4
POST-1:
POST-1: plot
       0.000140
       0.000120
       0.000100
       0.000080
    OXIDETH
       0.000060
       0.000040
       0.000020
       0.000000
                     10000
                             20000
                                     30000
                                             40000
                                                     50000
                                                              60000
                                                                      70000
                                                                              80000
                                                                                      90000
                                                 Time
POST-1:
POST-1:
POST-1: set-inter
 --OK--
POST-1:
```

This page was generated 2024-10-18 15:56